

A. NSK Linear Rolling Guide Product		
B. Ball Screws		
C. Monocarrier™		
D. Other		
E. Appendices		

GLOBAL BRAND

NSK products are known and used all over the world

Since 1916, when it was the first company in Japan to produce ball bearings, NSK has contributed to industrial growth both domestically and overseas for more than 90 years. Now, the company's accumulated technology in bearings has been applied to precision products in order to support core components used in a variety of machinery. Precision products marketed under the trusted NSK brand, such as Ball Screws, Linear Guides, Monocarriers, mechatronic products, and Spindles are found in every corner of the globe.

TOTAL QUALITY

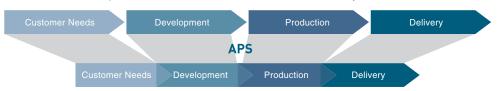
Focus on customers' total quality

Product quality is essential for manufacturers. NSK builds on its solid foundation of quality to enhance its ability to offer solutions that add value for customers, taking advantage of capabilities afforded by supply chain management (APS: Advanced Production System), and further extending its technical expertise based on four core technologies. Quality is the objective in all our business processes toward becoming "No. 1 in Total Quality."

SOLUTIONS

Improvement of customers' product value by technical support

APS

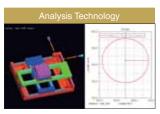

Advanced production system for speed, quality and global supply chain management

Solutions only NSK can propose are contributing to the advancement of manufacturing for a new era.

With its Technology Center as the cornerstone, NSK is able to provide technical support worldwide and quickly offer innovative solutions. We are able to more rapidly deliver the required products by combining a global production system with a broad lineup that includes precision products and bearings. These detailed solutions and technical support efforts enable us to enhance the value of our customers' products and thereby deepen our partnerships with those customers.

NSK has streamlined operations to cut lead times and achieve faster delivery.

To more effectively respond to customer needs, NSK implemented APS (Advanced Production System) encompassing sales, development, design, manufacturing and distribution. Under our APS, we established a project for streamlining operations to shorten lead times. As a result, the system has boosted supply capacity and directly addressed customer demand.


5

TECHNOLOGY

Developing innovative technologies and products by our four core technologies

Precision products with rotational and linear movement require lubrication that supports high speed, low noise operation, load capacity, durability, and other desirable functionality. NSK has applied, and provided to customers, advanced tribology (friction control technology) to such areas as grease, solid lubricants, and surface processing methods for precision products.

NSK utilizes computer simulations to conduct virtual experiments that require high precision or are difficult to run under actual machine operating conditions. Further improvements in analysis technology have accelerated product development.

We are aggressively striving to advance material technology through material design, thermal treatment, performance evaluation, and analysis as the cornerstone for improving product performance and durability as well as for reducing costs and boosting productivity.

Our mechatronics, which integrate mechanical and electronic elements, incorporates state-of-the-art advances in high-performance motors along with control and sensor technology

Environmental Initiatives

Approach and Basic Policy for Development and Design

In its Environmental Code of Conduct, the NSK Group aims to develop technology and create products that reduce environmental impact. NSK Group products are incorporated into various machines and devices and have the ability to control friction and reduce the amount of energy consumed. In the product development and design stage, importance is placed on comfort, preservation of natural resources, and energy conservation at the end-user stage, as well as on reducing the environmental impact of the manufacturing process. Therefore, initiatives are being promoted to utilize the environmental features of NSK products. In fiscal 2001, a basic policy affecting all technical departments was established in order to steadily implement these

■ Green Procurement Policy The NSK Group actively procures products, parts, and materials based on environmental considerations. By managing environmentally harmful substances with its suppliers, NSK is strengthening its environmental quality assurance system for its products.

■ Green Procurement Standards

The NSK Group must deliver products that ensure satisfaction and meet the European and each country's regulations. Therefore, NSK has established standards for procurement such as the Master Purchase Agreement and the Green Procurement Standards, based on the idea that ecological considerations for parts and material procurement are indispensable to environmental protection. The company has asked its suppliers to cooperate in this effort.

Basic Policy for the Development of

Environmentally Friendly Products

environmental impact of its products at

every stage—from R&D and design, to

1. Each product should contribute toward

the energy and resource conservation

by the machine in which it is installed.

required during product manufacturing

2. The amount of energy and resources

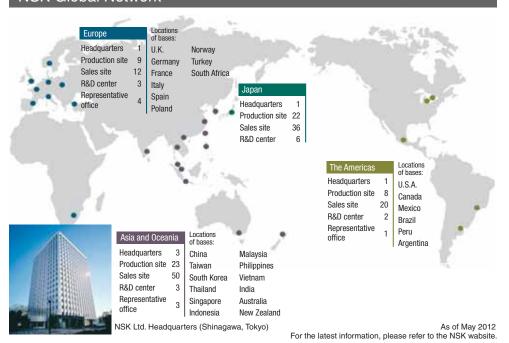
3. Environmentally harmful substances

manufacturing processes.

should not be used in products or

4. Products should contribute to the health

and safety of end-users by having low emissions of vibration, noise, and dust.


production, usage, and disposal-by

The NSK Group will minimize the

upholding the following standards:

should be minimal

Conference for Green Procurement

Research & Development NSK's research system takes full advantage of knowledge on technology shared through its information network.

Linear Technology Center

Kirihara, Kanagawa

The Linear Technology Center plays a vital role in developing next-generation precision products in cooperation with NSK Technology Development Center. For new products or those used for special purposes, reliability testing is essential. Each technology division has introduced instruments developed by NSK to evaluate the various aspects of product performance. Experiments conducted by the Center are designed according to specific application conditions, such as operating life and durability. The Center also undertakes vacuum environment testing for semiconductor and LCD manufacturing equipment as well as sound and vibration testing. In addition, accumulated test data is stored in a database, which has proved to be a valuable resource. The Center is constantly striving to develop new industry-leading products.

NSK Technology Development Center

Fujisawa, Kanagawa

The Center supports the future of NSK by conducting research and development into innovative technologies, such as tribology, analysis technology, materials technology, and mechatronics. This Center develops high added-value, next-generation products by broadly disseminating data and exchanging information with the Linear Technology Center and R&D centers in the Americas, Europe and Asia.

Manufacturing Bases Global manufacturing bases assist in maintaining the high-quality "NSK brand."

NSK Kyushu Co., Ltd.

Ukiha, Fukuoka

As the world's No. 1 production base for precision Ball Screws, NSK Kyushu Co., Ltd. is striving to realize unsurpassed QCD (quality, cost, delivery) and earn customer trust. NSK Kyushu Co., Ltd. endeavors to shorten delivery time with NSK's proprietary production management system.

Products: Ball Screws

Maebashi Precision Machinery Plant

Maebashi, Gunma

As a production base for precision machinery components, the Maebashi Precision Machinery Plant manufactures world-class products, including large Ball Screws and Monocarriers, by fully applying state-of-the-art techniques based on the highest level super-precision technologies. NSK's own production methods ensure meticulous quality control throughout the entire production process.

Products: Ball Screws. Monocarriers. XY Tables. Support Units

Saitama Precision Machinery Plant

Hanvu. Saitama

The Saitama Precision Machinery Plant manufactures Linear Guides that are widely used in machine tools, transportation systems, and other applications. With its ground-breaking processing technology and thorough factory automation, the plant contributes to enhancing customer satisfaction by producing high-quality products. Products: Linear Guides

NSK Precision America, Inc.

Franklin Plant

Indiana, U.S.A.

Established in 1993, this plant serves as a production base for Ball Screws. It actively supplies Linear Guides and mechatronic products to meet a wide range of market needs in such areas as machine tools, semiconductors, medical equipment and general industrial applications. The plant also promotes various projects and advanced production system (APS) activities in concert with other plants in Japan to achieve further advances toward even faster delivery systems to meet the demands of a broader market.

NSK Precision UK, Ltd. Nottinghamshire, U.K.

The Newark Plant was established in 1998 as a Linear Guide production base that supports short-term delivery along with a European warehouse, a sales base in Europe, and a workshop. The plant is part of a system that covers not only major markets in Europe but also general industrial markets in Eastern Europe and the Middle East. It also pursues streamlining in accordance with globalization and plays an active role as a global sourcing facility by supplying products to the Americas.

Shenyang NSK Precision Co., Ltd.

Shenyang Plant

Newark Plant

Shenyang, China

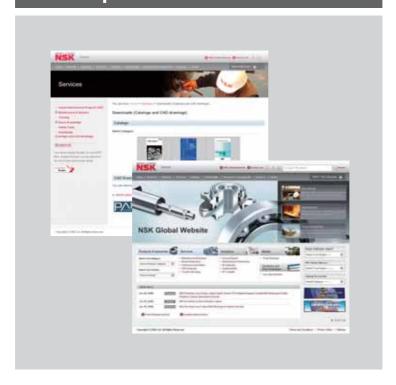
Shenyang NSK Precision Co., Ltd. was established in 2009 as a precision ball screw production base to meet the market needs of the emerging countries such as China, where demand is expected to grow.

By adopting NSK's own production technology developed in a Japanese plant and performing meticulous quality control, Shenyang NSK Precision Co., Ltd. endeavors to shorten delivery time. Products: Ball Screws

NSK Korea Co., Ltd.

Changwon Plant

Changwon, Korea


The Changwon Plant was established in 2010 as a production base for the supply of linear guides to the growing Korean market and its key industries: automotive, IT and machining tools. The plant is answering to the needs of the Korean market and plays an important role in NSK's global sourcing strategy.

Products: Linear Guides

1

For other machine components, technical data, and CAD drawing date, visit the NSK's website at http://www.nsk.com.

http://www.nsk.com

NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer. Every care has been taken to ensure the accuracy of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gratefully acknowledge any additions or corrections.

Preface

It is our pleasure to announce the publication of a new catalog which contains all NSK linear motion products. We believe this publication is one way to show our deep appreciation of your patronage.

Market demand for more sophisticated and diversified machines and equipment is rapidly escalating. NSK precision products are not only used widely in these machines, but also are crucial elements.

In response to this trend, ball screws, NSK linear guides, and Monocarriers, which are crucial mechanical components of these machines, are required to be highly reliable, maintenance-free, smaller in size and lightweight. They also are expected to heighten efficiency and satisfy uses in special environment.

Publishing a catalog to introduce our entire product line is especially meaningful under such circumstances.

This is an improved version of the previous catalog; products are categorized, and each product category has two sections. The first section contains an explanation of products for selection and a technical explanation including results of the latest experiments and research to assist thorough technological discussion. The second half is dimension tables. Last, "Other," whose pages are in color, explains special environments and lubrications such as grease, which are general issues for NSK precision products.

We hope abundant NSK products in the new catalog will be your aide in selecting the most suitable products for your purpose. We solicit your continued patronage.

Contents

A. NSK Linear Rolling Guide B. Ball Screws

A-1 Characteristics of NSK Linear Rolling Guides	
Comparision of Rolling Guides and Sliding Guides	
Structure and Characteristics of NSK Linear Guides	
A-2 Types of NSK Linear Rolling Guides	
A-3 Selection of NSK Linear Rolling Guides	
1. Selection Flow Chart ······A13	
2. Rating Life and Basic Load Rating	
3. PreloadA28	
4. AccuracyA32	
5. Maximum Rail LengthA37	
6. LubricationA38	
7. Dust ProofA52	
8. Rust Prevention (Stainless Steel and	
Surface Treatment)A57	
9. Special EnvironmentA60	
10. Arrangement and Mounting of Linear	
GuideAffair	
11. Drills to Select Linear GuideA79	
12. Reference	
12. hererenceA30	
A-4 NSK Linear Guides™A91	
A-5 Technical Description and Dimension Table for NSK Linear Guides	
1. General Industrial UseA113	
Liquid Crystal Display and Semiconductor A249	
3. Machine ToolsA301	
4. High-Precision Machine and High-Precision	
Measuring EquipmentA339	
A-6 Other Linear Rolling Guide Products	
1. Linear Rolling BushingA369	
2. Crossed Roller GuideA380	
3. Roller Pack	

4. Linear Roller BearingsA393

B-1. Selection Guide to NSK Ball Screw 1. Features of NSK Ball Screws
B-2 Technical Description of Ball Screws 1. Accuracy
19. Precautions When Handling Ball Screws B99 B-3 Ball Screw Dimension Table 1. Standard Ball Screws B101 2. Standard Nut Ball Screws B407 3. Application-Oriented Ball Screws B469

C. Monocarrier™

C-1 Monocarrier™
1. FeaturesC
2. Classification and SeriesC
3. Optional ComponentsC
4. Selection of MonocarrierC
5. Maintenance······C1
6. NSK Clean Grease LG2 Specification C1
7. Characteristics and Evaluation Method C1
8. Special Specifications
9. Sensor SpecificationsC2
C-2 MCM Series 1. MCM Series Reference Number Coding
2. MCM Series Dimension Table of Standard Products······C2 3. MCM Series Option Part ······C4
C-3 MCH Series 1. MCH Series Reference Number Coding
MCH Series Dimension Table of Standard Products
3. MCH Series Option Part ······ C7

D. Other

6. Deviations of Holes Used in Common Fits ------E9

1. Special EnvironmentsD1

2. Lubrication ·····D13

BLOC

NSK Linear Rolling Guide Product

JUN		
1. Co Slii 2. Str NS 1. S	Characteristics of NSK Linear Rolling Guides mparison of Rolling Guides and ding Guides A1 ructure and Characteristics of K Linear Guides A2 Structure of NSK Linear Guides A2 Characteristics of NSK Linear Guides A2	4. Calculation of mean effective load
	Types of NSK Linear Rolling GuidesA5	Selection of preload classification
1. Se	Selection of NSK Linear Rolling Guides lection Flow ChartA13	Application examples of preload A30 Load and rating life when the preload is taken into account
2.1 1. 2.	ting Life and Basic Load RatingA15 Life and Basic Load RatingA15 LifeA15A15A15A15Basic load ratings in compliance with ISO standard	7. Calculating friction force by preload A31 4. Accuracy A32 1. Accuracy standard A32 2. Definition of accuracy A31
5.	Basic dynamic load ratingA15 Calculation of rating fatigue lifeA15 Dynamic equivalent loadA16	3. Application example of accuracy grade and preload
7. 8.	Basic static load ratingA16 Basic static moment load ratingA16 Basic load rating by load	6. Lubrication

direction------------------------A16

linear guide ······A17

equivalent loadA21

2. Calculate load to a slide A17

3. Calculation of dynamic

2.2 How to Calculate the Life A17

1. Setting operating condition of

1. Standard specification parts -- A52

2. Dust-proof parts A53

and Surface Treatment)......A57

2. Surface treatment A57

8. Rust Prevention (Stainless Steel

9. Special EnvironmentA60
1. Heat-resistant specificationsA60
2. Vacuum and clean specifications
A60
3. "NSK linear guides for food
processing equipment and
medical devices" for sanitary
environment······A61
4. Specifications for special
environmentsA63
5. Lubrication and materials A64
6. Responsiveness of NSK linear
guides for special environments
A66
7. Precautions for handlingA66
10. Arrangement and Mounting of
Linear Guides A67
1. Arrangement
2. Mounting accuracyA69
Installation
linear guide
5. Butting rail specification A77
6. Handling preloaded assembly
A78
11. Drills to Select Linear Guide ··· A79
Single axis material handling
system A79
2. Machining center ······ A84
12. Reference A90
A-4 NSK Linear Guides™
1. Structure of NSK Linear Guides A91
2. Characteristics of NSK Linear
GuidesA91
3. Types and Characteristics of NSK
Linear Guides ······ A93
4. Guide to Technical Services A109
5. Linear Guides: Handling
PrecautionsA110
6. Design PrecautionsA111

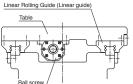
-A12

A369 -A397

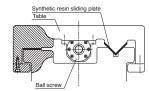
1.2 SH Series A139
1.3 VH Series A163
1.4 TS SeriesA185
1.5 LS SeriesA191
1.6 SS Series A213
1.7 LW Series A235
2. Liquid Crystal Display and
Semiconductor
2.1 PU Series A251
2.2 LU SeriesA261
2.3 PE Series A273
2.4 LE SeriesA283
2.5 LL Series A297
3. Machine Tools
3.1 RA Series A303
3.2 LA SeriesA321
4. High-Precision Machine and High-
Precision Measuring Equipment
4.1 HA Series A341
4.2 HS Series A355

A-6 Other Linear Rolling Guide Products

1. Linear Rolling Bushing A369
2. Crossed Roller GuideA380
3. Roller Pack
4. Linear Roller Bearings A393


A-1 Characteristics of NSK Linear Rolling Guides

Characteristics of the NSK linear rolling guides are:


- Designs are simple and economic. This contributes to a highly accurate and low cost guide way system.
- Low friction coefficient facilitates a compact and low cost driving mechanism.
- Ultra-high purity of materials and superb processing technology ensure a long-term reliable operation.
- Prompt delivery thanks to a variety of interchangeable components.
- · Users can select the most suitable guide from a wide variety of the ball guides and roller guides.

A-1-1 Comparision of Rolling Guides and Sliding Guides

The following describes a characteristic comparison between general rolling and sliding guide ways.

Example of rolling guide

Example of sliding guide

Comparative characteristics of rolling and sliding guide ways

Function	Rolling guide	Sliding guide
Friction	• Friction coefficient: 0.01 or lower • Difference between static and	Friction is high. The difference between static and
	dynamic friction is small. • The fluctuation of friction force due to	dynamic friction coefficient is significant.
	varying speed is far less than sliding guides.	
Positioning accuracy	Lost motion is minimal.	Larger lost motion
	Stick-slip is minimal.	Stick-slip at low speed Difficult to achieve sub-micron
	Easy to achieve sub-micron positioning	positioning
Life	Possible to estimate useful life	Difficult to estimate useful life
Static rigidity	Generally high	Rigidity is great against load from a particular direction.
	No play because of preload	There is a mechanical play.
	Easy to estimate rigidity	Difficult to estimate rigidity
Speed	Wide range of use from low to high speed	Unsuitable for extremely low or high speed
Maintenance, reliability	Long life through a simple maintenance	Precision is lost greatly by a worn out slide way surface.

In response to the demand for a high-speed, high-precision, high-quality, and easy maintenance, rolling guides which have above features are becoming prevalent.

guides which have above reacties are becoming prevalent. Utilizing the technology we have sharpened in anti-friction rotating bearings, NSK makes various types of rolling linear guides which are highly accurate and reliable.

A-1-2 Structure and Characteristics of NSK Linear Guides

1. Structure of NSK Linear Guides

By avoiding structural complexity, and by reducing the number of components, we not only enhanced the precision of linear guides, but also are able to keep costs low. We have added NSK's patented unique structural feature to the original invention (Fig. 1). This contributes to higher precision and lower prices.

NSK linear guides consist of a rail and a slide (**Fig. 2**). The balls or rollers roll on the race way surface, and are scooped up by the end caps attached to both ends of the ball or roller slide. Then, the balls or rollers go through a passage made in the slide, and circulate back to the other end.

2. Characteristics of NSK Linear Guides

The use of a unique offset Gothic arch groove (Fig. 3) allows the ball type of NSK linear guides to satisfy groove designs required for specific purposes.

This unique ball groove design facilitates precise measurement of the ball groove, thus enabling the stable and highly accurate production of the rails and ball slides for random matching. (Fig. 4)

On top of that, we have developed and marketed the NSK Roller Guides, representing the culmination of NSK's analysis technology and tribology.

Such technologies ensure the features of NSK linear guides outlined below.

(1) High precision and quality

 High precision and quality come from our superb production and measuring technologies, strengthened by extensive experience in antifriction rotary bearings and ball screw production. Our quality assurance extends to the smallest components.

(2) High reliability and durability

- · Logical simplicity in shape, along with stable processing, maintains high precision and reliability.
- Super-clean materials, our advanced heat treatment and processing technologies increase product durability.

(3) Abundant in type for any purpose

 Various series are available, and their slide models and size categories are standardized to satisfy any requirement. Our technology, polished by abundant experience in the use of special materials and surface treatments, meets the customer's most demanding expectations.

(4) Development of random-matching parts for short delivery time

• The adoption of the Gothic arch groove which makes measuring easy, and a new reliable quality control method has made random-matching of the rails and the ball slides possible. The parts are stocked as standard products, thereby reducing delivery time.

(5) Patented static load carrying capacity (impact-resistance)

• When a super-high load (impact) is applied, our Gothic arch groove spreads the load to surfaces which usually do not come into contact in the ball type NSK linear guides. This increases impact load resistance (Fig. 5).

(6) Lineup of extremely high-load capacity series

 The LA series provides a top class high-load capacity for the ball linear guides through a unique load carrying configuration with three ball recirculation circuits on the one side.

By installing rollers that are the largest possible diameter and length, the NSK roller linear guides have realized the world's highest load capacity, far superior to the roller linear guides of other companies.

Α1

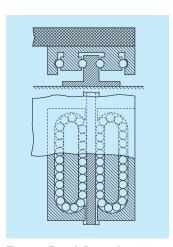


Fig. 1 • French Patent in 1932. • Inventor: Gretsh (German)

NSK added its patented technology to the invention in Fig. 1, and improved the linear guide structure, thus realizing low cost design.

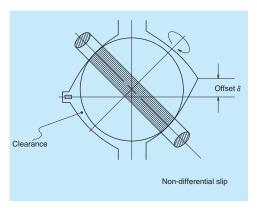


Fig. 3 Two point contacts of the offset Gothic arch groove

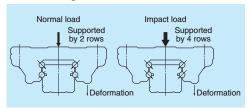


Fig. 5 Shock-resistance



Fig. 2 Structure of NSK linear guides

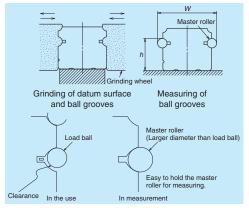


Fig. 4 Processing and measuring grooves

Measuring grooves is easy: you can obtain highly accurate results for all types of NSK series. This is why you can purchase rails and slides separately for random matching.

А3

A-2 Types of NSK Linear Rolling Guides

Product	Appearance	Shape	Rolling element	Load carrying characteristics
	LH Series		Ball	High vertical load carrying capacity
ar Guides	SH Series		Ball	High vertical load carrying capacity
NSK Linear Guides	VH Series		Ball	High vertical load carrying capacity
	TS Series		Ball	Four-way equal load carrying capacity

Friction characteristics: , Low; , Normal Assembly workability: \bigcirc , Good; \bigcirc , Fair

Rigidity	Friction characteristic	Assembly workability	Major applications	Page
		Industrial robots Materials handling equipment Semiconductor manufacturing equipment Laser cutting machines Electric discharge machines Packaging/packing machines		A115
			Industrial robots Materials handling equipment Semiconductor manufacturing equipment Laser cutting machines Electric discharge machines Packaging/packing machines	A139
			Industrial robots Materials handling equipment Woodworking machines Laser cutting machines Electric discharge machines Packaging/packing machines	A163
			Industrial robots Materials handling equipment Woodworking machines Laser cutting machines Electric discharge machines Packaging/packing machines	A185

Product	Appearance	Shape	Rolling element	Load carrying characteristics
	LS Series		Ball	High vertical load carrying capacity
	SS Series		Ball	High vertical load carrying capacity
NSK Linear Guides	LW Series		Ball	High vertical load carrying capacity
_	PU Series		Ball	Four-way equal load carrying capacity
	LU Series		Ball	Four-way equal load carrying capacity

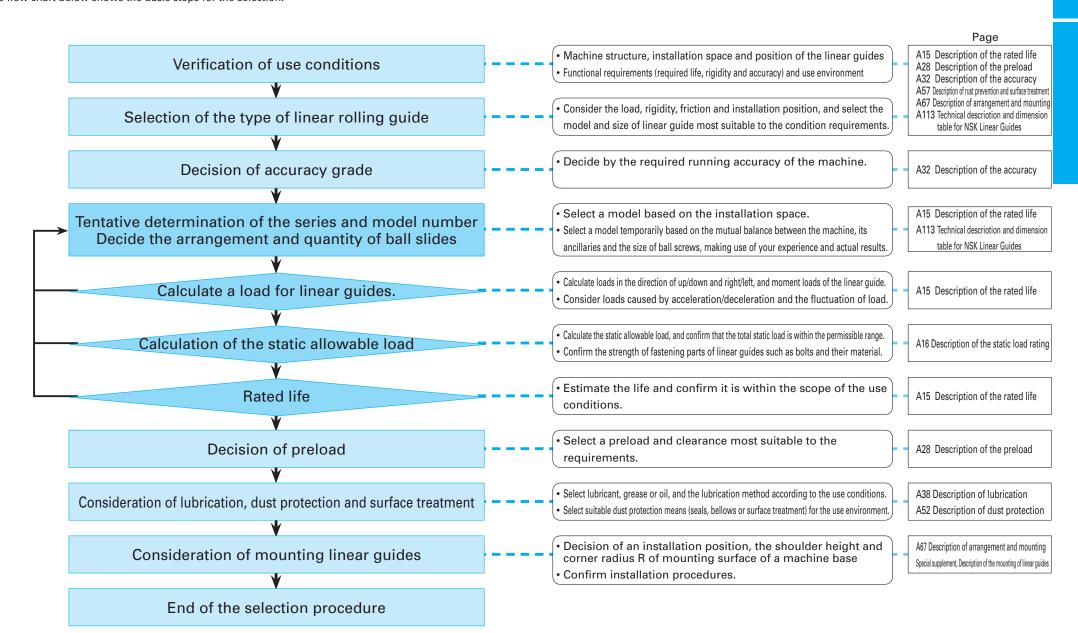
Rigidity	Friction characteristic	Assembly workability	Major applications	Page
			Industrial robots Materials handling equipment Electric discharge machines Woodworking machines Semiconductor manufacturing equipment Packaging/packing machines Pneumatic equipment	A191
			Industrial robots Materials handling equipment Electric discharge machines Semiconductor manufacturing equipment Packaging/packing machines Pneumatic equipment	A213
			Industrial robots Materials handling equipment Electric discharge machines Woodworking machines Semiconductor manufacturing equipment Packaging/packing machines Pneumatic equipment	A235
			Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages Microscope XY stages Miniature robots Pneumatic equipment Computer peripherals	A251
	0		Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages XY stage of microscope Miniature robots Pneumatic equipment Computer peripherals	A261

Product	Appearance	Shape	Rolling element	Load carrying characteristics
	PE Series		Ball	Four-way equal load carrying capacity
	LE Series		Ball	Four-way equal load carrying capacity
NSK Linear Guides	LL Series		Ball	Four-way equal load carrying capacity
_	RA Series		Roller	Four-way equal load carrying capacity
	LA Series		Ball	Four-way equal load carrying capacity

Rigidity	Friction characteristic	Assembly workability	Major applications	Page
			Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages Microscope XY stages Miniature robots Pneumatic equipment Computer peripherals	A273
			Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages XY stages of microscope Miniature robots Pneumatic equipment Computer peripherals	A283
			Knitting machines Computer peripherals Pneumatic equipment Office equipment	A297
\Rightarrow	0		Machining centers NC lathes Heavy cutting machine tools Various types of NC grinders Gear-cutting machines Press machines Electric discharge machines	A303
			Machining centers NC lathes Heavy cutting machine tools Various types of NC grinders Gear-cutting machines Press machines Electric discharge machines	A321

Α9 A10

	F			
Rigidity	Friction characteristic	Assembly workability	Major applications	Page
			Machining centers Precision lathes Various types of NC grinders Electric discharge machines Optical stages LCD manufacturing equipment Die molding machines High-precision measuring equipment	A341
			Machining centers Precision lathes Various types of grinders Electric discharge machines Optical stages LCD manufacturing equipment High-precision measuring equipment	A355
			Materials handling equipment Packaging/packing machines Medical equipment Pneumatic equipment Office equipment Assembling machines	A369
			Precision stages Measuring equipment Test equipment Printed circuit assembly machines	A380
			Large machine tools Conveyor system for heavy objects (guide ways for heavy loads)	A386
			Large machine tools Conveyor system for heavy objects (guide ways for heavy loads)	A393


Product	Appearance	Shape	Rolling element	Load carrying characteristics
NSK Linear Guides	HA Series		Ball	Four-way equal load carrying capacity
NSK Line	HS Series		Ball	High vertical load carrying capacity
Linear rolling bushing			Ball	P
Crossed roller guide			Roller	→
Roller pack	100		Roller	
Linear roller bearing	THE PROPERTY OF THE PARTY OF TH		Roller	

A11 A12

A-3 Selection of NSK Linear Rolling Guides

A-3-1 Selection Flow Chart

The flow chart below shows the basic steps for the selection.

A13 A14

A-3-2 Rating Life and Basic Load Rating

A-3-2.1 Life and Basic Load Rating

1. Life

Although used in appropriate conditions, the linear guide deteriorates after a certain period of operation, and eventually becomes unusable. In broad definition, the period until the linear guide becomes unusable is called "life." There are "fatigue life" caused by flaking, and "accuracy life" which the result of wear components.

2. Rating fatigue life

When the linear guide runs under loads, the rolling elements and the rolling contact surface of the grooves are exposed to repetitive stress. This brings about fatigue to the material, and generates flaking. Flaking is scale-like damage to the surface of the rolling contact surface.

Total running distance until first appearance of flaking is called "fatigue life." This is "life" in the narrow sense. The fatigue life varies significantly even in linear guides produced in the same lot, and even when they are operated under the same conditions. This is attributable to the inherent variation of the fatigue of the material itself.

"Rating fatigue life" is the total running distance which allows 90% of the group of linear guides of the same reference number to run without causing flaking when they are independently run under the same conditions. The rating fatigue life is sometimes indicated by total operating hours when the linear guides run at a certain speed.

3. Basic load ratings in compliance with ISO standard

NSK defines the basic load rating in compliance with the ISO standard.

The basic load rating listed in "A-5 Technical Description and Dimension Table for NSK Linear Guides." comply with the ISO standard.

ISO: International Organization for

Standardization

[Basic dynamic load rating]

ISO 14728-1; Rolling bearings — Linear motion rolling bearings

Part 1: Dynamic load ratings and rating life

[Basic static load rating]

ISO 14728-2; Rolling bearings — Linear motion rolling bearings

Part 2: Static load ratings

4. Basic dynamic load rating

- The basic dynamic load rating, which indicates load carrying capacity of the linear guide, is a load whose direction and volume do not change, and which furnishes 50 km of rating fatigue life.
- In case of the linear guides, it is a constant load applied to downward direction to the center of the slide.
- Value of the basic dynamic load rating C is shown in "A-5 Technical Description and Dimension Table for NSK Linear Guides."
- NSK defines the basic dynamic load rating as the load that furnishes 50 km of rated fatigue life for the balls as rolling element. However some linear guide manufacturers in Europe and the United States define the load for the basic fatigue life of 100 km as the basic dynamic load ratings.
- The following formula may be used to convert the basic dynamic load rating for 50 km (C_{50}) into the dynamic load rating for 100 km (C_{100}).

: $C_{100} = C_{50}/1.26$ (N)

- For rollers as rolling element, NSK defines the basic dynamic load rating as the load that furnishes 100 km of rated fatigue life. However, some linear guide manufacturers in Japan define the load for the basic fatigue life of 50 km as the basic dynamic load ratings.
- The following formula may be used to convert the basic dynamic load rating for 100 km (C_{100}) into the dynamic load rating for 50 km (C_{50}) rated fatigue life.

: $C_{50} = 1.23 \times C_{100}$ (N)

5. Calculation of rating fatigue life

 In general, the rating fatigue life "L" can be calculated from the basic dynamic load rating "C" and the load "F" to a slide using the following formula.

For balls as rolling element: $L = 50 \times \left(\frac{C}{F}\right)^3$

L: Rating fatigue life (km)

C: Basic dynamic load rating (N) (50 km)

F: Load to a slide (N) (dynamic equivalent load)

For rollers as rolling element : $L = 100 \times \left(\frac{C}{F}\right)^{\frac{10}{3}}$

L: Rating fatigue life (km)

C: Dynamic load rating (N) (100 km)

F: Load to a slide (N) (dynamic equivalent load)

6. Dynamic equivalent load

 Loads applied to the linear guide (slide load) comes from various directions up/down and right/left directions and/or as moment loads. Sometimes more than one type of load is applied simultaneously. Sometimes the volume and direction of the load may change.

Various loads cannot be used as they are to calculate the life of the linear guide. Therefore, it is necessary to use a hypothetical load on the slide with a constant volume, which would generate a value equivalent to an actual fatigue life. This is called "dynamic equivalent load." For actual calculation, refer to "A-3-2.2 3. Calculation of dynamic equivalent load"

7. Basic static load rating

- When an excessive load or a momentary large impact is applied to the linear guide, local permanent deformation takes place on the rolling elements and on the rolling contact surfaces. After exceeding a certain level, the deformation hampers smooth linear guide operation.
- Basic static load rating is a static load when: [Permanent deformation of the rolling elements]
- + [permanent deformation of the rolling contact surfaces] becomes approximately 0.0001 times of the rolling element diameter.
- In the case of the linear guides, it is a load which is applied in downward direction to the center of the slide.
- Values of the basic static load rating C₀ are shown in "A-5 Technical Description and Dimension Table for NSK Linear Guides."

8. Basic static moment load rating

 Generally, NSK linear guides use a set of two rails and four slides for the guide way of one axis.
 Under some operating condition, static moment load should be taken into account.

"M_o," which is the limit of static moment load , and calculated from permanent deformation in such use is shown in "A-5 Technical Description and Dimension Table for NSK Linear Guides."

9. Basic load rating by load direction

• The basic load rating is considered to be a downward load to the slide and is indicated in the dimension tables as the dynamic load rating C and the static load rating C_0 respectively. However, the load may be applied to a slide in upward or lateral directions in actual use. In such a case the basic load rating shall be compensated as shown in Table 2.1. The basic dynamic load rating of the RA and LA Series is the same in C and C_0 for all load directions, up, down and lateral, while the LH Series, for an example, has different basic load ratings by the load direction as shown in the table.

Table 2.1 Basic load ratings by load direction

Load rating	Basic dy	namic lo	ad rating	Basic static load rating			
Load Series direction	Downward	Upward	Lateral	Downward	Upward	Lateral	
LH,SH,VH,LS, SS,LW,HS	С	С	0.84 <i>C</i>	C ₀	0.78 <i>C</i> ₀	0.65 <i>C</i> ₀	
TS,PU,LU,PE,LE, LL,RA,LA,HA	С	С	С	C ₀	C _o	C _o	

NSK

A-3-2.2 How to Calculate the Life

1. Setting operating condition of linear guide

- · First, set operating conditions to determine whether the temporarily selected model satisfies the required life.
- · Major operating conditions are as follows. Set all values to calculate applied loads to each slide. (Refer to Table 2.2.)

Axis set up : Horizontal or vertical Rail combination : Single rail or multiple

: F_x , F_y and F_z (N) Applying loads Slide span : l (mm) Rail span : L (mm) Position of load action point : X, Y, Z (mm) Center of driving mechanism : X_b , Y_b , Z_b (mm) Operating speed : V (mm/sec) Time in acceleration : t (sec) Operating frequency (duty cycle)

2. Calculating load to a slide

• Table 2.2 shows a formula to calculate loads that are going to be applied to each assembled slide into a machine.

The Table shows six typical patterns of linear guide installing structure.

- · In the Tables, directions indicated by arrows denote "plus" for the applied loads (F_x, F_y, F_z) and the loads which are applied to the slides. $(F_r, F_s, M_r, M_p, M_v)$
- · Codes in the Tables are as follows:

F.: Vertical loads to the slide (N)

F_o: Lateral loads to the slide (N)

 M_{\cdot} : Rolling moment to the slide (N · mm)

 $M_{\rm p}$: Pitching moment to the slide (N · mm)

 M_{v} : Yawing moment to the slide (N · mm)

Suffixes (1, 2, ...) to the above $F_r - M_v$: Slide number

- F_{xi} : Load applied in X direction (i = 1 to n; n is the number of loads applied in X direction) (N)
- F_{vi} : Load applied in Y direction (j = 1 to n; n is the number of loads applied in Y direction) (N)
- F_{zk} : Load applied in Z direction (k = 1 to n; n is the number of loads applied in Z direction) (N)

Coordinates (X_{xi}, Y_{xi}, Z_{xi}) : Point where load F_{xi} (mm) is applied.

Coordinates (X_{vi}, Y_{vi}, Z_{vi}) : Point where load F_{vi} (mm) is applied.

Coordinates (X_{2k}, Y_{2k}, Z_{2k}) : Point where load F_{2k} (mm) is applied.

l: Slide span (mm)

L: Rail span (mm)

Coordinates (X_b, Y_b, Z_b) : Center of driving mechanism

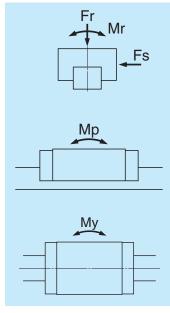


Fig. 2.1

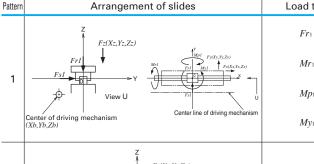
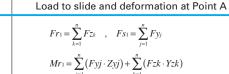
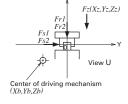
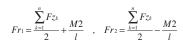




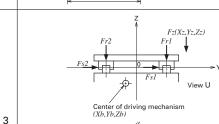
Table 2.2 Loads applied to the slides



$$Mp_1 = \sum_{i=1}^{n} \{Fxi \cdot (Zxi - Zb)\} + \sum_{k=1}^{n} (Fzk \cdot Xzk)$$
$$My_1 = -\sum_{i=1}^{n} \{Fxi \cdot (Yxi - Yb)\} + \sum_{k=1}^{n} (Fyj \cdot Xyj)$$

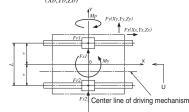
 $F_{\mathcal{V}}(X_{\mathcal{V}},Y_{\mathcal{V}},Z_{\mathcal{V}})$

2



$$Fs_1 = \frac{\sum_{j=1}^{n} Fy_j}{2} + \frac{M3}{l} , \quad Fs_2 = \frac{\sum_{j=1}^{n} Fy_j}{2} - \frac{M3}{l}$$
$$Mr_1 = \frac{M1}{2} , \quad Mr_2 = \frac{M1}{2}$$

$$M1 = \sum_{j=1}^{n} (Fy_{j} \cdot Zy_{j}) + \sum_{k=1}^{n} (Fz_{k} \cdot Yz_{k})$$


$$M2 = \sum_{i=1}^{n} \left\{ Fx_i \cdot (Zx_i - Zb) \right\} + \sum_{i=1}^{n} (Fz_k \cdot Xz_k)$$

$$M3 = -\sum_{i=1}^{n} \{Fx_i \cdot (Yx_i - Yb)\} + \sum_{j=1}^{n} (Fyj \cdot Xyj)$$

Center line of driving mechanism

$$Fr_1 = \frac{\sum_{k=1}^{\infty} Fz_k}{2} + \frac{M1}{L}$$
, $Fr_2 = \frac{\sum_{k=1}^{\infty} Fz_k}{2} - \frac{M1}{L}$

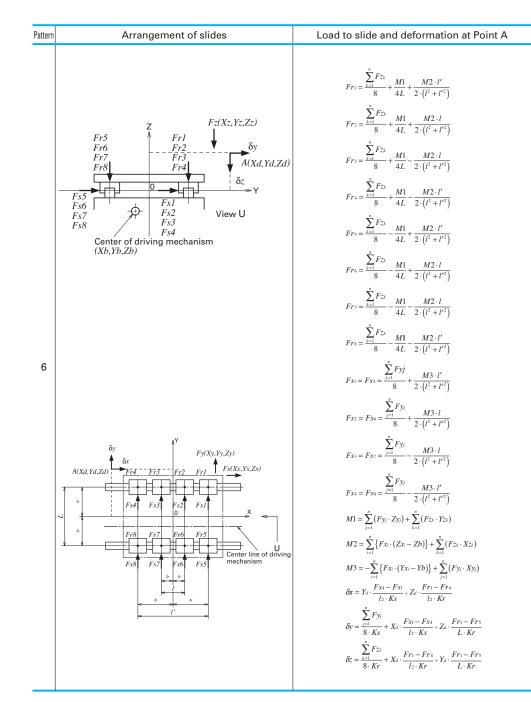
$$Fs_1 = Fs_2 = \frac{\sum_{j=1}^{\infty} Fy_j}{2}$$

$$Mp_1 = Mp_2 = \frac{M2}{2}$$
 , $My_1 = My_2 = \frac{M3}{2}$

$$M1 = \sum_{j=1}^{n} (Fy_{j} \cdot Zy_{j}) + \sum_{k=1}^{n} (Fz_{k} \cdot Yz_{k})$$

$$M2 = \sum_{i=1}^{n} \{ Fx_i \cdot (Zx_i - Zb) \} + \sum_{k=1}^{n} (Fz_k \cdot Xz_k)$$

$$M3 = -\sum_{i=1}^{n} \{Fx_i \cdot (Yx_i - Yb)\} + \sum_{j=1}^{n} (Fy_j \cdot Xy_j)$$


A17

Pattern	Arrangement of slides	Load to slide and deformation at Point A
4	F_{rd} F	$Fr_{1} = \frac{\sum_{k=1}^{n} Fz_{k}}{4} + \frac{M1}{2L} + \frac{M2}{2l} , Fr_{2} = \frac{\sum_{k=1}^{n} Fz_{k}}{4} + \frac{M1}{2L} - \frac{M2}{2l}$ $Fr_{3} = \frac{\sum_{k=1}^{n} Fz_{k}}{4} - \frac{M1}{2L} + \frac{M2}{2l} , Fr_{4} = \frac{\sum_{k=1}^{n} Fz_{k}}{4} - \frac{M1}{2L} - \frac{M2}{2l}$ $Fs_{1} = \frac{\sum_{k=1}^{n} Fy_{j}}{4} + \frac{M3}{2l} , Fs_{2} = Fs_{4} = \frac{\sum_{j=1}^{n} Fy_{j}}{4} - \frac{M3}{2l}$ $M1 = \sum_{j=1}^{n} (Fy_{j} \cdot Zy_{j}) + \sum_{k=1}^{n} (Fz_{k} \cdot Yz_{k})$
	$F_{SX} = F_{SX} = F$	$M2 = \sum_{i=1}^{n} \{Fx_i(Zx_i - Zb)\} + \sum_{i=1}^{n} (Fz_i \cdot Xz_i)$ $M3 = -\sum_{i=1}^{n} \{Fx_i(Yx_i - Yb)\} + \sum_{j=1}^{n} (Fy_j \cdot Xy_j)$ $\delta x = Y_d \cdot \frac{Fs_2 - Fs_1}{l \cdot Ks} + Z_d \cdot \frac{Fr_1 - Fr_2}{l \cdot Kr}$ $\delta y = \frac{\sum_{j=1}^{n} Fy_j}{4 \cdot Ks} + X_d \cdot \frac{Fs_1 - Fs_2}{l \cdot Ks} + Z_d \cdot \frac{Fr_1 - Fr_3}{L \cdot Kr}$ $\delta z = \frac{\sum_{k=1}^{n} Fz_k}{4 \cdot Kr} + X_d \cdot \frac{Fr_1 - Fr_2}{l \cdot Kr} + Y_d \cdot \frac{Fr_1 - Fr_3}{L \cdot Kr}$
	Fr4 $Fr5$ $Fr6$ $Fr6$ $Fr5$ $Fr8$ $Fr8$ $Fr8$ $Fr8$ $Fr9$	$Fr_{1} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} + \frac{M1}{3L} + \frac{M2}{2l} , Fr_{2} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} + \frac{M1}{3L}$ $Fr_{3} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} + \frac{M1}{3L} - \frac{M2}{2l} , Fr_{4} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} - \frac{M1}{3L} + \frac{M2}{2l}$ $Fr_{5} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} - \frac{M1}{3L} , Fr_{6} = \frac{\sum_{k=1}^{n} Fz_{k}}{6} - \frac{M1}{3L} - \frac{M2}{2l}$ $Fs_{1} = Fs_{4} = \frac{\sum_{j=1}^{n} Fy_{j}}{6} + \frac{M3}{2l} , Fs_{2} = Fs_{5} = \frac{\sum_{j=1}^{n} Fy_{j}}{6}$
5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Fs_{3} = Fs_{6} = \sum_{j=1}^{n} Fy_{j}$ $M1 = \sum_{j=1}^{n} (Fy_{j} \cdot Zy_{j}) + \sum_{k=1}^{n} (Fz_{k} \cdot Yz_{k})$ $M2 = \sum_{i=1}^{n} \{Fx_{i} \cdot (Zx_{i} - Zb)\} + \sum_{k=1}^{n} (Fz_{k} \cdot Xz_{k})$ $M3 = -\sum_{i=1}^{n} \{Fx_{i} \cdot (Yx_{i} - Yb)\} + \sum_{j=1}^{n} (Fy_{j} \cdot Xy_{j})$

 $\delta x = Y_d \cdot \frac{Fs_3 - Fs_1}{l \cdot Ks} + Z_d \cdot \frac{Fr_1 - Fr_3}{l \cdot Kr}$

 $\delta y = \frac{\sum_{j=1}^{n} F y_{j}}{6 \cdot Ks} + X_{d} \cdot \frac{Fs_{1} - Fs_{3}}{l \cdot Ks} + Z_{d} \cdot \frac{Fr_{1} - Fr_{4}}{L \cdot Kr}$

 $\delta z = \frac{\sum_{k=1}^{n} Fz_k}{6 \cdot Kr} + X_d \cdot \frac{Fr_1 - Fr_3}{l \cdot Kr} + Y_d \cdot \frac{Fr_1 - Fr_4}{L \cdot Kr}$

3. Calculation of dynamic equivalent load

• For the calculation of dynamic equivalent load, use the load in Table 2.3 which matches the intended use of the linear guide.

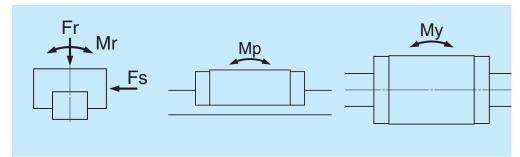


Fig. 2.2

Table 2.3 Loads in the arrangement of linear guides

	Assessment of linear	Loads necessary to calculate dynamic equivalent load					Dimensia assistatant	
Pattern	Arrangement of linear guide	Lo	ad	M	oment lo	ad	Dynamic equivalent load	
	guide	Up/down (vertical)	Right/left (lateral)	Rolling	Pitching	Yawing	ioud	
1		F,	F _s	M,	M _p	M,	$F_r = F_r$ $F_{se} = F_s \cdot \tan \alpha$	
2		F,	F _s	M _r			$F_{re} = \mathcal{E}_r \cdot M_r$ $F_{pe} = \mathcal{E}_p \cdot M_p$ $F_{ye} = \mathcal{E}_y \cdot M_y$	
3		F,	Fs		M _p	M _y	α : Contact angle LH, SH, VH, LS, SS, LW, HS Series $\alpha = 50^{\circ}$	
4		F _r	Fs				TS, PU, LU, PE, LE, RA, LA, HA Series $\alpha = 45^{\circ}$	

- ullet Use the dynamic equivalent coefficient $\mathcal E$ in the table below for an easy conversion of moment loads to the dynamic equivalent load.
- The coefficient of each moment direction is as follows.
- \mathcal{E}_r : Rolling direction
- \mathcal{E}_{n} : Pitching direction
- \mathcal{E}_{v} : Yawing direction

Table 2.4 Dynamic equivalent coefficients

Unit: 1/m

										ι	Jnit: 1/m
Model No.	arepsilon ,	$arepsilon_{ extsf{p}}$	$arepsilon_{_{\mathbf{y}}}$	Model No.	arepsilon ,	$arepsilon_{_{p}}$	$arepsilon_{_{y}}$	Model No.	arepsilon ,	$arepsilon_{\mathtt{p}}$	$arepsilon_{_{y}}$
LH08	316	269	321	TS35	55	54	54	LE05	196	248	248
I H10	253	203	242	1				LE05S	196	323	323
LH12	223	136	162	LS15	177	116	138	LE07	141	188	188
LH15	188	111	132	LS15S	177	174	208	LE07S	141	349	349
LH15L	188	72	86	LS20	127	94	112	LE07L	141	122	122
LH20	142	81	97	LS20S	127	136	162	LE09	123	149	149
LH20L	142	57	68	LS25	111	70	83	LE09S	123	277	277
LH25	123	68	81	LS25S	111	108	129	LE09L	123	102	102
LH25L	123	51	61	LS30	94	63	75	LE12	90	125	125
LH30A	98	70	83	LS30S	94	102	121	LE12S	90	233	233
LH30EF	98	58	69	LS35	76	54	64	LE12L	90	86	86
LH30L	98	44	52	LS35S	76	87	104	LE15	50	102	102
LH35	78	51	61					LE15S	50	174	174
LH35L	78	36	43	SS15 SS15S	177	97	115	LE15L	50	68	68
LH45	60	38	45	55155	177	176	210	D 4 4 5			
LH45L	60	30	36	SS20 SS20S	127	87	104	RA15	105	95	95
LH55	51	31	37	55205	127	138	164	RA15L	105	70	70
LH55L	51	25	30	SS25	111	70	83	RA20	79	74	74
LH65	43 43	27	32 24	SS25S SS30	111	115	137	RA20L	79	55	55
LH65L	33	20	20	353U	94	57	68	RA25	71 71	64	64
LH85L	33	17	20	SS30S SS35	94 76	106 42	126 50	RA25L RA30	56	50 58	<u>50</u> 58
SH15	188	112	133	SS35S	76	94	112	RA30L	56	44	44
SH 15	188	68	81	33333	76	94	112	RA35	46	52	52
SH15L SH20	142	82	98	LW17	66	125	149	RA35L	46	39	39
SH20I	142	56	67	LW21	59	108	129	RA45	37	40	40
SH20L SH25	123	66	78	LW27	53	76	91	RA45L	37	30	30
SH251	123	47	56	LW35	32	51	61	RA55	32	33	33
SH25L SH30A	98	74	89	LW50	25	38	46	RA55L	32	24	24
SH30EF	98	60	71			- 00		RA65	26	28	28
SH30I	98	42	50	PU05	377	431	431	RA65L	26	19	19
SH35	78	54	64	PU07	267	349	349	1			
SH35L SH45	78	36	43	PU09	215	222	222	LA25	122	76	76
SH45	60	39	46	PU09L	215	136	136	LA25L	122	47	47
SH45L	60	29	35	PU12	163	204	204	LA30	105	63	63
SH55	51	33	39	PU12L	163	125	125	LA30L	105	43	43
SH55L	51	24	29	PU15	133	174	174	LA35	84	54	54
				PU15L	133	102	102	LA35L	84	37	37
VH15	188	111	132					LA45	60	41	41
VH15L	188	72	86	LU05	385	359	359	LA45L	60	31	31
VH20	142	81	97	LU07	286	305	305	LA55	51	33	33
VH20L	142	57	68	LU09	217	242	242	LA55L	51	26	26
VH25	123	68	81	LU09L	217	138	138	LA65	43	29	29
VH25L	123	51	61	LU09R	217	203	203	LA65L	43	20	20
VH30A VH30EF	98 98	70 58	83 69	LU12 LU12L	167 167	204 116	204 116	HA25	122	33	33
VH30EF		44	52	LU 12L LU 15	133	174	174	HA30	105	27	<u>33</u> 27
VH30L VH35	98 78	51	61	LU 15 LU 15L	133	94	<u>174</u> 94	HA35	84	23	23
VH35L	78 78	36	43	LU ISL	133	94	94	HA35 HA45	60	23	23
VH45	60	38	45	PE05	194	277	277	HA55	51	16	16
VH45L	60	30	36	PE07	141	203	203	11433	31	10	10
VH55	51	31	37	PE09	123	161	161	HS15	177	45	54
VH55L	51	25	30	PE09L	123	108	108	HS20	127	39	47
VIIJJL	Ji	23	30	PE12	90	136	136	HS25	111	33	39
TS15	128	122	122	PE12L	90	90	90	HS30	94	27	32
TS20	97	90	90	PE15	50	111	111	HS35	76	23	28
TS25	81	77	77	PE15L	50	72	72	. 1000	,,,		
TS30	67	61	61			- / -	, -				
		<u> </u>									

Definitions of codes appearing at the end of the model number in Table 2.4:

: Super-high-load type ; LH45<u>L</u> S : Medium load type ; LS25<u>S</u> ; LH45_ No code: High-load type

: Ball slide shape is square ; LH30A (only LH30 and SH30) ; LH30EF (only LH30 and SH30) EF : Ball slide shape is flanged type (EL, FL type) R : Miniature Series with ball retainer ; LU09R (only LU and LE)

A21

NSK

• The formula is determined by the relationship of loads in terms of volume. A full dynamic equivalent load can be easily obtained by using each coefficient.

After obtaining the dynamic equivalent load of the necessary load directions from **Table 2.4**, use the formulas below to calculate full dynamic equivalent loads.

- When Fr is the largest load : Fe = Fr + 0.5Fse + 0.5Fre + 0.5Fpe + 0.5Fye
- When Fse is the largest load : Fe = 0.5Fr + Fse + 0.5Fre + 0.5Fpe + 0.5Fye
- When Fre is the largest load : Fe = 0.5Fr + 0.5Fse + Fre + 0.5Fpe + 0.5Fye
- When Fpe is the largest load : Fe = 0.5Fr + 0.5Fse + 0.5Fre + Fpe + 0.5Fye
- When Fye is the largest load : Fe = 0.5Fr + 0.5Fse + 0.5Fre + 0.5Fpe + Fye

For the values of each dynamic equivalent load in the formulas above, disregard load directions and take the absolute value.

• It is necessary to include the amount of preload for the calculation of rating life when selecting "Z3 medium preload" or "Z4 heavy preload" as a preload. For the calculation of full dynamic equivalent loads that consider preload, see "A-3-3 6" on page A31.

4. Calculation of mean effective load

When the load to the slide deviates, obtain a mean effective load which becomes equal to the life of slide under variable load conditions. If the load does not vary, use the dynamic equivalent load as it is.

(1) When load and running distance vary stepwise (Fig. 2.3)

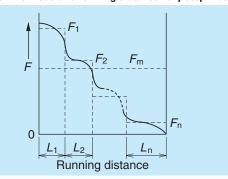


Fig. 2.3 Stepwise load change

Running distance while dynamic equivalent load F_1 is applied: L_1

Running distance while dynamic equivalent load F_2 is applied: L_2

Running distance while dynamic equivalent load F₃ is applied: L₃

.

Running distance while dynamic equivalent load F_n is applied: L_n

From the above, mean effective load Fm can be obtained by the following formula.

In case of ball

In case of roller

$$Fm = \sqrt[3]{\frac{1}{L} (F_1^3 L_1 + F_2^3 L_2 + \dots + F_n^3 L_n)}$$

$$Fm = \frac{10}{3}\sqrt{\frac{1}{L}\left(F_1^{\frac{10}{3}}L_1 + F_2^{\frac{10}{3}}L_2 + \dots + F_n^{\frac{10}{3}}L_n\right)}$$

Fm: Mean effective load of the deviating load (N)

L: Running distance (ΣLn)

(2) When load changes almost linearly (Fig. 2.4)

Approximate mean effective load Fm can be obtained by the following formula.

$$Fm = \frac{1}{3}(Fmin + 2Fmax)$$

 ${\it F}$ min : Minimum value of dynamic

equivalent load (N)

 ${\it F}$ max : Maximum value of dynamic

equivalent load (N)

(3) When load changes in sinusoidol pattern (Fig. 2.5)

At time of (a): Fm = 0.65 FmaxAt time of (b): Fm = 0.75 Fmax

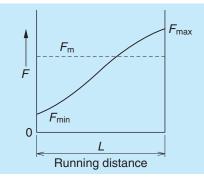
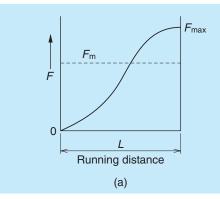



Fig. 2.4 Linear load change

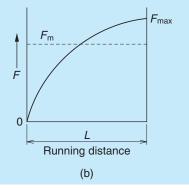


Fig. 2.5 Load that changes in sinusoidal pattern

5. Various coefficients

(1) Load factors

- Although a load applied to the slide can be calculated, the actual load becomes larger than the calculated value due to the machine's vibration and impact.
- Therefore, calculation of load on the slide should take into consideration the load factors in Table 2.5.

Table 2.5 Load factor fw

Impact/Vibration	Load factor		
impact, vibration	Edua lactoi		
No external impact/	10 15		
vibration	1.0 – 1.5		
There is impact/	1.5 – 2.0		
vibration from outside.			
There is significant	2.0 – 3.0		
impact/vibration.	2.0 – 3.0		

(2) Hardness coefficient

- For linear guides, in order to function optimally, both the rolling elements and the rolling contact surface must have a hardness of HRC58 to 62 to an appropriate depth.
- The hardness of NSK linear guide fully satisfies HRC58 to 62. Therefore, in most cases it is not necessary to consider hardness. If the linear guide is made of a special material by a customer's request, as the material hardness is lower than HRC58, use the following formula for adjustment.

$$C_{H} = f_{H} \cdot C$$

 $C_{OH} = f_{H}' \cdot C_{O}$

 $C_{\rm H}$: Basic dynamic load rating adjusted by hardness coefficient

f_H: Hardness coefficient (Refer to Fig. 2.6)

 $C_{
m OH}$: Basic static load rating adjusted by hardness coefficient

f_H': Static hardness coefficient (Refer to Fig. 2.6)

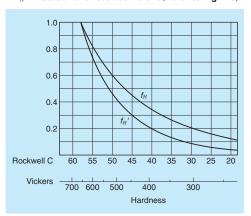


Fig. 2.6 Hardness coefficient

(3) Reliability coefficient

 In general, a reliability of 90% is customary. In this case, reliability coefficient is 1. Therefore, the reliability coefficient does not have to be included in calculation.

6. Calculation of rating life

Life Calculating Formula

The life calculating formula in the stroke movement with normal lubrication, the following relationships exist between the slide mean effective load $F_{\rm m}$ (N), the basic dynamic load rating to load application direction C (N), and the rating fatigue life L (km).

For balls as rolling element

$$L = 50 \times \left(\frac{f_{\rm H} \cdot C}{f_{\rm w} \cdot F_{\rm m}} \right)^3 \text{ (km)}$$

C: Basic dynamic load rating (N) (50 km)

fu : Hardness coefficient

f_w: Load factor

F_m: Mean effective load

For rollers as rolling element

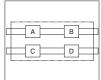
$$L = 100 \times \left(\frac{f_{\text{H}} \cdot C}{f_{\text{w}} \cdot F_{\text{m}}} \right)^{\frac{10}{3}} \text{(km)}$$

C: Basic dynamic load rating (N) (100 km)

fu : Hardness coefficient

 $f_{\rm w}$: Load factor

F_m: Mean effective load


Use the basic dynamic load rating $\ensuremath{\mathcal{C}}$ to calculate the life.

Note: Do not use the basic static load rating C_0 and the basic static moment rating M_{RO} , M_{PO} or M_{VO} for a calculation of the life.

Life as an entire guide way system

In those cases when several slides comprise

a single guide way system (such as a single-axis table), the life of the slide to which the most strenuous condition is applied is considered to be the life of the entire system.

For example, in Fig. 2.7, if "slide A" is the slide which receives the largest mean Fig. 2.7 Life of a system

effective load, or if "slide A" is the one which has the shortest life, the life of the system is considered to be the life of "slide A."

7. Examination of the basic static load rating

(1) Examine from the basic static load rating

 Examine the static equivalent load P₀, which is applied to the slide, from the basic static load rating C₀ and the static permissible load factor fs.

$$fs = \frac{C}{P}$$

When the static equivalent load P_0 is a combination of vertical loads Fr and lateral load Fs, calculate it using formulas below.

For LH, SH, VH, LS, SS, LW and HS Series: If compressed load and lateral load are combined $P_0 = Fr + 1.54Fs$

If tensile load and lateral load are combined $P_0 = 1.28Fr + 1.54Fs$

For TS, PU, LU, PE, LE, LL, RA, LA and HA Series: $P_0 = Fr + Fs$

 The table below shows guidelines of fs for general industrial use.

Table 2.6

Use conditions	fs
Under normal operating conditions	1 – 2
Operating under vibration/impact	1.5 – 3

- Basic static load rating is not a destructive force to the balls, rollers, rails, or slides. The balls can withstand a load more than seven times larger than the basic static load rating. It is sufficient as a safety factor to the destruction load designed for general machines.
- However, when a heavy load applied to the rail and slide in tension direction, the strength of the bolts which secures the rail and the ball slide affects the strength of the entire system. Strength of the bolt and its material should be considered.

(2) Examining from static moment load rating

Also examine the static permissible moment load M_o from the basic static moment load M_{po} and the static permissible load factor fs.

$$fs = \frac{M_{P0}}{M_0}$$

If more than one moment load in any direction is combined, please consult NSK.

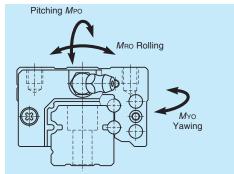


Fig. 2.8 Moment load directions

A25 A26

8. Precautions for the design in examining the life

The following points must be heeded in examining the life.

In case of oscillating motion

- If the rolling elements do not rotate all the way, but only halfway, and if this minute stroke is repeated, lubricant disappears from the contact surface of rolling elements and raceways. This generates "fretting," a premature wear. Fretting cannot be entirely prevented, but it can be mitigated.
- A grease which prevents fretting is recommended for oscillating stroke operations. When a standard grease is used, the life can be markedly prolonged by adding a normal stroke travel (about the slide length) once every several thousand cycles.

When applying pitching or yawing moment

- The load applied to the rolling element rows inside the slide is inconsistent if a pitching or yawing moment load is applied. Loads are heavy on the rolling elements on each end of the row.
- In such case, a heavy load lubricant grease or oil are recommended. Another countermeasure is using one size larger model of linear guide to reduce the load per rolling element.
- The moment load to a ball slide is insignificant for 2-rail, 4-slide combination which is commonly used.

When an extraordinary high load is applied during stroke

- If an extraordinary large load is applied at certain position of the stroke, calculate not only the life based on the mean effective load, but also the life based on the load in this range.
- When an extraordinary heavy load is applied and thus the application of high tensile stress to fixing bolts of the rails and slides is foreseen, the strength of the bolts should be considered.

When the calculated life is extraordinarily short (Less than 3 000 km in calculated life)

- In such case, the contact pressure to the rolling elements and the rolling contact surface is extraordinarily high.
- If the linear guides are operated under such state continually, the life is significantly affected by the loss of lubrication and the presence of dust, and thus the actual life becomes shorter than calculated.
- It is necessary to reconsider the arrangement of linear guides, the number of slide, and the type of model in order to reduce the load to the slides.
- It is necessary to consider preload for calculation of rating life when selecting Z3 (medium preload) or Z4 (heavy preload) as a preload. For the calculation of full dynamic equivalent loads that consider preload, see "A-3-3 6" on page A31.

Application at high speed

- The standard maximum allowable speed of a linear guide under normal conditions is 100 m/min. However, the maximum allowable speed can be affected by accuracy of installation, operating temperature, external loading etc.
- The end cap with high speed specification must be used when the operating speed exceeds the permissible speed. In such a case, please consult NSK.

A-3-3 Preload

1. Objective of preload

- An elimination of clearance between the raceways and rolling elements vanishes the mechanical play of the linear guide system.
- When a preload is applied, the deformation of linear guides by external vertical load is further improved thus increasing the system stiffness.
- Preloading method
 The preload is applied by inserting rolling elements slightly bigger than the space of two raceways as shown in Fig. 3.1.

2. Preload and rigidity

- In NSK linear guides, slight size changes of rolling elements, which are going to be inserted in the slide, control the clearance and amount of preload.
- In NSK linear guides, the rigidity is further increased and the elastic deformation is reduced by applying preload.
- In general, the load range of ball guide system in which the preload is effective, is about 2.8 times of the preload (Fig.3.2). For roller guide system, it becomes about 2.2 times of the preload.
- Fig. 3.3 shows the relationship between the ball slide deformation and the external vertical load under a specified preload. SH35 is used as an example.
- The following show the definition of linear guide rigidity.
- (1) Radial rigidity: Rigidity of vertical and lateral directions, up/down and right/left (Fig. 3.4).
- (2) Moment rigidity: Three moment directions, pitching, rolling, and yawing (Fig. 3.5).

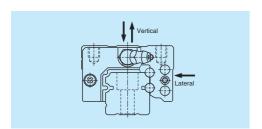


Fig. 3.4 Radial rigidity

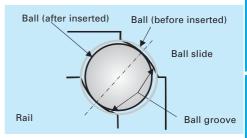


Fig. 3.1 Preloading method

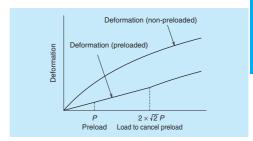


Fig. 3.2 Elastic deformation

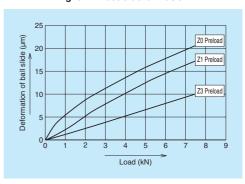


Fig. 3.3 Rigidity of SH35, downward direction load (example)

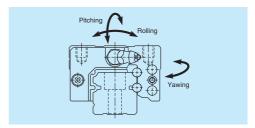
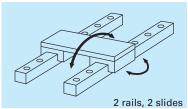
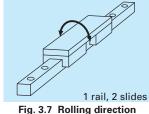




Fig. 3.5 Moment rigidity

NSK

- · Since two rails and four slides are used in general as a pair, consideration only for the radial rigidity is sufficient.
- · However, in cases as shown in Fig. 3.6, Fig. 3.7 and Fig. 3.8, it is necessary to take into account the moment rigidity in addition to the radial rigidity.

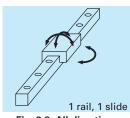


Fig. 3.6 Pitching and vawing direction

Fig. 3.8 All directions

3. Selection of preload classification

- Several types of preload that match the characteristic of each series are set for NSK linear guides.
- Types of preload classification for each series are shown in Table 3.1. Table 3.2 shows the selection criterion of the preload classification.

Table 3.1 Classification of preload in each series

		Preloaded	assembly (ı	not random	matching)	R	andom-m	atching typ	е
	Preload	Heavy preload	Medium preload	Slight preload	Fine clearance	Medium	preload	Slight preload	Fine clearance
	Series	Z4	Z3	Z1	Z0	Z3	ZH	ZZ	ZT
	LH, LS		0	0	0		0	0	0
	SH, SS		0	0	0		(()	0	0
	VH		0	0	0			0	0
	LW		(()	0	0				0
	PU			0	0				0
Dell audala	LU			0	0				0
Ball guide	PE			0	0				0
	LE			0	0				0
	LL				0				
	LA	0	0						
	HA		0	0					
	HS		0	0					
Roller guide	RA		0	0		0			

Table 3.2 Selection criterion of the preload

Classification of preload	Use condition	Applications
Z0 and ZT (Fine clearance)	An application in which a set of two parallel linear guides (four ball slides/two rails) is used to sustain a unidirectional load with low vibration and impact. An application in which the accuracy is not very necessary but a friction force must be minimized.	Welding machines, Glass processing machines, Packaging/packing machines, Materials handling equipment
Z1 and ZZ (Slight preload)	Moment loads are applied. Application for a highly accurate operation.	Industrial robots, Inspection/measuring equipment, Laser cutting machine, Electric discharge machines, PCB drillers, Chip mounters
Z3, ZH, and Z4 (Medium preload, Heavy preload)	Application in which extremely high stiffness is essential. Application in which vibration and impact load will be applied.	Machining centers, Lathes, Milling machines, Boring machines, Grinders

4. Estimation of the elastic deformation

The followings are the relation between load and deformation.

- Without the preload
- When the rolling element is ball The deformation is proportional to the 2/3 power of the load.
- When the rolling element is roller The deformation is proportional to the 9/10 power of the load.
- With the preload The deformation is directly proportional to the load.

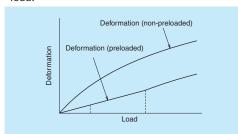


Fig. 3.9 Elastic deformation

A preloaded linear guide deforms proportionally to the load as shown in Fig. 3.9; the calculation of system deformation can be done using the deformation curve. The factors required for an estimation of the system deformation are listed below. The stiffness of slide is shown on the relevant explanation of each linear guide series.

- <Required conditions to calculate deformation>
- Volume of load
- Direction of load
- Point of load application
- · Position of deformation calculation
- · Arrangement of rails and ball slides
- Position of a driving mechanism

Please refer to the calculation formula of deformation for typical table structures on the pages A18 to A20.

Table 3.3 shows typical application for each preload types of the NSK linear guides.
Refer to this table when selecting "
or your application."

Table 3.3 Application examples of preload

of Je			Prel	oad	
Type of machine	Application	Heavy preload Z4	Medium preload Z3, ZH	Slight preload Z1, ZZ	Fine clearance Z0, ZT
	 Machining centers 	0	0		
	Grinders	0	0		
s	Lathes	0	0		
Machine tools	Milling machines	0	0		
	Drilling machines	0	0		
Ę.	Boring machines		0		
Jac	Gear cutters	0	0		
2	Diesinking machines		0	0	
	Laser cutting machines		0	0	
	Electric discharge machines		0		
	Punch presses		0	0	
=	Press machines			0	0
Jen	Welding machines		0	0	0
ibu	Painting machines			0	0 0
Industrial machines and equipment	Textile machines			0	0
þ	Coil winders		0	0	
au	Woodworking machines		0	0	0
nes	Glass processing machines			0	0 0 0 0 0 0 0 0
chi	Stone cutting machines			0	0
лá	Tire forming machines			0	0
a	• ATC			0	0
str	Industrial robots		0	0	0
npu	Materials handling equipment			0	0
<u>-</u>	Packing machines			0	0
	Construction machines				0
S	• Probers		0		
ΞΞ	Wire bonders		0	0	
acil	PCB drillers		0	0	
or f	Wafer slicers		0		
rct	Wafer dicers		0		
ndı	Chip mounters		0	0	
Semiconductor facilities	IC handlers			0	
E	Scanners			0	
Š	Lithographic machines		0	0	
	Measuring/inspection equipment			0	
	Three-dimensional measuring equipment		0		
rs	Medical equipment			0	0
Others	OA equipment			0	0
Ö	Railway cars			0	0
	Stage systems				0 0
	Pneumatic equipment			0	0

6. Load and rating life when the preload is taken into account

- It is necessary to include the amount of preload for the calculation of rating life when the Z3 (medium preload) or the Z4 (heavy preload) preload type is specified.
- Full dynamic equivalent load when the preload is taken into account can be obtained by the following formulas.

For balls as rolling element

$$Fe_{P} = P \left(1 + \frac{Fe}{2.83 \times P} \right)^{\frac{3}{2}}$$

P: Preload (N)

However, when the full dynamic equivalent load taking account of preload is larger than the load at which preload is removed, $Fe_P = Fe$. For this case, preload is lost at $F_{PO} = 2^{\frac{3}{2}}P$

For rollers as rolling element

$$Fe_{P} = P \left(1 + \frac{Fe}{2.16 \times P} \right)^{\frac{10}{9}}$$

P: Preload (N)

However, when the full dynamic equivalent load taking preload into account is larger than the load at which preload is removed, $Fe_P = Fe$. For this case, preload is lost at $F_{PO} = 2^{10}P$

7. Calculating friction force by preload

- Dynamic friction force per one slide of the ball quide can be calculated from a preload value.
- The following is a simple calculation to obtain the criterion of dynamic friction force.
 For the slight preload ZZ of a preloaded randommatching type linear guide, use the preload volume of slight preload Z1 type assembly.

F = iP

F: Dynamic friction force (N)

P: Preload (N)

i : Contact coefficient

Use the following contact coefficient values (i) for each series of linear guides.

LH, SH, VH, LS, SS, LW and HS Series

: 0.004

LA and HA Series : 0.010 PU, LU, PE and LE Series : 0.026

 The starting friction force when the slide begins to move depends on lubrication condition.
 Roughly estimate it at 1.5 to 2 times of the dynamic friction obtained by the above method.

Calculation example

In case of LH35AN - Z3

i = 0.004

P = 2 350 (N) (refer to LH series preload)

F = iP

 $= 0.004 \times 2350 = 9.4 (N)$

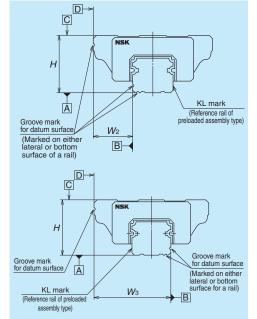
Therefore, the criteria of the dynamic friction force of LH35AN - Z3 is 9.4 N.

For seal friction, refer to seal friction of each Series.

NSK

A-3-4 Accuracy

1. Accuracy standard


The accuracy characteristics of linear guide are specified to each series in the variations of assembled height, assembled width, and running parallelism. We also specify the mutual variation of a pair of linear guides in the assembled height and assembled width. The accuracy of the table equipped with a set of linear guides is depending on other accuracies and many factors besides the accuracy of linear guides. Those are the accuracy of the mounting surface of the machine, the mounting span between two linear guides, the span of ball slides, the number of ball slides, and the location of the point at where the accuracy is really required. The NSK linear guides can deal with these factors and provide the best suited model for your specific application.

2. Definition of accuracy

• Table 4.1, Fig. 4.1 and Fig. 4.2 show accuracy characteristics.

Table 4.1 Definition of accuracy

Characteristics	Definition (Figs. 4.1 and 4.2)
Mounting height H	Distance from A (rail bottom datum surface) to C (slide top surface)
Variation of H	Variation of H in slides assembled to the rails of a set of linear guides
Mounting width	Distance from B (rail side datum surface) to D (slide side datum surface).
W_2 or W_3	Applicable only to the reference linear guide.
Variation of W ₂ or W ₃	Difference of the width (W_2 or W_3) between the assembled slides
	which are installed in the same rail. Applicable only to the reference
	linear guide.
Running parallelism of	Variation of C (slide top surface) to A (rail bottom datum surface) when
slide, surface C to surface A	slide is moving.
Running parallelism of	Variation of D (slide side datum surface) to B (rail side datum surface)
slide, surface D to surface B	when a slide is moving.

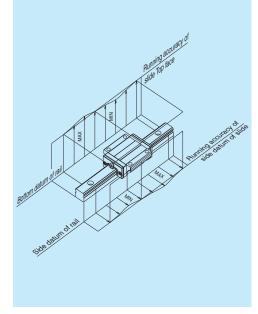
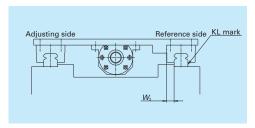


Fig. 4.1 Assembled dimensions


Fig. 4.2 Running parallelism of slide

A34

Mounting width: W_2 , and W_3

• Mounting width differs depending on the arrangement of the datum surfaces of the rail and slide on the reference linear guide (indicated as KL on the rail). (Fig. 4.3 and Fig. 4.4)

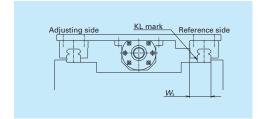


Fig. 4.3 Mounting width W₂

Fig. 4.4 Mounting width W₃

Running Parallelism of Ball Slide

 Running parallelism of slide is common in all series. Specifications of all accuracy grades are shown in Table 4.2. However, applicable accuracy grades differ by series. Please refer to "Table 4.4 Accuracy grade and applicable series" on page A35.

Table 4.2 Running parallelism of slide

Unit: µm

Accuracy grade	Pre	loaded asser	ng)	Random-ma	atching type		
Rail length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	Precision grade PH	Normal grade PC
- 50	2	2	2	4.5	6	2	6
50 – 80	2	2	3	5	6	3	6
80 – 125	2	2	3.5	5.5	6.5	3.5	6.5
125 – 200	2	2	4	6	7	4	7
200 – 250	2	2.5	5	7	8	5	8
250 – 315	2	2.5	5	8	9	5	9
315 – 400	2	3	6	9	11	6	11
400 – 500	2	3	6	10	12	6	12
500 - 630	2	3.5	7	12	14	7	14
630 – 800	2	4.5 (4)	8	14	16	8	16
800 – 1 000	2.5	5 (4.5)	9	16	18	9	18
1 000 – 1 250	3	6 (5)	10	17	20	10	20
1 250 – 1 600	4	7 (6)	11	19	23	11	23
1 600 – 2 000	4.5	8 (7)	13	21	26	13	26
2 000 – 2 500	5	10 (8)	15	22	29	15	29
2 500 – 3 150	6	11 (9.5)	17	25	32	17	32
3 150 – 4 000	9	16	23	30	34	23	34

Note: Value of () is the running parallelism of RA Series.

3. Application examples of accuracy grade and preload

Table 4.3 shows examples of accuracy grade and preload of NSK linear guides for specific purposes. Refer to this table when selecting accuracy grade and preload type for your application.

Table 4.3 Application examples of accuracy grade and preload

Je Je			Aco	curacy gra	ade			Prel	oad	
Type of machine		Ultra precision P3	Super precision P4	High precision P5, PH	Precision grade P6	Normal grade PN, PC	Heavy preload Z4	Medium preload Z3, ZH	Slight preload Z1, ZZ	Fine clearance ZO, ZT
	 Machining centers 		0	0	0		0	0		
Machine tools	Grinders	0	0	0			0	0		
	Lathes		0	0	0		0	0		
ğ	 Milling machines 		0	0	0		0	0		
e	Drilling machines			0	0		0	0		
-:=	 Boring machines 		0	0	0		0	0		
딩	Gear cutters		0	0	0		0	0		
ž	 Diesinking machines 		0	0	0			0	0	
	 Laser cutting machines 		0	0	0			0	0	
	Electric discharge machines	0	0	0			0	0		
+	Punch pressses			0	0			0	0	
en	Press machines				0	0			0	0
equipment	Welding machines				0	0		0	0	0
ΞĦ	Painting machines				0	0			0	0
ed	Textile machine				0	0			0	0
and (Coil winders				0	0		0	0	
ā	 Woodworking machines 			0	0	0		0	0	0
Sec	Glass processing machines				0	0			0	0
Ę.	 Stone cutting machines 				0	0			0	0
ac	Tire forming machines					0			0	0
=	• ATC				0	0			0	0
Industrial machines	Industrial robots			0	0	0		0	0	0
ıst	Materials handling equipment				0	0			0	0
ρ	Packing machines				0	0			0	0
<u> </u>	Construction machines					0				0
S	Probers	0						0	0	
Semiconductor facilities	Wire bonders		0	0				Ô	Ô	
<u>:</u>	PCB drillers			Ŏ	0			Ŏ	Ŏ	
Ť,	Wafer slicers	0	0					Ô		
cto	Wafer dicers	Õ	Ŏ					Õ		
뭐	Chip mounters			0	0			Õ	0	
Ö	IC handlers			Ŏ	Ŏ				Ŏ	
Ĭ.	Scanners			Ŏ	Ŏ				Ŏ	
Se	Lithographic machines	0	0					0	0	
	Measuring/inspection equipment	0	0	0	0				0	
	Three-dimensional measuring equipment	Ö	Ö	Ö	Ö			0	Ö	
S	Medical equipment		Ŏ	Ŏ	Ö				Ŏ	
Jer	OA equipment				Ö	0			Ö	
Others	Railway cars					$\overline{}$				
J	Stage systems					Ö				0
	Pneumatic equipment				0	0			0	0
	• Fileumatic equipment									

Note: Only Z1 and Z0 are available for PN grade.

For random-matching type, preload "ZH" and "ZZ" are available for PH grade. For PC grade, "ZH", "ZZ" and "ZT" are available.

For random-matching RA Series, only accuracy grade "P6" and preload "Z3" are avialable.

A33

4. Combination of accuracy grade and preload

(1) Accuracy grades

- The accuracy grade which matches the characteristic of each series is set for the NSK linear guides.
- Table 4.4 shows the accuracy grades available for each series.
- Refer to "3. Application examples of accuracy grade" which shows cases of appropriate accuracy grade for specific purpose.

Table 4.4 Accuracy grades and applicable series

	Prelo	aded assen	nbly (not ra	ndom mato	ching)	Rando	om-matchin	g type
Series	Ultra precision	Super precision	High precision	Precision grade	Normal grade	High precision	Precision grade	Normal grade
	P3	P4	P5	P6	PN	PH	P6	PC
LH, SH	0	0	0	0	0	0		0
VH	0	0	0 0	0	0			0
LS, SS	0	0		0	0	0		0
LA	0	0		0				
LW			0	0	0			0
PE, LE		0	0	0	0			0
PU, LU		0	0	0	0			0
LL					0			
HA	0	0	0					
HS	0 0		0					
RA	0	0	0	0			0*	

^{*)} Only RA25 to RA65 are available in random matching.

(2) Preload

- Several classifications of preload that match the characteristic of each series are set for the NSK linear guides.
- The classification of preload for each series are shown in Table 4.5.
- Refer to the specifications of each series for details of radial clearance, preload, and rigidity.
- "3. Application examples of accuracy grade" shows the cases of appropriate preload classifications and accuracy grades for specific purposes.

Table 4.5 Classification of preload

	Preloaded	assembly (not random	matching)		Random-ma	atching type	
Series	Heavy preload	Medium preload	Slight preload	Fine clearance	Medium	Medium preload		Fine clearance
	Z4	Z3	Z1	Z0	Z3	ZH	ZZ	ZT
LH, LS		0	0	0		0	0	0
VH		0	0	0			0	0
SH, SS		0	0	0		(()	0	
LA	0	0						
LW		(0)	0	0			0	0
PE, LE			0	0				0
PU, LU			0	0				0
LL				0				
НА		0	0					
HS		0	0					
RA		0	0		0			

Note: 1) The preload ZZ is available for random-matching type of the SS Series.

- 2) Z3 preload classification is only applicable to LW35 and LW50 for LW Series.
- 3) The preload code of "Z" is omitted from the specification number. Only the number of preload classification code is specified on the last code of the reference number. (Refer to the reference number of each series.)

A35 A36

(3) Combinations of accuracy grade and preload

• Combinations of accuracy grade and preload are shown in Table 4.6.

Table 4.6 Combinations of accuracy grade and preload type

	Accuracy grade	Preload
Dralandad agaambly	P3 – P6	Z4 – Z0
Preloaded assembly	PN	Z1, Z0
Random-matching type	PC, P6*1, PH*2	ZH, ZZ, ZT

^{*1)} The random-matching type is available for the models of RA25 to RA65. P6 is set for the accuracy and Z3 is set for the preload. (Preload code is ZZ.)

A-3-5 Maximum Rail Length

General Industrial Use

Genera	neral industrial Ose											
Series	Size Material	08	10	12	15	20	25	30	35	45	55	65
LH	Special high carbon steel				2 000	3 960	3 960	4 000	4 000	3 990	3 960	3 900
LII	Stainless steel	375	600	800	1 800	3 500	3 500	3 500				
SH	Special high carbon steel				2 000	3 960	3 960	4 000	4 000	3 990	3 960	
эп	Stainless steel				1 800	3 500	3 500	3 500				
VH	Special high carbon steel				2 000	3 960	3 960	4 000	4 000	3 990	3 960	
VП	Stainless steel				1 800	3 500	3 500	3 500				
TS	Special high carbon steel				1 960	2 920	4 000	4 040	4 040			
LS	Special high carbon steel				2 000	3 960	3 960	4 000	4 000			
LO	Stainless steel				1 700	3 500	3 500	3 500	3 500			
SS	Special high carbon steel				2 000	3 960	3 960	4 000	4 000			
33	Stainless steel				1 700	3 500	3 500	3 500	3 500			

1 000 1 200

					U	nit: mm					
Series	Size Material	17	21	27	35	50					
LW	Special high carbon steel	1 000	1 600	2 000	2 000	2 000					
Liquid (Liquid Crystal Display and Semiconductor Unit: mm										
Series	Size Material	05	07	09	12	15					
PU	Stainless steel	210	375	600	800	1 000					
LU	Special high carbon steel			1 200	1 800	2 000					
LU	Stainless steel	210	375	600	800	1 000					
PE	Stainless steel	150	600	800	1 000	1 200					

600

150

Stainless steel

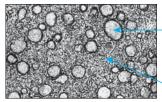
Machine Tools Unit: mm											
Series	Size Material	15	20	25	30	35	45	55	65		
RA	Special high carbon steel	2 000	3 000	3 000	3 500	3 500	3 500	3 500	3 500		
LA	Special high carbon steel			3 960	4 000	4 000	3 990	3 960	3 900		

High-Precision I	Vlachin	e and	High-P	recisior	า Meası	ıring Ed	Juipmen	ı t Unit	: mm
Carden	Size	15	20	0.5	20	25	45		

Series	Size Material	15	20	25	30	35	45	55
HA	Special high carbon steel			3 960	4 000	4 000	3 990	3 960
HS	Special high carbon steel	2 000	3 960	3 960	4 000	4 000		
по	Stainless steel	1 700	3 500	3 500	3 500	3 500		

A-3-6 Lubrication

1. NSK linear guides equipped with "NSK K1™" lubrication unit



NSK K1 lowers machine operation cost, and reduces impact on the environment.

What is "long-term, maintenance-free" operation? Ball screws and linear guides which are equipped with NSK K1 do not require maintenance for five years or up to 10 000 km operational distance.

What is NSK K1 lubrication unit?

NSK K1 is a lubrication device which combines oil and resin in a single unit. The porous resin contains a large amount of lubrication oil. Touching its surface to the raceway of a rail close to the ball contact point NSK K1 constantly supplies fresh oil which seeps from the resin.

Enlarged surface of NSK K1 Lubrication Unit

Polyolefin

Unlike vinyl chloride products, polyolefin does not produce dioxin. Polyolefin is also being used increasingly at supermarkets for food wrapping.

Lubrication oil

It is mineral oil-based lubricant. The oil has a viscosity of 100 cSt.

Remarkable capacity with new material: NSK K1[™] lubrication unit information

- A NSK K1 lubrication unit (referred to as NSK K1 hereafter) equipped with an NSK linear guide is an outstanding new lubrication material.
- A Newly developed porous synthetic resin contains large volume of lubricant oil that seeps out and enhances lubricating function.
- Simply install NSK K1 inside a standard end seal (rubber).
- We also provide NSK K1 lubrication unit for sanitary environments suited for food processing machinery, medical equipment and their ancillaries for the environment where hygiene control is essential. For details, refer to "A-3-9 3. NSK Linear Guides for Food Processing Equipment and Medical Devices for Sanitary Environment".

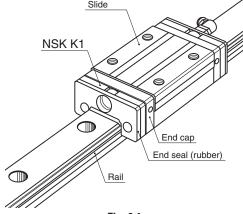


Fig. 6.1

A37 A38

Unit: mm

^{*2)} ZH and ZZ preload are available for the PH accuracy grade.

NSK

(1) Features

NSK K1 comprises a part of the compact and efficient lubrication unit.

1) Maintenance is required only infrequently

Used with grease, the lubrication function lasts for a long time. Ideal for systems/environments in which replenishing is difficult.

For automotive component processing lines, etc.

2) Does not pollute the environment

A very small volume of grease combined with NSK K1 can provide sufficient lubrication in the environment where grease is undesirable as well as in the environment where high cleanliness is required.

Food processing/medical equipment, liquid crystal displays/semiconductor manufacturing equipment, etc.

We also provide NSK K1 lubrication unit for sanitary environment suited for food processing machinery. medical equipment and their ancillaries for the environment where hygiene control is essential. For details, refer to "A-3-9 3. NSK Linear Guides for Food Processing Equipment and Medical Devices for Sanitary Environment".

(2) Functions

NSK K1 has various superb functions. NSK's ample test data and field performances confirm NSK K1 abilities.

1) Durability test at high speed, with no other lubrication

Fig. 6.2 shows test results under these conditions. The linear guide operated with no lubricant is unable to travel after a short period because breakage occurs. Equipped with NSK K1, the linear guide easily travels 25 000 km.

Conditions: Sample ; LH30AN (preload Z1)

Travel speed ; 200 m/min

3) Good for applications where lubricant is washed away

Used with grease, life of the machine is prolonged even when the machine is washed entirely by water. or in an environments where the machine is exposed to rain or wind.

Food processing equipment, housing/construction machines, etc.

4) Maintains efficiency in dusty environments

In environments where oil- and grease-absorbing dust is produced, long-term efficiency in lubrication and prevention from foreign inclusions is maintained by using NSK K1 in combination with grease.

Woodworking machines, etc.

*Stainless steel linear guides are available for use in corrosive environments or other environments where rusting is a potential

Stroke : 1800 mm No lubricant: Completely degreased, no lubrication NSK K1: Completely degreased, no lubrication + NSK K1

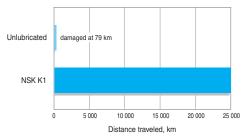


Fig. 6.2 Durability test at high speed, with no **lubrication (lubricated by NSK K1 only)**

Fig. 6.3 shows the test results after a linear guide is immersed in water once per week for 24 hours at a time, then traveled for 2 700 km. Without NSK K1, the ball groove sufrace wore out at an early stage and broke. With NSK K1, the wear was reduced to about 1/3 (Table 6.1). This test proves the effect of NSK K1.

: LS30 Stainless steel Conditions: Sample

(preload Z1)

Travel speed ; 24 m/min Stroke : 400 mm

Load : 4 700 N/Slide

Lubricant ; Fully packed with grease

(*) exclusive use for food

proccesing machines

Immersing condition:

2) Immersion test

Immersed and traveled once per week for 24 hours at a time.

* Grease made in U.S.A.

Characteristic

Consistency: 280 Base oil viscosity: 580 (cSt)

Table 6.1 Comparison in wear of grooves and steel halls (2 700 km)

0.00. 2	Unit: µm		
Lubricating condition	Ball slide groove	Rail groove	Steel balls
With NSK K1	16 – 18	2 – 3	6 – 8
Without NSK K1	30 – 45	9 – 11	17 – 25

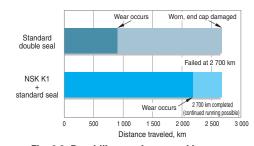


Fig. 6.3 Durability test immersed in water

4) Dust generation

Fig. 6.5 is a comparison of dust generation of NSK K1. The combination of NSK K1 and NSK Clean Grease LG2 (low dust generation grease) generates as little dust as fluorine grease (vacuum grease).

Conditions: Sample : LS20

Travel speed ; 36 m/min

3) Durability test with wood chips

Wood chips absorb lubricant. Maintaining lubrication in such environment is extremely difficult. Fig. 6.4 shows that the life when NSK K1 is added to a standard seal is two times longer than the life when two seals are combined (standard double seal).

Conditions: Sample : LH30AN (preload Z1)

> Travel speed : 24 m/min Stroke : 400 mm ; 490 N/Slide Load

Seal specifications/lubricant:

Standard double Seal...Standard double

Seal + AS2 Grease

NSK K1 ---- NSK K1 + Standard

seal + AS2 Grease

Wood chip conditions:

1 ····· Volume of wood chips: Large 2····· Volume of wood chips: Medium

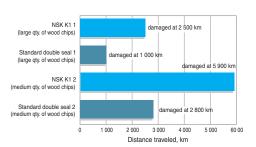


Fig. 6.4 Durability test with wood chips

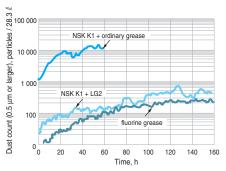


Fig. 6.5 Comparison of dust emission

(3) Specifications

1) Applicable series and sizes

- a) Can be installed in LH, SH, LS, SS, LW, PU, LU, PE, LE, RA, LA, HA, and HS series. It is standard equipment for the VH and TS Series.
- b) Can be used with stainless steel materials and surface-treated items.

2) Standard specifications

a) NSK K1 is installed between the end seal and end

For the TS series, it is installed in the end cap. (Double-seal specification, and specification with protector are also available upon request.)

- b) NSK standard grease is packed inside the slide.
 (You may specify the type of grease and its volume if required.)
- c) Accuracy and preload classifications are the same as standard items. (Dynamic friction increases slightly due to NSK K1.)

3) Number of installed NSK K1

Normally, one NSK K1 should be installed on both ends of slides. (two K1s for one slide)

However, more NSK K1 may be required under more stringent operating conditions and environment. Please consult NSK for details in such a case.

Precautions for handling

To maintain high fuctionality of the NSK K1, observe the following precautions.

1. Temperature range for use: Maximum temperature in use: 50°C

Momentary maximum temperature in use: 80°C

2. Chemicals that should not come into contact with NSK K1:

Do not leave the NSK K1 in an organic solvent, such as hexane and thinner that remove oil, or rust preventive oil that contains white kerosene.

Note: Water-type cutting oil, oil-type cutting oil, mineral-oil type grease and ester-type grease do not damage NSK K1.

NSK

2. Lubrication

Mainly there are two ways of lubrication, grease and oil, for linear guides.

Use a lubricant agent and method most suitable to condition requirements and the purpose to optimize functions of linear guides.

In general, lubricants with low base oil kinematic viscosity are used for high-speed operation, in which thermal expansion has a large impact, and in low temperatures.

Lubrication with high base oil kinematic viscosity is used for oscillating operations, operations in low speeds and in high temperatures.

The following are lubrication methods by grease and by oil.

(1) Grease Lubrication

Grease lubrication is widely used because it does not require a special oil supply system or piping. Grease lubrication accessories available from NSK are:

- · Various types of grease in bellows tube which can be instantly attached to the hand grease pump;
- NSK Grease Unit that consists of a hand grease pump and various nozzles. These are compact and easy to use.

1) NSK grease lubricants

Table 6.2 shows the marketed general grease widely used for linear guides. In addition to these grease, NSK provides special grease for specific conditions and purposes.

Table 6.2 Grease lubricant for linear guides

Type	Thickener	Base oil	Base oil kinematic viscosity	Range of use	Purpose
			mm²/s (40°C)	temperature (°C)	
AS2*1	Lithium type	Mineral oil	130	-10 - 110	For general use at high load
PS2*2	Lithium type	Synthetic oil	15	-50 – 110	For low temperature and
		+ mineral oil			high frequency operation
LG2	Lithium type	Mineral oil	30	-20 - 70	For clean environment
		+ synthetic			
		hydrocarbon oil			
LGU	Diurea	Synthetic	100	-30 - 120	For clean environment
		hydrocarbon oil			
NF2	Urea composite type	Synthetic	27	-40 - 100	For fretting resistant
		hydrocarbon oil			

^{*1)} Standard grease of LH, SH, VH, TS, LS, SS, LW, RA, LA, HA, and HS Series.

^{*2)} Standard grease of PU, LU, PE, and LE Series.

NSK

[1] NSK Grease AS2

Features

It is environmentally friendly and widely used grease for high-load applications. It is mineral oil based grease containing lithium thickener and several additives. It is superb in load resistance as well as stability in oxidization. It not only maintains good lubrication over a long period of time, but also demonstrates superb capability in retaining water. Even containing a large amount of water, it does not lose grease when it is softened.

Application

It is standard grease for general NSK linear guides. It is prevalently used in many applications because of its high base oil viscosity, high-load resistance, and stability in oxidization.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil
Consistency	275
Dropping point	181°C
Volume of evaporation	0.24% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	2.8% (100°C, 24 hr)
Base oil kinematic viscosity	130 mm ² /s (40°C)

[2] NSK Grease PS2

Features

The major base oil component is synthetic oil with mineral oil. It is an excellent lubrication especially for low-temperature operation. It is for a high-speed and light-load application.

Application

It is standard grease for NSK miniature linear guides. It is especially superb for low-temperature operation, but also functions well in normal temperatures, making it ideal for small equipment with light load.

Nature

Thickener	Lithium soap base
Base oil	Synthetic oil + mineral oil
Consistency	275
Dropping point	190°C
Volume of evaporation	0.60% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	3.6% (100°C, 24 hr)
Base oil kinematic viscosity	15 mm²/s (40°C)

[3] NSK Grease LG2

Features

This grease was developed by NSK to be exclusively used for linear guides in clean room. Compared to the fluorine grease which is commonly used in clean room, LG2 has several advantages such as:

- Higher in lubrication function
- Longer lubrication life
- More stable torque (resistant to wear)
- · Higher rust prevention.

In dust generation, LG2 is more than equal to the fluorine grease in keeping dust volume low. Since the base oil is not special oil but mineral oil, LG2 can be handled in the same manner as general grease.

Application

LG2 is the lubrication grease for linear guides for semiconductor and liquid crystal display (LCD) processing equipment which require a highly clean environment. Because LG2 is exclusively for a clean environment at normal temperatures, however, it cannot be used in a vacuum environment.

Refer to "Special environment" in page A60 for the detailed data on superb characteristics of NSK Grease LG2.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil + Synthetic hydrocarbon oil
Consistency	207
Dropping point	200°C
Volume of evaporation	1.40% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.8% (100°C, 24 hr)
Base oil kinematic viscosity	30 mm²/s (40°C)

[4] NSK Grease LGU

Features

This is a proprietary urea base grease of NSK featuring low dust emission exclusively for linear quides which are used in clean room.

In comparison with the fluorine base grease, which has been used commonly in clean room, LGU has better lubricating property, longer duration of lubricant, better torque variation, much better anti-rust property, and equivalent or better dust generation. In addition, this grease can be handled in the same way as the other common grease because high-grade synthetic oil is used as the base oil.

LGU grease contains much less metallic elements compared to LG2 grease. It can be used in high temperature environment.

Application

This is exclusive lubrication grease for linear guides that are installed in equipment that requires cleanliness, as same as LG2 grease, and it can be used in high temperature range of –30°C to 180°C.

This grease cannot be used in vacuum.

Nature

Thickener	Diurea
Base oil	Synthetic hydrocarbon oil
Consistency	209
Dropping point	260°C
Volume of evaporation	0.09% (99°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.6% (100°C, 24 hr)
Base oil kinematic viscosity	100 mm ² /s (40°C)

[5] NSK Grease NF2

Features

It uses high-grade synthetic oil as the base oil and urea base organic compound as the thickener. It has remarkable anti-fretting corrosion property. It can be used in wide temperature range, from low to high, and has superior lubrication life.

Application

This grease suits for linear guides whose application includes oscillating operations. Allowable temperature range is -40°C to 100°C.

Nature

Thickener	Diurea
Base oil	Synthetic hydrocarbon oil
Consistency	288
Dropping point	269°C
Volume of evaporation	7.9% (177°C, 22 hr)
Copper corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.6% (100°C, 24 hr)
Base oil kinematic viscosity	27 mm ² /s (40°C)

Precautions for handling

- Wash the linear guides to remove oil prior to applying Clean Grease LG2 or LGU, so the grease functions are fully utilized.
- The clean grease is exclusively used for clean environments at normal pressure.

A43

2) How to replenish grease

Use the grease fitting of a slide if an exclusive grease supply system is not used. Supply the required amount of grease by a grease pump.

Wipe off old grease and accumulated dust before supplying new grease. If the grease fitting is not used, apply grease directly to the rail. Remove the seal if possible, and move the slide few strokes so the grease permeates it. A hand grease pump, an exclusive and easy lubricating device for linear guides, is available at NSK.

3) Volume of grease to be replenished

Once grease is replenished, another supply is not required for a long time. But under some operational conditions, it is necessary to periodically replenish grease. The following are replenishing methods.

 When there is an exclusive grease supply system and the volume from the spout can be controlled, the criterion is: All at once, replenish the amount that fills about 50% of the internal space of the slide. This method eliminates waste of grease, and is efficient.

Page A46 shows the internal spaces of slide of each series for your reference.

• When replenishing grease using a grease gump:

Use a grease pump and fill the inside of slide with grease. Supply grease until it comes out from the slide area. Move the slide by hand while filling them with grease, so the grease permeates all areas. Do not operate the machine immediately after replenishing. Always try to run-in the system a few times to spread the grease throughout the system and to remove excess grease from inside. Running-in operation is necessary because the sliding force of the linear guide greatly increases immediately after the replenishment (full-pack state) and may cause problems. Grease's stirring resistance is accountable for this phenomenon. Wipe off excess grease that accumulates at the end of the rail after trial runs, so the grease does not scatter to other areas.

4) Intervals of checks and replenishments

Although the grease is of high quality, it gradually deteriorates and its lubrication function diminishes. Also, the grease in the slide is gradually removed by stroke movement. In some environments, the grease becomes dirty, and foreign objects may enter a slide. New grease should be replenished depending on the frequency of use. The following is a guide of intervals of grease replenishments to linear guides.

Table 6.3 Intervals of checks and replenishments for grease lubrication

i data dia interitara di directica di la represidenta i di gi dade i dati dati di				
Intervals of checks	Items to be checked	Intervals of replenishments		
	Dirt, foreign matters such as	Usually once per year is sufficient. Every 3 000 km for a		
3-6 months	cutting chip	system such as material handling equipment that travels		
5 6 1110111113		more than 3 000 km per year. Replenish if checking results		
		warrant it necessary.		

Notes: 1) As a general rule, do not mix greases of different brands. Grease structure may be destroyed if greases of different thickeners are mixed. Even when greases have the same thickener, different additives in them may have an adverse effect on each other.

2) Grease viscosity varies by temperature. Viscosity is particular high in winter due to low temperature. Pay attention to increase in linear guide's sliding resistance in such occasion.

Table 6.4 Inside space of the slide

LH, SH Series

				Unit: cm
Series	L	Н	S	Н
Model No.	High-load type	Ultra-high-load type	High-load type	Ultra-high-load type
80	0.2	-	-	-
10	0.4	-	_	_
12	1.2	-	-	-
15	3	4	2	3
20	6	8	5	7
25	9	13	9	12
30	13	20	11	17
35	22	30	20	27
45	47	59	42	53
55	80	100	73	93
65	139	186	_	_

Model No. Series LW 17 3 21 3 27 7 35 24

52

LW Series

50

VH Series

		Unit: cm²		
Series	VH			
Model No.	High-load type	Ultra-high-load type		
15	3	4		
20	6	8		
25	9	13		
30	13	20		
35	22	30		
45	47	59		
55	80	100		

Unit: cm3

PU, LU Series

				Unit: cm
Series	PU		LU	
Model No.	Standard type	High-load type	Standard type	High-load type
05	0.1	-	0.1	-
07	0.1	-	0.1	-
09	0.2	0.3	0.2	0.3
12	0.3	0.4	0.3	0.4
15	8.0	1.1	8.0	1.1

TS Series

	OTHE. CITE
Series Model No.	TS
15	2
20	3
25	6
30	9
35	15

PE, LE Series

					Unit: cm
Series	PE		LE		
Model No.	Standard type	High-load type	Medium-load type	Standard type	High-load type
05	0.1	-	0.1	0.1	-
07	0.2	-	0.1	0.2	0.3
09	0.4	0.5	0.2	0.4	0.5
12	0.5	0.7	0.3	0.5	0.7
15	1.2	1.6	0.8	1.2	1.6

LS, SS Series

Onit:					Unit: cm
	Series	LS		SS	
	Model No.	Medium-load type	High-load type	Medium-load type	High-load type
	15	2	3	1.5	2
	20	3	4	3	4
	25	5	8	5	7
	30	8	12	7	11
	35	12	19	11	17

RA Series

		Unit: cm	
Series	RA		
Model No.	High-load type	Ultra-high-load typ	
15	1	1.5	
20	2	2.5	
25	3	3.5	
30	5	6	
35	6	8	
45	10	13	
55	15	20	
65	33	42	

LA Series

		Unit: cn	
Series	LA		
Model No.	High-load type	Ultra-high-load ty	
25	8	12	
30	14	18	
35	21	29	
45	38	48	
55	68	86	
65	130	177	

HA, HS Series

		Unit: cm
Series Model No.	НА	HS
15	-	5
20	-	9
25	16	16
30	27	25
35	42	40
45	67	-
55	122	_

5) NSK grease unit

A hand grease pump and lubrication grease contained in a bellows tube (80 g of grease) which can be loaded to the grease pump.

Grease in a bellows tube

[1] Composition of NSK grease unit

Components and grease types are shown below.

		Name	(Tube color)	Reference number	
NICK	Grease Unit	Name	(Tube color)	Hererence number	
INSK		NSK Grease AS2	(Ocher)	NSK GRS AS2	
	(80 g in a bellows tube)	NSK Grease PS2	(Orange)	NSK GRS PS2	
		NSK Grease LG2	(Blue)	NSK GRS LG2	
		NSK Grease LGU	(Yellow)	NSK GRS LGU	
		NSK Grease NF2	(Gray)	NSK GRS NF2	
L	— NSK Hand Grease Pump Unit	t			
	— NSK Hand Grease Pun (Straight nozzle NSK	mp HGP NZ1 One nozzle is p	provided with a ha	NSK HGP and grease pump.)	
	Grease nozzle (used w	vith a hand grease pump)			
		——— NSK straight nozzle	•	NSK HGP NZ1	
		NSK chuck nozzle		NSK HGP NZ2	
		NSK drive fitting no	ozzle	NSK HGP NZ3	
		NSK point nozzle		NSK HGP NZ4	
		NSK flexible nozzle		NSK HGP NZ5	
		NSK flexible extensi			
		NSK straight extens	sion pipe	NSK HGP NZ7	

[2] NSK greases (80 g in a bellows tube)

Refer to pages A43 and D14 for their natures and details.

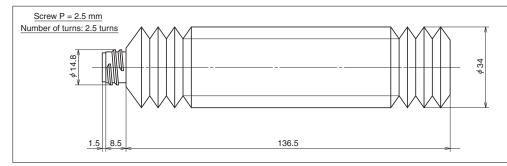


Fig. 6.6 Bellows tube

[3] NSK hand grease pump unit

a) NSK Hand Grease Pump (Reference number: NSK HGP)

Features

• Light-weightCan be operated by one
hand, yet there is no worry to make a mistake.
• Inserting by high pressure ··· Insert at 15 Mpa.
• No leaking ·····Does not leak when held upside down.

• Easy to change grease ···· Simply attach grease in bellows tube.

• Remaining grease ······Can be confirmed through slit on tube.

• Several nozzles ········Six types of nozzles to choose from.

Specifications

• Discharge rate · · · · · 15 MPa

• Spout volume ·······0.35 cc/shot

Mass of main body······ Without nozzle 240 g
 Provided nozzle 90 g

• Outer diameter of bellows grease tube······ φ 38.1

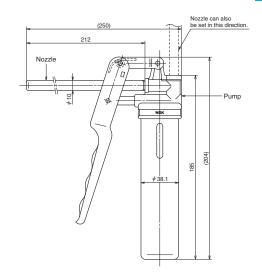


Fig. 6.7 NSK Hand Grease Pump with NSK straight nozzle

b) Nozzles

Table 6.5 Nozzles that can be attached to NSK Hand Grease Pump

Name	Designation code	Use	Dimensions
NSK straight nozzle	NSK HGP NZ1	Can be used with grease fitting A, B, and C under JIS B1575 standard.	R1/8
NSK chuck nozzle	NSK HGP NZ2	Same as above. However, there is no need to press the hand pump because the grease fitting and the nozzle come into contact due to the chucking mechanism at the tip.	R1/8
NSK fitting nozzle	NSK HGP NZ3	Dedicated for the $-\phi 3$ drive-in grease fitting.	30 11 M6x1.0 0 155
NSK point nozzle	NSK HGP NZ4	Used for linear guides that do not have grease fitting. Supplies grease directly to the ball grooves, or through the opening of slide or slide to inside.	Tip. \$\phi 1.5 \qquad \qqquad \qqqqq \qqqqq \qqqqqqqqqqqqqqqqqqqqqq
NSK flexible nozzle	NSK HGP NZ5	The tip of the flexible nozzle is a chuck nozzle. Used to supply grease to the area where hand cannot reach.	14HEX. 14HEX. R1/8
NSK flexible extension pipe	NSK HGP NZ6	Flexible extension pipe connects the grease pump and the nozzle	Rp1/8 14HEX. 14HEX. R1/8
NSK straight extension pipe	NSK HGP NZ7	Straight extension pipe connects the grease pump and the nozzle.	Rp1/8 12HEX. R1/8

Table 6.6 Grease fittings used for NSK linear guide

Series	Model No.	Tap hole for grease fitting	Standard grease	Straight nozzle NZ1	Chuck nozzle NZ2	Drive-in fitting nozzle NZ3	Point nozzle NZ4	Flexible nozzle NZ5
	LH08, 10	_	_				0	
LH Series	LH12, 15	φ3	Drive-in type			0		
LITOETIES	LH20, 25, 30, 35*	M6×0.75	B type	0	0			0
	LH45, 55, 65	Rc1/8	B type	0	0			0
	SH15	φ3	Drive-in type			0		
SH Series	SH20, 25, 30, 35*	M6×0.75	B type	0	0			0
	SH45, 55	Rc1/8	B type	0	0			0
	VH15	φ3	Drive-in type			0		
VH Series	LH20, 25, 30, 35*	M6×0.75	B type	0	0			0
	VH45, 55	Rc1/8	B type	0	0			0
TS Series	TS15	φ3	Drive-in type			0		
15 Series	TS20, 25, 30, 35*	M6×0.75	B type	0	0			0
LS Series	LS15	φ3	Drive-in type			0		
LS Series	LS20, 25, 30, 35*	M6×0.75	B type	0	0			0
SS Series	SS15	φ3	Drive-in type			0		
55 Series	SS20, 25, 30, 35*	M6×0.75	B type	0	0			0
	LW17	φ3	Drive-in type			0		
LW Series	LW21, 27, 35*	M6×0.75	B type	0	0			0
	LW50	Rc1/8	B type	0	0			0
PU Series	PU05, 07, 09, 12	_	_				0	
PU Series	PU15	φ3	Drive-in type			0		
LU Series	LU05, 07, 09, 12, 15	_	_				0	
PE Series	PE05, 07, 09, 12	_	_				0	
PE Series	PE15	φ3	Drive-in type			0		
LE Series	LE05, 07, 09, 12, 15		_				0	
	RA15, 20	φ3	Drive-in type			0		
RA Series	RA25, 30, 35*	M6×0.75	B type	0	0			0
	RA45, 55, 65	Rc1/8	B type	0	0			0
LA Carrie	LA25, 30, 35*	M6×0.75	B type	0	0			0
LA Series	LA45, 55, 65	Rc1/8	B type	0	0			0
11A C	HA25, 30, 35*	M6×0.75	B type	0	0			0
HA Series	HA45, 55	Rc1/8	B type	0	Ö			0
110.0	HS15	φ3	Drive-in type			0		
HS Series	HS20, 25, 30, 35*	M6×0.75	B type	0	0			0

Note: PU, LU, PE, and LE Series; Apply grease directly to ball groove, etc. using a point nozzle.

^{*)} When using a chuck nozzle, make sure that it does not interfere with the table on linear guides.

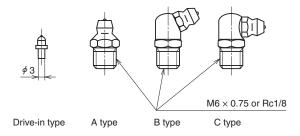


Fig. 6.8 Grease fittings

A long threaded grease fitting is required because of dust-proof parts. Please refer to the sections pertaining to the lubrication and dust-proof parts of each series.

(2) Oil lubrication

Required amount of new oil is regularly supplied by:

- · Manual or automatic intermittent supply system;
- · Oil mist lubricating system via piping.

Equipment for oil lubrication is more costly than one for grease lubrication. However, oil mist lubricating system supplies air as well as oil, thus raising the inner pressure of the slide. This prevents foreign matters from entering, and the air cools the system. Use an oil of high atomizing rate such as ISO VG 32-68 for the oil mist lubrication system.

ISO VG 68-220 are recommended for common intermittent replenishment system. Approximate volume of oil Q for a slide of linear guide per hour can be obtained by the following formula.

In case of all ball type linear guides except LA series

 $Q \ge n/150 \text{ (cm}^3/\text{hr)}$

In case of LA and RA series

 $Q \ge n/100 \text{ (cm}^3/\text{hr)}$

n: Linear guide size code

e.g. When LH45 is used,

n = 45,

Therefore,

 $Q = 45/150 = 0.3 \text{ cm}^3/\text{hr}$

For the oil lubrication by gravity drip, the oil supply position and installation position of the slide are crucial. In case of linear guide, unless it is installed to a horizontal position, the oil flows only on the down side, and does not spread to all raceway surface. This may cause insufficient lubrication. Please consult NSK to correct such situations prior to use. NSK has the internal design which allows oil lubricant to flow throughout the system.

Table 6.7 shows the criterion of intervals of oil checks and replenishments.

Table 6.7 Intervals of checks and replenishments

Method	Intervals of checks	Items to check	Replenishment or intervals of changes
Automatic intermittent supply	Weekly	Volume of oil, dirt, etc.	Replenish at each check. Suitable volume for tank capacity.
Oil bath	Daily before operation	Oil surface	Make a suitable criterion based on consumption

Notes: 1) As with grease lubrication, do not mix oil lubricant with different types.

- Some components of the linear guide are made of plastic. Avoid using an oil that adversely affects synthetic resin.
- 3) When using oil mist lubricating system, please confirm an oil supply amount at the each outlet port.

A-3-7 Dust Proof

1. Standard specification parts

- To keep foreign matters from entering inside the slide, NSK linear guides have end seals on both ends, bottom seals at the bottom surfaces, and an inner seal in the inside of slide.
- The seals for standard specification for each series are shown in **Table 7.1**.
- Seal friction per a standard slide is shown in the technical description of the dust-proof parts of each series.

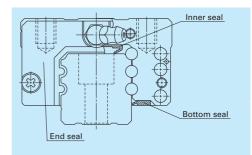


Fig. 7.1

Table 7.1 Standard seals

		Bottom	Inner
	seal	seal	seal
LH08, LH10	0	-	-
LH12, LH15	0	0	-
LH20, LH25, LH30, LH35, LH45, LH55, LH65	0	0	\triangle
SH15	0	0	-
SH20, SH25, SH30, SH35, SH45, SH55	0	0	Δ
VH15	0	0	-
VH20, VH25, VH30, VH35, VH45, VH55	0	0	Δ
TS15, TS20, TS25, TS30, TS35	0	0	0
LS15	0	0	-
LS20, LS25, LS30, LS35	0	0	Δ
SS15	0	0	-
SS20, SS25, SS30, SS35	0	0	Δ
LW17, LW21, LW27, LW35, LW50	0	0	-
PU05, PU07, PU09, PU12, PU15	0	-	-
LU05, LU07, LU09	\triangle	-	-
LU12, LU15	0	-	-
PE05, PE07, PE09, PE12, PE15	0	-	-
LE05, LE07, LE09, LE12, LE15	0	-	-
RA15, RA20	0	0	Δ
RA25, RA30, RA35, RA45, RA55, RA65	0	0	0
LA25, LA30, LA35, LA45, LA55, LA65	0	0	Δ
HA25, HA30, HA35, HA45, HA55	0	0	0
HS15, HS20, HS25, HS30, HS35	0	Δ	-
	LH12, LH15 LH20, LH25, LH30, LH35, LH45, LH55, LH65 SH15 SH20, SH25, SH30, SH35, SH45, SH55 VH15 VH20, VH25, VH30, VH35, VH45, VH55 TS15, TS20, TS25, TS30, TS35 LS15 LS20, LS25, LS30, LS35 SS15 SS20, SS25, SS30, SS35 LW17, LW21, LW27, LW35, LW50 PU05, PU07, PU09, PU12, PU15 LU05, LU07, LU09 LU12, LU15 PE05, PE07, PE09, PE12, PE15 LE05, LE07, LE09, LE12, LE15 RA15, RA20 RA25, RA30, RA35, RA45, RA55, RA65 LA25, LA30, LA35, LA45, LA55, LA65 HA25, HA30, HA35, HA45, HA55	LH08, LH10 ○ LH12, LH15 ○ LH20, LH25, LH30, LH35, LH45, LH55, LH65 ○ SH15 ○ SH20, SH25, SH30, SH35, SH45, SH55 ○ VH15 ○ VH20, VH25, VH30, VH35, VH45, VH55 ○ TS15, TS20, TS25, TS30, TS35 ○ LS15 ○ LS20, LS25, LS30, LS35 ○ SS15 ○ SS20, SS25, SS30, SS35 ○ LW17, LW21, LW27, LW35, LW50 ○ PU05, PU07, PU09, PU12, PU15 ○ LU05, LU07, LU09 △ LU12, LU15 ○ PE05, PE07, PE09, PE12, PE15 ○ LE05, LE07, LE09, LE12, LE15 ○ RA15, RA20 ○ RA25, RA30, RA35, RA45, RA55, RA65 ○ LA25, LA30, LA35, LA45, LA55, LA65 ○ HA25, HA30, HA35, HA45, HA55 ○	LH08, LH10 − LH12, LH15 ○ LH20, LH25, LH30, LH35, LH45, LH55, LH65 ○ SH15 ○ SH20, SH25, SH30, SH35, SH45, SH55 ○ VH15 ○ VH20, VH25, VH30, VH35, VH45, VH55 ○ TS15, TS20, TS25, TS30, TS35 ○ LS15 ○ LS20, LS25, LS30, LS35 ○ SS15 ○ SS20, SS25, SS30, SS35 ○ LW17, LW21, LW27, LW35, LW50 ○ PU05, PU07, PU09, PU12, PU15 ○ LU12, LU15 ○ PE05, PE07, PE09, PE12, PE15 ○ LE05, LE07, LE09, LE12, LE15 ○ RA15, RA20 ○ RA25, RA30, RA35, RA45, RA55, RA65 ○ LA25, LA30, LA35, LA45, LA55, LA65 ○ HA25, HA30, HA35, HA45, HA55 ○

○ : Equipped as a standard feature

△: Available upon request

2. Dust-proof parts

 NSK has the following items for the dust-proof parts. Select a suitable type for the operating environment.

Table 7.2 Optional dust-proof parts

Name	Purpose	Reference page
NSK K1 lubrication unit	Made of oil impregnated resin. Enhances lubricating functions.	A38 – A41
Double seal	It combines two end seals for enhancing sealing function.	A53
Protector	Protect the end seal from hot and hard contaminants.	A54
Rail cap	Prevents foreign matters, such as swarf generated in cutting operation from clogging the rail-mounting holes.	A54
Inner seal	Installed inside a slide, and prevents foreign matters from entering the rolling contact surface.	A55
Bellows	Covers the linear guide.	A55
Rail cover *	Covers the rail top surface, and prevents foreign matters, such as cutting dust, from collecting in the rail mounting holes.	A310

^{*)} The rail cover is available only for RA25 to RA65 of RA series.

(1) Double seal

- · It is a combination of two end seals to enhance seal function.
- · When the double seal is installed, the end seal section becomes thicker than the standard item. Please pay attention to the increase in a slide length when designing the mounting dimension of slide and the table stroke. Please refer to the section of dust-proof components for the dimensional increase in the length direction of each series due to fitting of double seal.
- · Double-seal set: Can be installed to a completed standard ball slide assembly later upon request. It comprises two end seals, two collars, and two machine screws for installation (Fig. 7.2). The product reference numbers of each series are described on the section of dust-proof parts.
- · When attaching a grease fitting to the end cap after the double seal is equipped, you require a connector shown in Fig. 7.2. Please specify the connector set when ordering the linear guides.
- · For VH, RA, LA, HA, and HS Series, the doubleseal set can be only installed before shipping from the factory.

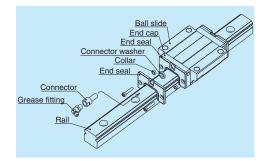


Fig. 7.2 Double seal

(2) Protector

- · A protector is usually installed outside the end seal to prevent high-temperature fine particles such as welding spatter and other hard foreign matters from entering the slide.
- Same as the case with the double seal, when the protector is installed, the slide becomes longer. Take this thickness of slide into consideration for determining the relevant dimensions such as the system stroke and the ball slide installation envelope. An increase in the length of the ball slide due to the installation of protector is shown in the technical description of the dust-proof parts of each series.
- · The protectors are available from the stock and we can install them to a completed standard slide assembly upon request. The model numbers of the protectors for ordering are shown in the technical explanation of the dust -proof parts of each series.
- · When attaching a grease fitting to the end cap after the protector is equipped, you require the connector shown in Fig. 7.3. Please specify the connector set when ordering the linear guides.
- For VH, RA, LA, HA, and HS Series, the protector can only be installed only before shipping from the factory.

(3) Bolt-hole cap to plug the bolt holes for rail mounting

- · After the rail is mounted to the machine base, a bolt-hole cap is used to plug the bolt hole to prevent foreign matters from clogging up the hole and from entering into the slide (Fig. 7.4).
- The bolt-hole cap is made of synthetic resin which has superb in its resistance to oil and abrasion.
- · Sizes of the bolt for the each linear guide model as well as the reference number of the bolt-hole cap are shown in the technical description of the dust-proof parts of each series.
- To insert the cap into the rail bolt hole, use a flat dolly block (Fig. 7.5). Pound the cap gradually until its height becomes flush with the rail top surface.
- You can reorder extra bolt hole caps. Sizes of the bolts and each model number of bolt-hole caps are shown in the technical description of the dust-proof parts of each series.
- · Caps which are made of metal is also available upon request.

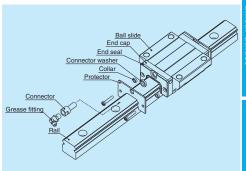


Fig. 7.3 Protector

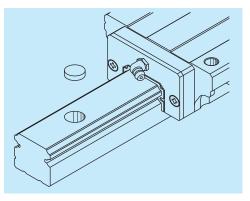


Fig. 7.4



Fig. 7.5

(4) Inner seal

- The end seal installed on both ends of a slide cannot arrest entire contaminant, though the missed amount is negligible. An inner seal protects the rolling contact surface from such contaminant which entered inside the slide (Fig. 7.6).
- The inner seal is installed inside the slide.
 Therefore, the appearance in size and the shape are the same as the standard slide. (The inner seal is already installed before shipping.)
- It is strongly recommended to use the bellows and the double seal along with the inner seal to maintain the precision of the linear guide.
- Refer to Table 7.1 for availability of inner seal.

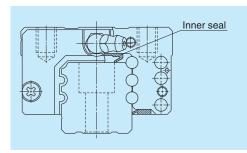


Fig. 7.6 Inner seal when installed

[1] Installation of bellows LH and LS Series

- * Fixing to the ball slide (Fig. 7.7)
- Remove two machine screws (M₂) which secure the end seals to the end of the slide (Fig. 7.7).
 For LS15, hold the end cap by hand. Otherwise, the end cap is detached from the ball slide, and the balls inside may spill out.
- Then insert a spacer to the hole for securing the end seal. Fasten the mounting plate at the end of the bellows to the slide with a slightly longer machine screw (provided with the bellows).

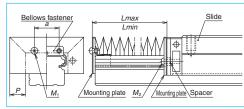


Fig. 7.7

(5) Bellows

- A bellows covers entire linear guide. It has been used widely as a way of protection in an environment where foreign matters are prevalent.
- NSK has bellows exclusively for LH, SH, LS, SS, LW and LA Series. They have a middle bellows and a bellows at both ends. For LH Series, there are low and high type bellows which are in compliance with their slide types.
- The high type is used for AN and BN types. The low type is used for EM, FL, EL, GM, GL, HL, AL and BL types. The top of the high type bellows is slightly lower than the top surface of the slide.
- When a high type bellows is installed to the slide with the height code L (such as FL), the top of the bellows becomes higher than the slide. However, it is advantageous for stroke because the pitch of the bellows becomes larger than the low type.
- Special bellows are required when installing the linear guide vertically, or hanging it from a ceiling. Please consult NSK in such a case.
- When a bellows is used, please be advised that we cannot put a grease fitting on the end of slide to which the bellows is attached. If you require the grease fitting, it shall be put on the side of end cap or slide body. Consult NSK for details.
- For the dimension of bellows, please refer to the section of dust proof parts of each series.

* Fixing to the rail

- To install bellows for LH and LS Series, lightly knock a fastener exclusively for bellows to the end of the rail (Fig. 7.7). Then secure the mounting plate to the end of the bellows through the tap hole of the fastener.
- As described above, a bellows can be easily fixed to the end of the rail without adding a tap hole on the end of the rail.
- Bellows fastener is available only for the horizontal mounting positions. For other mounting positions, sliding plate is required (see Fig. 7.10 on page A56.)

For fixing to the rail, make tap holes to the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes by using a machine screw. NSK processes a tap hole to the rail end face when ordered with a linear guide.

[2] LW and LA Series

- * Fixing to the ball slide (Fig. 7.8 and Fig. 7.9)
- Remove two machine screws which secure the end seal. (For LW17 and LW21, hold the end cap by hand while removing the machine screw. Otherwise, the end cap is detached from the slide, and the balls inside may spill over and fall.)
- Insert a spacer to the securing hole of the end seal, fasten the mounting plate on the end of the

bellows using a slightly longer machine screw (provided with the bellows).

* Fixing to the rail

• Make two tap holes to the rail end surface. Fix the bellows mounting plate with machine screws to the rail end surface through these tap holes. NSK processes the tap holes to the rail end surface when ordered with a linear guide.

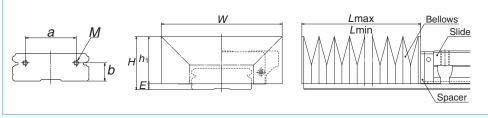


Fig. 7.8

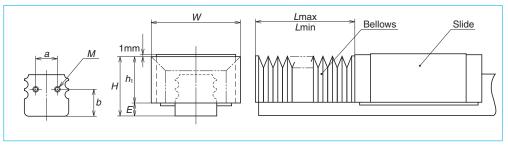


Fig. 7.9

Calculating length of bellows

- The formula is as follows.
- A bellows forms one block (BL) with six folds as shown in Fig. 7.10. The stroke is determined by multiplying by an integer of this BL.
- · Length when stretched to the maximum length:

Lmax = 7 × P × Number of BL

- Length when contracted to the minimum length:
 - Lmin = 17 × Number of BL
- Stroke : St = Lmax Lmin
- The dimension of P and the number of BL are shown in the bellows dimension table of each series.

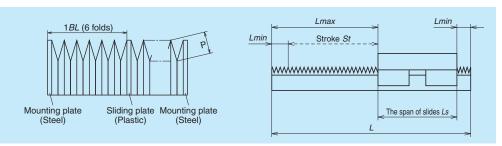


Fig. 7.10

A-3-8 Rust Prevention (Stainless Steel and Surface Treatment)

1. Stainless steel

NSK linear guide is available in stainless steel.

OStainless steel standard series

PU Series PE Series LE Series LL Series

OAvailable in stainless steel

LH Series SH Series
LS Series SS Series

LU Series

Select from the above when using in the environments which invite rust.

2. Surface treatment

(1) Recommended surface treatment

We recommend "low temperature chrome plating" and "fluoride low temperature chrome plating" for rust prevention because of the result of the humidity chamber test for antirust characteristics and their cost-effectiveness.

However, never apply any organic solvent to those treatments for degreasing because it has adverse effect on antirust characteristics.

Refer to the next page for the results of humidity chamber test.

Please consult NSK for other surface treatment.

OLow temperature chrome plating (Electrolytic rust prevention black treatment)

• Used to prevent corrosion, light reflection, and for cosmetic purpose.

OFluoride low temperature chrome plating

- Fluoroplastic coating is provided following the low temperature chrome plating.
- Resistance to corrosion is higher than electrolytic rust prevention film treatment.

(2) Rust prevention of fluoride low temperature chrome plating

The use environment of NSK linear guides is expanding from general industrial machines, semiconductor and liquid crystal manufacturing systems to aerospace equipment.

Among all measures to cope with environment, rust prevention is the most challenging. Such environment includes:

- Moisture for washing machines and other equipment
- Chemicals used in the wet processing of semiconductor and liquid crystal display manufacturing equipment

NSK has developed electrolytic rust prevention black film treatment (black chrome plating) which is added by fluororesin impregnating treatment. (Hereinafter referred as "Fluoride low temperature chrome plating") This surface treatment methods has proved its superiority as the rust prevention of linear guides which are used in the above equipment.

What is "Fluoride low temperature chrome plating?"

This is a type of black chrome plating which forms a black film (1 to $2 \mu m$ in thicness) on the metal surface. Fluoroplastic coating is added to the film to increase corrosion resistance.

- Accuracy control is easily manageable due to low temperature treatment and to the absence of hydrogen embrittlement.
- Product accuracy is less affected due to the thin film which has high-corrosion resistance.
- This method is superior to other surface treatments in durability on the rolling surface.
- Inexpensive compared with products with other surface treatment and stainless steel products.

However, do not use organic solvent because it adversely affects antirust property of the plating.

Humidity chamber test

Table 8.1 Results of the humidity test

					Equivalent to	Standard steel
acteris	_			, ,		
	Тор	(Ground) B	(Ground) B	(Ground) A	(Ground) C	(Ground) D
ō	Side	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
ıstir	Bottom	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
ĕ [End	(Machined) A	(Machined) C	(Machined) A	(Machined) C	(Machined) E
	Chamfer/grinding recess	(Drawn) A	(Drawn) D	(Drawn) A	(Drawn) C	(Drawn) E
To te cl (maa cl (maa cl) To te	esting chamber: High emperature, highly moist namber de by DABAI ESPEC) emperature: 70°C elative humidity: 95% esting time: 96 h et o "ramp-up" and "rampup" conditions of the perature and the humidity		0		0	
	r · r	5 μm	0.5 – 7 μm	10 μm		
	<testi down="" ram<="" td="" tem="" testi="" time=""><td>Top Side Bottom End Chamfer/grinding recess Test conditions> Testing chamber: High temperature, highly moist chamber (made by DABAI ESPEC) Temperature: 70°C Relative humidity: 95% Testing time: 96 h Time to "ramp-up" and "ramp-down" conditions of the temperature and the humidity Ramp-up: 5 h Ramp-down: 2 h</td><td>Top (Ground) B Side (Ground) A Bottom (Ground) A End (Machined) A Chamfer/grinding recess (Drawn) A Test conditions> Testing chamber: High temperature, highly moist chamber (made by DABAI ESPEC) Temperature: 70°C Relative humidity: 95% Testing time: 96 h Time to "ramp-up" and "ramp-down" conditions of the temperature and the humidity Ramp-up: 5 h Ramp-down: 2 h</td><td>Top (Ground) B (Ground) B Side (Ground) A (Ground) A Bottom (Ground) A (Ground) A End (Machined) A (Machined) C Chamfer/grinding recess (Drawn) A (Drawn) D Testing chamber: High temperature, highly moist chamber (made by DABAI ESPEC) Temperature: 70°C Relative humidity: 95% Testing time: 96 h Time to "ramp-up" and "ramp-down" conditions of the temperature and the humidity Ramp-up: 5 h Ramp-down: 2 h</td><td>Top (Ground) B (Ground) A (Ground</td><td> Top (Ground) B (Ground) B (Ground) A (Ground) C </td></testi>	Top Side Bottom End Chamfer/grinding recess Test conditions> Testing chamber: High temperature, highly moist chamber (made by DABAI ESPEC) Temperature: 70°C Relative humidity: 95% Testing time: 96 h Time to "ramp-up" and "ramp-down" conditions of the temperature and the humidity Ramp-up: 5 h Ramp-down: 2 h	Top (Ground) B Side (Ground) A Bottom (Ground) A End (Machined) A Chamfer/grinding recess (Drawn) A Test conditions> Testing chamber: High temperature, highly moist chamber (made by DABAI ESPEC) Temperature: 70°C Relative humidity: 95% Testing time: 96 h Time to "ramp-up" and "ramp-down" conditions of the temperature and the humidity Ramp-up: 5 h Ramp-down: 2 h	Top (Ground) B (Ground) B Side (Ground) A (Ground) A Bottom (Ground) A (Ground) A End (Machined) A (Machined) C Chamfer/grinding recess (Drawn) A (Drawn) D Testing chamber: High temperature, highly moist chamber (made by DABAI ESPEC) Temperature: 70°C Relative humidity: 95% Testing time: 96 h Time to "ramp-up" and "ramp-down" conditions of the temperature and the humidity Ramp-up: 5 h Ramp-down: 2 h	Top (Ground) B (Ground) A (Ground	Top (Ground) B (Ground) B (Ground) A (Ground) C

Rusting A: No rust

B: Not rusted, but slightly discolored

C: Spotty rust

D: Slightly rusted E: Completely rusted

Chemical corrosion resistance test

Table 8.2 Results of the corrosion resistance test

Test conditions Rail base material : Equivalent to SUS440C Chemical density : 1 mol/ℓ

Fluoride low temperature Hard chrome plating None surface treatment chrome plating (reference) Immersed in solution for 24 hrs Nitric acid Immersed in solution for 24 hrs Fluoride Immersed in solution for 72 hrs Hydrochloric acid type washing solution HCl: H2O2: H2O =1:1:8 Hydrochloric acid (immersed) \bigcirc \bigcirc Sulfuric acid (immersed) \triangle Ammonia or sodium hydroxide

○: Normal △: Partial surface damage ▲: Overall surface damage ×: Corroded

Surface treatment durability test

Peeling resistance of surface treatment

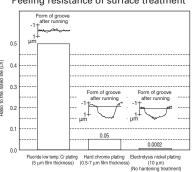


Fig. 8.1 Results of durability test

Total evaluation

Table 8.3 Evaluation

	Rust prevention ability	Quality stability	Durability	Cost
Fluoride low temperature chrome plating (recommended)	0	0	0	0
Hard chrome plating (reference)	0	×	\triangle	\triangle
Electroless nickel plating (reference)	0	Δ	×	\triangle
Material equivalent to SUS440C	0	0	0	\triangle

△: Not so good for use x: Problem in use

A-3-9 Special Environment

1. Heat-resistant specifications

- Standard linear guides use plastic for rolling element recirculation component. The maximum temperature in use for standard linear guides is 80°C.
- Use the linear guide with heat-resistant specifications under temperatures that exceed this limit.

Table 9.1 Comparison of materials: Standard and heat-resistant specifications

Component	Standard specification	Heat-resistant specification
Rail	Special high carbon steel (equivalent to SUS440C/JIS)	Special high carbon steel (equivalent to SUS440C/JIS)
Slide	Special high carbon steel (equivalent to SUS440C/JIS)	Special high carbon steel (equivalent to SUS440C/JIS)
Rolling elements	SUJ2, SUS440C	SUJ2, SUS440C
Retainer	Polyacetals	SUS304
Retaining wire	SUS304	SUS304
End cap	Polyacetals	SUS316L
Return guide	Polyacetals	SUS316L
End seal	Acrylonitril-butadiene rubber, SPC/JIS and stainless steel	Fluoro rubber, SPC/JIS and stainless steel
Bottom seal	Acrylonitril-butadiene rubber, SPC/JIS and stainless steel	Fluoro rubber, SPC/JIS and stainless steel

Heat resistant linear guides

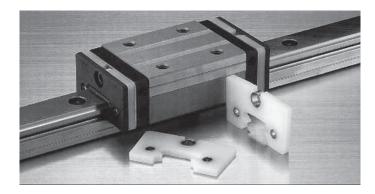
LH Series LS Series
LW Series LU Series
LE Series

See page A66 for the availability.

Ball retainer
Stainless steel
Ball slide body

End cap
Stainless steel

Fig. 9.1


2. Vacuum and clean specifications

- Based on its abundant experience and technology, NSK manufactures linear guides that can be used in a vacuum or in clean environment. Please consult NSK for more details.
- Linear guide specifications vary for environmental conditions.
- For example, "all stainless steel plus special grease, or solid film lubricant is suitable" for vacuum environment.
- NSK has low-dust generating grease "LG2" which is ideal for clean environment.
 Refer to page A43 for details.

A59 A60

"NSK linear guides for food processing equipment and medical devices" for sanitary environment

Used with NSK K1 for food processing equipment and medical devices and grease for food processing equipment.

What is "NSK K1[™]" for food processing equipment and medical devices?

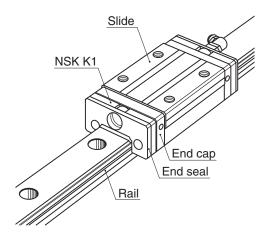
With an amazing innovation lubrication unit, the NSK K1 for food processing equipment and medical devices utilizing the US Food and Drug Administration (FDA) compliant material, provides reliability when used in food processing equipment and medical devices. The newly developed porous synthetic resin contains abundant lubricant.

With the basic function of highly praised NSK K1 lubrication unit for general industry, more sophisticated materials make it applicable in food and medical equipment.

It also offers easy installation: it is installed inside the standard end seal.

(1) Features

- 1) The highest grade of category H1 grease of USDA standard is used for NSK K1 lubrication unit.
- *category H1: Lubricants permitted for use where there is possibility of incidental food contact
- *USDA: USDA (The United States Department of Agriculture)
- <Features of grease for food processing machines>
- This grease is approved by USDA H1. (National Science Foundation [NSF] carries out certification for USDA.)
- · Superb water resistance and antirust capability
- Superb wear resistance
- · Applicable for a centralized oiling system
- 2) Appropriate volume of grease


A supply of appropriate volume of grease reduces grease draining and scattering, and maintains a clean environment.

(2) Available models

Table 9.2 shows available models.

Table 9.2

LH Series	LH12, LH15, LH20, LH25, LH30 and LH35
LS Series	LS15, LS20, LS25, LS30 and LS35
LW Series	LW17, LW21, LW27 and LW35
PU Series	PU09, PU12 and PU15
LU Series	LU09, LU12 and LU15
PE Series	PE09, PE12 and PE15
LE Series	LE09, LE12 and LE15

Precautions for use

To maintain optimal performance of NSK K1 lubrication unit over a long time, please follow the instructions below:

1. Temperatures range for use: Maximum temperature in use: 50°C

Momentary maximum temperature in use: 80°C

2. Chemicals that should not come to contact:

Do not leave NSK K1 lubrication unit in organic solvent, white kerosene such as hexane, thinner which removes oil, and rust prevention oil which contains white kerosene.

Note: Water-type cutting oil, oil-type cutting oil and grease such as mineral-type and ester-type do not damage NSK K1 lubrication unit.

4. Specifications for special environments

Table 9.3 Linear guide specifications

Environment	Condition			le specifications		Technical Explanation
		Rail, slide	Steel balls/rollers	Ball Recirculation component	Lubrication/surface treatment	Page No.
		Standard material	Standard material	Standard material	LG2 Grease, LGU Grease	D8
	Atmosphere,				NSK K1 lubrication unit	D10
	normal temperature				LG2 Grease, LGU Grease	D8
Clean	normar temperature				NSK K1 lubrication unit	D10
		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
	Atmosphere–Vacuum up to 200°C					
	Atmosphere–Vacuum, normal temperature				Fluoride grease	
	Atmosphere–Vacuum up to 200°C	Maria de la compania	M	A . St . t		
Vacuum	Atmosphere–Vacuum up to 300°C	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Molybdenum disulfide	-
	High vacuum up to 500°C				Special silver film	D7
	\/	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel		
	Vapor, steam	Standard material	Standard material	Standard material	Fluoride low temperature	D5
	A sid alledi	Standard material	Standard material		Fluoride low temperature chrome plating	D5
	Acid, alkali					D5
Corrosion	A . I II I' I		Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
resistance	Acid, alkali, clean	Martensitic stainless steel			LG2 Grease, LGU Grease	D8
	Strong acid,				Fluoride low temperature chrome plating	D5
	strong alkali				Fluoride grease	
	Organic solvent				Fluoride grease	
	Atmosphere	Standard material	Standard material		ET150 Grease	
Himb	up to 150°C				ET 150 Grease	
High temperature	Atmosphere Up to 200°C	Martaneitia etainlase etaal	Martensitic stainless steel	Austenitic stainless steel	Fluoride grease	
temperature	Atmosphere Up to 200°C,	iviai terisitic stariless steer	iviai terisitio starilless steer		Eluarida aragga	
	Corrosion resistant				Fluoride grease	
Low temperature	-273°C and higher	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Solid lubricant	
Radiation	Atmosphere	Standard material	Standard material	Standard material	Radiation resistant grease	
resistance	Aunospiieie	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	nadiation robistant grease	
	Fine particles,	Standard material	Standard material	Standard material		D10
Foreign	wooden chips		Martensitic stainless steel	Austenitic stainless steel	NSK K1 lubrication unit	D10
matters	Water,	Martensitic stainless steel	Standard material	Standard material	NOK KI IUDITCAUOII UIIIL	D10
	under water		Martensitic stainless steel	Austenitic stainless steel		D10

5. Lubrication and materials

(1) Lubrication

Grease can be used for high rotation and magnetic field. However, grease evaporates or solidifies in special environment such as vacuum, high temperature, and low temperature. Solid lubricant is used when it is difficult to use grease. Functions of solid lubricant differ greatly by condition where it is used. It is important to select the most suitable solid lubrication for the environment.

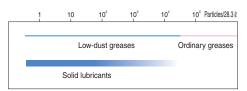


Fig. 9.2 Lubrication in clean environment

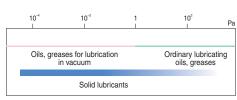


Fig. 9.3 Lubrication in vacuum

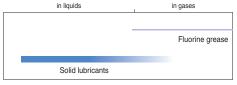


Fig. 9.4 Lubrication in corrosive environment

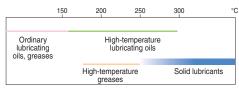


Fig. 9.5 Lubrication in high temperature

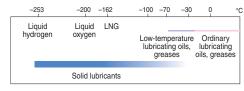


Fig. 9.6 Lubrication in low temperature

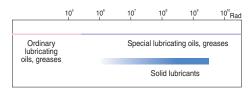


Fig. 9.7 Lubrication in radioactive environment

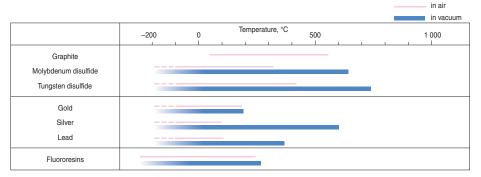


Fig. 9.8 Temperature range for using solid lubricants

(2) Materials

Iron type metals are used in vacuum, high temperature, and high speed environments as the basic material. We generally use nonmagnetic stainless steel for nonmagnetic materials.

Table 9.4 Characteristics of metal materials

Application	Type of steel	Linear expansivity ×10 ⁻⁶ /°C	Young's modulus GPa	Hardness * HB
For clean environment, vacuum environment, corrosion resistance, low temperature, high temperature, radioactive resistance	Martensitic stainless steel SUS440C	10.1	200	580
	Austenitic stainless steel SUS304	16.3	193	150
	Precipitation hardened stainless steel SUS630	10.8	200	277 – 363
Nonmagnetic Nonmagnetic stainless steel		17.0	195	420

^{*)} Hardness of steel is usually indicated by Rockwell C Scale. For comparison, these figures are expressed by Brinell number.

6. Responsiveness of NSK linear guides for special environments

Series	Model No.		environm				
Š		Clean	Vacuum	Corrosion	High temp.	Hygienic	High dust proofi
	LH08	0		0			
	LH10	0		0			
	LH12	0		0		0	
	LH15	0		0		0	
	LH20	0	0	0	0	0	
LH	LH25	0	0	0	0	0	
	LH30	0	0	0	0	0	
	LH35	0		0	0	0	
	LH45	0		0	0		
	LH55	0		0			
	LH65	Ó		Ó			
	SH15	Õ		Õ			
	SH20	Õ		Õ			
	SH25	Ĭ		Õ			
SH	SH30	T ŏ		Õ			
	SH35	l ŏ		Ô			
	SH45	l ŏ		Ô			
	SH55	1 0		Õ			
	VH15	1 0		0			0
ł	VH20	1 0		0			Ô
	VH25	1 6		0			Ö
\ /I I	VH25	1 8		0			0
VН	VH35	1 8		0			0
	VH45	+ 6		0			0
	VH45 VH55	10		0			0
	TS15	10		0			0
				0			
	TS20	0		0			
TS	TS25	0		0			
	TS30	0		0			
	TS35	0		0			
	LS15	0	0	0	0	0	
	LS20	0	0	0	0	0	
LS	LS25	0	0	0	0	0	
	LS30	0	0	0	O*	0	
	LS35	0		0		0	
	SS15	0		0			
	SS20	0		0			
SS	SS25	0		0			
	SS30	0		0			
	SS35	0		0			
	LW17	0		0	O*	0	
	LW21	0		0	O*	0	
LW	LW27	Ŏ		Ö	Ö	Õ	
	LW35	Ŏ		Õ		Õ	
	LW50	Ŏ		Õ			
	PU05	Ĭŏ		Ô			
PU	PU07	+ ~		$\stackrel{\sim}{\sim}$			

Series	Model No.	Special environment which linear guide can tolerate					
Se		Clean	Vacuum	Corrosion	High temp.	Hygienic	High dust proofin
	PU09			0		0	
PU	PU12	0		0		0	
	PU15	0		0		0	
	LU05	0		0			
	LU07	0		0			
	LU09_L	0	0	0	0	0	
LU	LU09_R	0		0		0	
	LU12_L	0	0	0	0	0	
	LU12_R	0		0		0	
	LU15	0	0	0	O*	0	
	PE05	0		0			
	PE07	0		0			
PE	PE09	0		0		0	
	PE12	0		0		0	
	PE15	0		Ó		0	
	LE05	0		0			
	LE07	Ó	0	Ó	O*		
	LE09_L	Ó	Ö	Ó	O*	0	
	LE09_R	Ó		Ó		Ó	
LE	LE12_L	Ŏ	0	Ŏ	0	Ŏ	
	LE12_R	Ŏ		Ŏ		Ŏ	
	LE15_L	Ö	0	Ŏ	0	Ŏ	
	LE15AR	Ŏ		Ŏ		Ö	
	RA15	0		0			
	RA20	0		0			
	RA25	0		0			
В.	RA30	0		0			
RA	RA35	0		0			
	RA45	Ö		Ó			
	RA55	Ö		Ó			
	RA65	Ó		Ó			
	LA25	Ó		Ó			
	LA30	Ó		Ó			
	LA35	Ó		Ó			
LA	LA45	Ó		Ó			
	LA55	Ó		Ó			
	LA65	Ŏ		Ŏ			
	HA25	Ŏ		Ŏ			
	HA30	Ŏ		Ŏ			
НΑ	HA35	Ŏ		Ŏ			
٦	HA45	Õ		Ŏ			
	HA55	Ŏ		Ŏ			
	HS15	Ŏ		Ŏ			
	HS20	Ŏ		Ŏ			
HS	HS25	Ŏ		ŏ			
	HS30	Ŏ		ŏ			
	HS35	T ŏ		ŏ			
_	11000						

7. Precautions for handling

Please observe the following precautions to maintain high functions of NSK linear guide.

- Products are washed to remove oil, and wrapped in a way to protect them from moisture. Use the product as soon as possible after opening the package.
- After opening, store the products in a clean, air-tight container such as desiccater with desiccating agent (e.g. silica gel). Do not apply rust preventive oil or an antirust paper that vaporizes rust preventive agent.
- Wear plastic gloves and handle product in a clean place.

Note: Please refer to the catalog "CAT. No. E1258 SPACEA" for the details of special environmental use.

A65 A66

^{*)} Applicable except for the dust-proofing parts.

A-3-10 Arrangement and Mounting of Linear Guide

1. Arrangement

- · For NSK linear guides, the datum surfaces of the rail and of the slide are either marked with a "datum surface groove" or with an "arrow."
- · In case that two or more linear guides are used together, one linear guide is designated as a reference side guide, and the rest is adjusting side guide(s). The reference side linear guide has its reference number, serial number, and "KL" mark on the opposite side of the datum surface (Fig. 10.1).
- · When the datum surfaces of the reference side rail and slides are pressed to their mounting datum surfaces respectively, the variation of distance (mounting width W₂ or W₃) between the datum surfaces of the rails and that of the slides must be a minimum and therefore, it is specified as the standard. (Figs. 10.2 and 10.3)
- The ways to indicate the datum surfaces of each series are shown in Table 10.1.

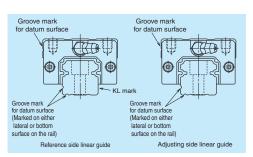


Fig. 10.1 Datum surface

A67

Example of arrangement

· The arrangement of the linear guides must be determined taking into account the table mounting position (horizontal, vertical, inclined, or upside-down), strokes and the size of the machine base to which the table is mounted. Table 10.2 shows common arrangement examples and their properties (features/ precautions).

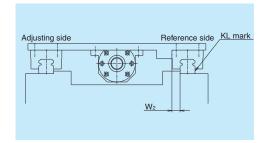


Fig. 10.2 Most common setting of the reference side rail

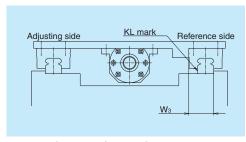
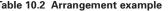



Fig. 10.3 Setting of the reference side rail in certain occasions

Table 10.1 Marks on the rail datum surfaces in each series

Model No. Material	Standard	LU05, 07, 09 PU05, 09, 12, 15 LE07, 09, 12	LU12, 15, LH15	PU07 LE05, 15 LE09, 12 (with a ball retainer) PE series LH08, 10, 12 LW17, 21 RA15
Special high carbon steel	B	547	B	
Stainless steel	B	B	B	B

Table 10.2 Arrangement example				
Arrangement	Features/Precautions	Tues.		
Mounting datum surface Table Machine base Adjusting side Machine base Reference side W2 (Fixed side)	Easy for a highly-accurate installation (recommended arrangement)			
Political Politi	Easy in highly-accurate installation The lubricant oil may not be supplied to slides. When oil lubricant is used, special care is required to design the oil supply routing.			
Spacer for height adjustment W ₃ W ₃ Adjusting side Reference side	Slightly difficult for a highly-accurate installation The life of the linear guides is affected by the mounting accuracy. When oil lubricant is used, special care is required to design the oil supply routing.			
Spacer for height adjustment Adjusting side	Difficult for a highly-accurate installation When oil lubricant is used, special care is required to design the oil supply routing.			
Mounting datum of ball slide Table Table Table Table Table Table Adjusting side KL mark Datum side (Fixed side) W2 Mounting datum of rail	Rather easy for a highly-accurate installation Mhen oil lubricant is used, special care is required to design the oil supply routing.			
Datum side (Fixed side) Mounting datum of rail (Adjusting side Machine base Table	Easy in highly-accurate installation if the linear guides are installed to the machine base first, and then hung them upside down along with the machine base. The slide may detach from the rail and fall down if the linear guide is damaged and rolling elements in			

Mounting datum of ball slide

the slide fall out. It is necessary to take preventive

measures against the falling of the ball slide.

2. Mounting accuracy

(1) Accuracy of the mounting base of machine

- The mounting accuracy of linear guide usually copies the accuracy of the machine base.
- However, when two or more slides are assembled to each rail, the table stroke becomes shorter than the mounting surface. This, along with the fact that the mounting error is evenly spread, contributes to a higher table accuracy than the mounting surface accuracy, reducing the error to about 1/3 in average (Fig. 10.4).

(2) Installation error

• Mounting error affects mainly three factors: life, friction and accuracy (**Table 10.3**).

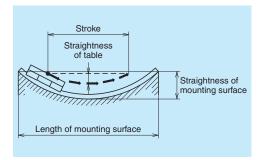
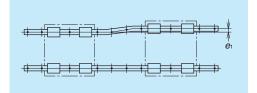


Fig. 10.4

Table 10.3 Influence of mounting error

Factor		Influence
Life	Rail	 Large mounting error generates a force which twists the slide and reduces its life. It also distorts the contact point of the ball and the groove, and changes contact angle, thus lowering the table rigidity.
Friction	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 LH, SH, LS and SS Series are affected very little by mounting error thanks to their small friction. (self aligning capability) However, because of off-set Gothic arch grooves, their friction suddenly soars once the mounting error exceeds a certain level. The mounting error severely affects friction of LA Series with heavy preload.
Accuracy		 When the rigidity of four slides is equal, the theoretical straightness becomes 1/2 of the installation error "e₁". However, this value becomes slightly larger due to the deformation of the rail and the machine base.

(3) Permissible values of mounting error


 Among the three factors of life, friction, and accuracy, which are affected by the mounting error, NSK focuses on the life factor to determine the permissible mounting accuracy. The specifications are based on the following conditions.

For ball linear guides

- The permissible load per ball slide due to the mounting error is 10% of the basic dynamic load rating C.
- The rated life is 5 000 km.
- The rigidity of the machine base is infinite.

For roller linear guide

- The permissible load per roller slide due to the mounting error is 10% of the basic dynamic load rating C.
- The rated life is 10 000 km.
- The rigidity of the machine base is infinite.
- Figs. 10.5 and 10.6 are representing the mounting errors of e_1 and e_2 . Their permissible values are shown in the description of "5. Installation" of the each series.

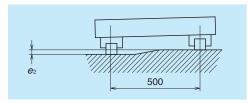
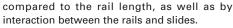



Fig. 10.5 Fig. 10.6

(4) Running accuracy and the influence of even-off effect

· When mounting on a machine base, the linear guide is affected by the flatness of the mounting surface. However, in the case of two-rail/four-slide specification, which is most widely used, the straightness as a table unit is generally less than the straightness as a single component. This is due to the even-off effect generated by the shorter table stroke,

· Fig. 10.9 shows an actually measured straightness of the table which uses NSK linear guides. In this case, the final straightness of the table is about 1/5 of the straightness of the mounting surface.

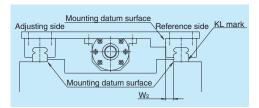


Fig. 10.7

Fig. 10.8

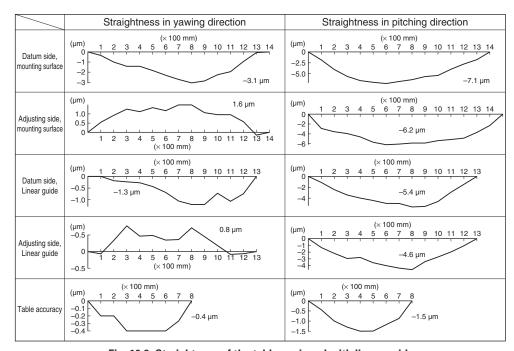


Fig. 10.9 Straightness of the table equipped with linear guide

3. Installation

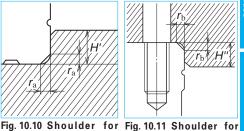
(1) Shoulder height of the mounting surface of the machine base and corner radius r

- · Figs. 10.10 and 10.11, show shoulder height of the mounting surface of the machine base and the size of corner radius. These figures are relevant when the linear guide is pressed to the shoulder of the machine base or table (the raised section from where the mounting surface begins), and horizontally secured to it. Recommended sizes are shown in the clause of "Shoulder height and corner radius r" of each series introduction.
- · The shoulder should be thick (wide) enough, so it is not deformed by the pressing force.

(2) Tightening torque of the bolt

- Table 10.4 shows tightening torque of the bolt when the rail is secured to the fixture of race way grinding machine.
- Apply same torque in this table when securing the rail to the machine base. Equal accuracy at the time of grinding can be obtained.

Table 10.4 Bolt tightening torque (Bolt material: High carbon chromium steel)


			Unit: N∙m
Bolt size	Tightening torque	Bolt size	Tightening torque
M2.3	0.38	M10	43
M2.5	0.58	M12	76
M3	1.06	M14	122
M4	2.5	M16	196
M5	5.1	M18	265
M6	8.6	M22	520
M8	22	_	_

(3) Installation procedures

- · There are two installation ways depending on the accuracy requirement.
 - a. Installation with high accuracy
 - b. Accuracy is not high, but easy to install
- · For both methods, wipe off the rust preventive oil applied to the linear guide. Remove burrs and small bumps on the machine base and table mounting surface with an oilstone (Fig. 10.12).

Apply machine oil or similar oil with low viscosity to the mounting surface to increase the rust preventive effect.

· Linear guides are precision products. Handle them with care.

the rail datum surface

the slide datum surface

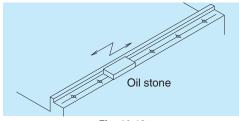


Fig. 10.12

A71 A72

1) Highly accurate installation

A) Rail installation procedures

a) When the machine base has a shoulder for the reference side rail.

[1] Confirm that the rail is reference side rail, and the datum surface of the rail comes to face to face with the shoulder of the machine base. Keep the slides on the rail, and carefully place the rail on the machine base on its mounting surface. Loosely tighten the bolts. At this time, press the rail from sideways to make the rail tightly contact to the shoulder of the machine base. When using a shoulder plate, refer to **Table 10.4** for the bolt tightening torque (**Fig. 10.13**).

Refer to "4. Various methods to press linear guide sideways."

[2] For final tightening of the bolts to secure the rail, tighten the bolt on either end of the rail, then proceed to other end.

If the datum surface is on the left side as shown in Fig. 10.14, tighten the bolt at the farthest end first, then proceed to the near end

This way, creates a bolt rotating force that presses the rail against the shoulder. (Therefore, the rail is pressed sufficiently tight against the shoulder by merely pressing the rail by hand. However, if there is a possibility applying a lateral impact load, it is necessary to use a shoulder plate to prevent the rail from slipping.)

- [3] If the mounting surface of the machine base where the adjusting side rail is installed also has a shoulder, repeat the steps [1] [2].
- [4] If there is no shoulder on the mounting surface of the machine base for the adjusting side rail: Secure a measuring table to the slides of the reference side rail (Fig. 10.15). Use this to adjust the parallelism of the adjusting side rail. Check parallelism of the adjusting side rail with a dial indicator from one end of the rail, tightening the bolts one by one

The measuring table is more stable if secured to two slides, but one slides is sufficient.

Parallelism between two rails can also be checked by the same method in Fig. 10.15 when there is a shoulder on the surface where the adjusting side rail is installed.

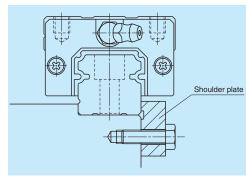


Fig. 10.13 Pressing the rail from sideways

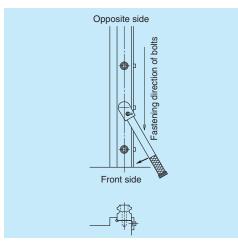


Fig. 10.14 Rail installation

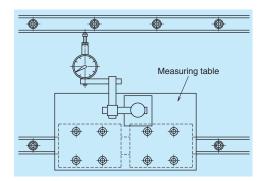


Fig. 10.15 Measuring parallelism

When the machine base does not have a shoulder on the side where the reference side rail is installed

- [1] Carefully place the reference side rail on its mounting surface of the machine base. Loosely tighten the bolts. Do not tighten the bolts all the way, but stop tightening when the bolt enters halfway into the bolt hole. This makes the proceeding steps easier.
- [2] Place the straight edge almost parallel to the reference side rail which is temporarily secured by the bolts. (At both ends of the rail and straight edge, the distance between them shall be almost same.)
- [3] Once the position of the straight edge is determined, use it as the reference. With a dial indicator, check parallelism with the rail, and adjust the rail if necessary. Then tighten the bolts.

Ensure that the straight edge does not move while the bolts are being tightened.

This procedure should be carried out starting from one end of the rail to the other end (**Fig. 10.16**).

- [4] Finally tighten all bolts with specified torque.
- [5] There are two ways for installation of adjusting side rail:
 - 1. Based on the straight edge which is used for reference side rail installation
 - 2. Based on the reference side rail which is installed prior to the adjusting side rail.

In both cases, use a dial indicator to measure parallelism.

Other procedures are the same as [1] - [4] above, and the [4] for the case where there is a shoulder on the machine base.

B) Procedures for slide installation

a) When the table has a shoulder

- [1] Arrange the slides so that locations match to their mounting section of the table. Carefully place the table on the slides. Loosely tighten all bolts.
- [2] While pressing the table from sideways, further tighten the bolts which secure the slides on the reference side, so the table shoulder and the slide's mounting datum surface are sufficiently tightly pressed.

If a shoulder plate is provided, first tighten the bolts of the plate, then further tighten the bolts to the slides (**Fig. 10.17**).

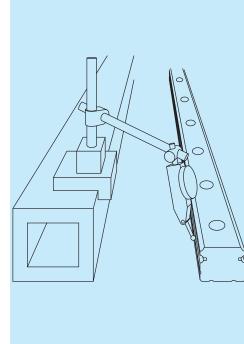


Fig. 10.16

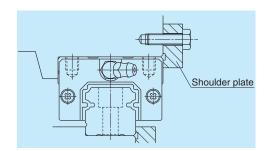


Fig. 10.17 Pressing slide from sideways

- [3] Then, further tighten the bolts for slides on the adjusting side rail.
- Move the table by hand to confirm that there is no abnormality such as excessive friction force during stroking. (This confirms that the correct installation steps were taken.)
- [4] Finally, tighten all bolts with standard torque.

b) When table does not have a shoulder

- [1] Arrange the slides so that locations match to their mounting section of the table. Carefully place the table on the slides. Loosely tighten bolts to secure the slides.
- [2] Since the table does not have a shoulder. immediately tighten the bolts further to secure slides.
- [3] Move the table by hand to confirm that there is no abnormality. Finally, tighten all bolts with the specified torque.

2) Easy installation

- [1] Carefully place the reference side rail on the machine base. Then tighten the bolts to the specified torque.
- [2] Loosely tighten the bolts on the adjusting side rail.
- [3] Tighten the slides on the reference side rail and one slide on the adjustment side rail with the specified torque. Leave the rest of the slide on the adjusting side rail loosely tightened (Fig. 10.18).
- [4] While moving the table with each pitch of the bolt for rail: With the specified torque, tighten the rail mounting bolt which is located immediately adjacent to the slide on the adjusting side rail that had been firmly tightened.
 - Take this procedure from one end to the other.
- [5] Return the table to the original position once. Then, tighten the rest of the slides on the adjusting side to the specified torque. By the same procedure as in [4], tighten the rest of the rail mounting bolts to the specified torque. Move the table to check any abnormality such as large friction force.

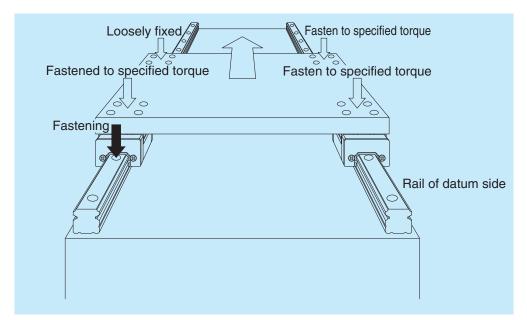


Fig. 10.18 Easy installation

(4) Various methods to press linear guide sideways

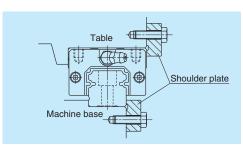
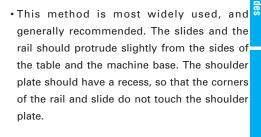



Fig. 10.19 Recommended method

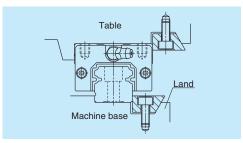
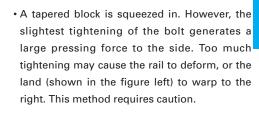



Fig. 10.20 Installation that requires caution

• The bolt that presses rail must be thin due to

limited space.

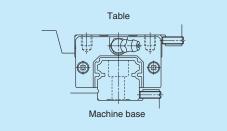
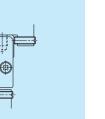



Fig. 10.21

· Press a needle roller with a taper section of the head of a slotted pan head screw. Watch out for the position of the screw.

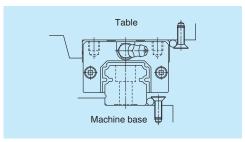


Fig. 10.22

A75 A76

4. Assembly random-matching type linear guide

- Slides of random-matching type are assembled on a provisional rail (an inserting tool) when it is delivered (Fig. 10.23).
- NSK standard grease is packed into the slide, allowing immediate use.

Assembly procedures of a random-matching type linear guide

Follow steps as described below.

- (1) Wipe off the rust preventive oil from the rail and slide.
- (2) Please match a groove mark for the datum surface of slide and rail to set a desired assembling state W₂ or W₃.
- (3) Align the provisional rail to the rail in the bottom and side surfaces. Press the provisional rail lightly against the rail, and move the slide over the rail (Fig. 10.23).

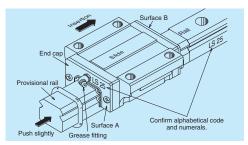


Fig. 10.23 Inserting slide into the rail

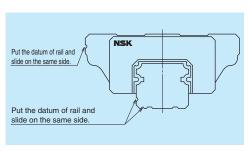


Fig. 10.24

5. Butting rail specification

- A rail which requires the length that exceeds the machine capacity manufactured maximum length comes in butting specification.
- The rails with butting specification are marked with alphabet (A, B, C ...) and an arrow on the opposite side of the mounting datum surface.
 Use the alphabets and arrows for assembly order and direction of the rail (Fig. 10.25).

The random-matching rails for butting specification are only marked with the arrows.

- The pitch of the rail mounting hole on the butting section should be as F in Fig. 10.26.
 When two rails are used in parallel, the butted sections should not align. This is to avoid change in the running accuracy of the table at the butted sections.
- We recommend shifting the butting sections more than the length of a slide. If the higher running accuracy is required, consider installing the slides into the table so that they do not simultaneously pass the butting sections.

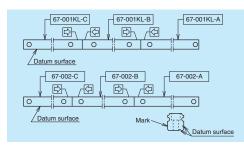


Fig. 10.25

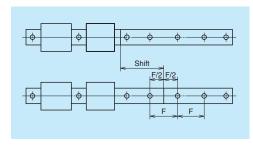


Fig. 10.26

6. Handling preloaded assembly

- In case of the preloaded assembly (not random-matching type), do not remove slides from the rail as a general rule.
- If it is unavoidable to remove slides from the rail, make certain to use a provisional rail (a jig used to insert a slide to the rail) as shown in Fig. 10.27.
- The provisional rails for each series and sizes are available.
- Pay due attention to the assembly mark when returning the slide back to the rail. Follow the cautions described below.

Mark for assembling ball slide and rail

- Rails of preloaded assembly (not randommatching type) are marked with a reference number and a serial number on the opposite of the datum surface.
- Slides to be combined are also marked with the same serial number (the reference number is not marked).
- Furthermore, slides are marked with an arrow.
 Slides should be positioned with their arrows facing each other.
- In case that the slides had to be removed from the rail, confirm their serial numbers and the directions of arrows for re-assembly (Fig. 10.28).
- When two or more rails are used in a single set, serial numbers are in sequence if their reference numbers are the same. The linear guide with smallest serial number has the "KL" mark (Fig. 10.29).
- When two or more rails of different reference number are used in a single set, the rails and slides have the same serial number. In this case, when slides are removed from the rail, it is unclear which rail each slide was previously installed on. When removing ball slides from the rail for an unavoidable reason (Fig. 10.30), sufficient precaution is required.

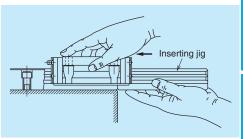


Fig. 10.27

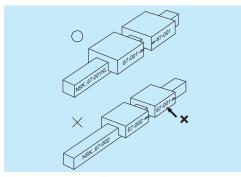


Fig. 10.28

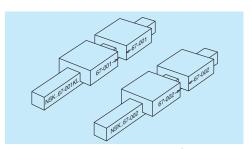


Fig. 10.29 When two rails have the same reference number

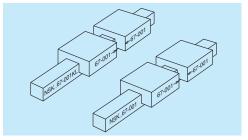
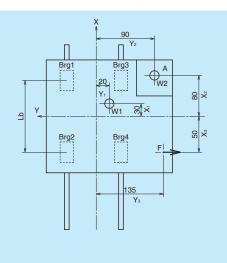



Fig. 10.30 When two rails have different reference number

A-3-11 Drills to Select Linear Guide

1. Single axis material handling system

This section explains the selection of linear guide, life calculation, and deformation at load acting point for a single axis material handling system equipped with linear guides.

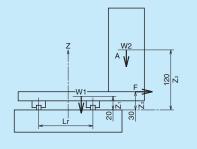


Fig. 11.1 Single axis material handling system

The work load is applied only to one way of stroke. Assume that the load is acting in full stroke as the condition of acting load is unknown.

Specification of the single axis material handling system

Table weight	W1: 150 (N)
Weight of the work	W2:200(N)
Acting load	F : 200 (N)

Ball slide span $L_{\rm b}$: 100 (mm) L.: 90 (mm) Rail span

Load point coordinates from the table center (mm)

Load	X axis Y axis		Z axis
W1	30	-20	20
W2	80	-90	120
F	-50	-135	30

Stroke: 1 000 mm (1 cycle: 2 000 mm)

: 10 - 30 (°C) Environment Travel speed : 12 (m/min) Time to reach travel speed: 0.25 (sec) : 16 (hr/dav) Operating hour

(1) Selection of linear guide model

Select a type of linear guide from "A-1-2 Structure and Characteristics of Linear Guide." Since this material handling system has two rails and four ball slides, LH, LS, and LU Series are suitable.

Here, we temporary select LU15 because of the dimensions of mounting space.

(2) Calculating life

Calculate life of the selected LU15AL based on "A-3-2 Rating Life and Basic Load Rating."

Linear guide LU15AL

Basic dynamic load rating: 5 550 (N) Basic static load rating : 6 600 (N)

Load conditions of the linear guide

Table weight W1: 150 (N) Weight of the work W2: 200 (N) F : 200 (N) Applied load Rail span $L_r : 90 \text{ (mm)}$ Ball slide span $L_{\rm b}$: 100 (mm)

From the time to reach travel speed and the travel speed, the table acceleration is 0.8 m/sec2. Therefore, it is not necessary to take into account inertial force brought about by the table mass.

Calculation of the load applied to ball slide

Calculate two occasions:

- 1. There is the work mounted on the table.
- 2. No work mounted on the table.

From Pattern 4 on page A19 in Table 2.2

When a work is mounted on the table **Vertical loads**

$$M1 = \sum_{j=1}^{n} (F_{yj} \cdot Z_{yj}) + \sum_{k=1}^{n} (F_{zk} \cdot Y_{zk})$$

$$= F \cdot Z_3 + W1 \cdot Y_1 + W2 \cdot Y_2$$

$$= -200 \times 30 + 150 \times (-20) + 200 \times (-90)$$

$$= -27 \cdot 000 \text{ (N-mm)}$$

$$M2 = \sum_{i=1}^{n} \{ F_{xi} \cdot (Z_{xi} - Z_b) \} + \sum_{k=1}^{n} (F_{zk} \cdot X_{zk})$$

$$= W1 \cdot X_1 + W2 \cdot X_2$$

$$= 150 \times 30 + 200 \times 80$$

$$= 20 500 \text{ (N-mm)}$$

$$F_{r1} = \frac{\sum_{k=1}^{n} F_{zk}}{4} + \frac{M1}{2 \cdot L} + \frac{M2}{2 \cdot \ell}$$

$$= \frac{W1 + W2}{4} + \frac{M1}{2 \cdot L_r} + \frac{M2}{2 \cdot L_b}$$

$$= \frac{150 + 200}{4} + \frac{-27000}{2 \times 90} + \frac{20500}{2 \times 100}$$

$$= 40 \text{ (N)}$$

Similarly

$$F_{r2} = -165(N)$$

$$F_{r3} = 340(N)$$

$$F_{r4} = 135(N)$$

Lateral loads

$$M3 = -\sum_{i=1}^{n} \left\{ F_{xi} \cdot (Y_{xi} - Y_b) \right\} + \sum_{j=1}^{n} \left(F_{yj} \cdot X_{yj} \right)$$

$$= F \cdot X_3$$

$$= -200 \times (-50)$$

$$= 10\ 000\ (\text{N-mm})$$

A79 A80

$$F_{s1} = F_{s3} = \frac{\sum_{j=1}^{n} F_{yj}}{4} + \frac{M3}{2 \cdot 1}$$
$$= \frac{F}{4} + \frac{M3}{2L_b}$$
$$= \frac{-200}{4} + \frac{10\ 000}{2 \times 100}$$
$$= 0\ (N)$$

Similarly

$$F_{s2} = F_{s4} = -100(N)$$

No work mounted on the table Vertical load

$$M1 = \sum_{j=1}^{n} (F_{yj} \cdot Z_{yj}) + \sum_{k=1}^{n} (F_{zk} \cdot Y_{zk})$$
$$= F \cdot Z_3 + W1 \cdot Y_1$$
$$= -200 \times 30 + 150 \times (-20)$$
$$= -9 \ 000 \ (N \cdot mm)$$

$$M2 = \sum_{i=1}^{n} \{ F_{xi} (Z_{xi} - Z_b) \} + \sum_{k=1}^{n} (F_{zk} \cdot X_{zk})$$

= $W1 \cdot X_1$
= 150×30
= 4500 (N·mm)

$$F_{r1} = \frac{\sum_{k=1}^{n} F_{2k}}{4} + \frac{M1}{2 \cdot L} + \frac{M2}{2 \cdot I}$$

$$= \frac{W1}{4} + \frac{M1}{2 \cdot L_r} + \frac{M2}{2 \cdot L_b}$$

$$= \frac{150}{4} + \frac{-9000}{2 \times 90} + \frac{4500}{2 \times 100}$$

$$= 10 (N)$$

Similarly

$$F_{r2} = -35 \text{ (N)}$$

$$F_{r3} = 110 \text{ (N)}$$

$$F_{r4} = 65 (N)$$

Lateral loads

$$M3 = -\sum_{i=1}^{n} \left\{ F_{xi} \cdot (Y_{xi} - Y_{b}) \right\} + \sum_{j=1}^{n} \left(F_{yj} \cdot X_{yj} \right)$$

$$= F \cdot X_{3}$$

$$= -200 \times (-50)$$

$$= 10 000 (N mm)$$

$$F_{s1} = F_{s3} = \frac{\sum_{j=1}^{n} F_{yj}}{4} + \frac{M3}{2 \cdot 1}$$
$$= \frac{F}{4} + \frac{M3}{2 \cdot L_b}$$
$$= \frac{-200}{4} + \frac{10\ 000}{2 \times 100}$$
$$= 0\ (N)$$

Similarly

$$F_{s2} = F_{s4} = -100 \text{ (N)}$$

For calculation, take into consideration the positive or negative signs (+ or -) for load point coordinates.

Calculation of dynamic equivalent load Use "A-3-2.2 3. Calculation of dynamic equivalent load."

It matches Position 4 in "Table 2.3 Loads in the arrangement of linear guides." Ball slide loads that must be considered are vertical and lateral direction loads.

In case of LU15AL,

Vertical direction dynamic equivalent load

 $F_r = F_r$ Lateral direction dynamic equivalent load

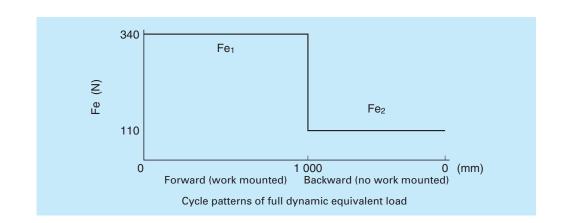
 $F_{so} = F_{s} \cdot \tan \alpha = F_{s}$

Use the formula for full dynamic equivalent load (page A23) to calculate F_a .

Results are shown in the table below.

Unit: N

Work mounted	Slide1	Slide2	Slide3	Slide4
$F_{r} \left(F_{r1} - F_{r4} \right)$	40	– 165	340	135
$F_{\rm se} (F_{\rm s1} - F_{\rm s4})$	0	- 100	0	- 100
F _e	40	215	340	185
No work mounted	Slide1	Slide2	Slide3	Slide4
$F_{r} \left(F_{r1} - F_{r4} \right)$	10	- 35	110	65
$F_{\rm se} (F_{\rm s1} - F_{\rm s4})$	0	- 100	0	- 100
F _e	10	118	110	133


Based on the results of calculations, a ball slide that bears the maximum dynamic equivalent load shall be taken as the representative of the linear guides for further life calculation. For this case, we take the Slide3.

Therefore;

Work mounted $F_{e1} = 340$ (N) No work mounted $F_{e2} = 110$ (N)

Calculation of mean effective load

Based on "A-3-2.2 4. Calculation of mean effective load," calculate from the largest full dynamic equivalent loads.

Assuming that L is: $L = L_1 + L_2$.

$$Fm = \sqrt[3]{\frac{1}{L} \left(F_{e_1}^3 L_1 + F_{e_2}^3 L_2 \right)}$$

$$= \sqrt[3]{\frac{1}{2000} \left(340^3 \times 1000 + 110^3 \times 1000 \right)}$$

$$= 273 \text{ (N)}$$

Determine various coefficients

Determine applicable coefficients from "A-3-2.2 5. Various coefficients."

Load factors

Use conditions are: Travel speed, 12 m/min; Acceleration, 0.8 m/sec² (0.082 G). As the load factor f_w is in the range of 1.0 to 1.5, use common value $f_w = 1.2$.

Hardness coefficient

The hardness of NSK linear guides is HRC58 to 62. Use a hardness coefficient $f_{H} = 1$ and take the value of basic dynamic load rating as it is.

Calculate rating life

Use "A-3-2.2 6. Calculation of basic rating life."

The basic dynamic load rating (C) of linear auide LU15AL : 5 550 (N) Mean effective load F_m : 273 (N)

Load factor f... : 1.2

Hardness coefficient f_{μ} : 1

Rating fatigue life
$$L = 50 \times \left[\frac{f_{\text{H}} \cdot C}{f_{\text{w}} \cdot f_{\text{m}}}\right]^{3}$$
$$= 50 \times \left[\frac{1 \times 5550}{1.2 \times 273}\right]^{3}$$

= approximately 243 110 (km)

Travel speed, 12 m/min; Operating hours, 16 hr/dav.

Convert the above rating fatigue life into hours:

$$\frac{243\ 110 \times 1\ 000}{12 \times 60 \times 16}$$
 = approximately 21 100 (days)

Examine static load

Based on "A-3-2.2 7. Examination of static load," find out on which ball slide the static equivalent load P_0 becomes largest.

The basic static load rating (C_0) of linear guide LU15AL: 6 600 (N)

Ball slide No. 3 bears the largest load.

 P_0 at this time:

$$P_0 = F_r + F_s = 340$$

Therefore, static permissible load coefficient fs is:

$$fs = \frac{C_0}{P_0} = \frac{6600}{340} = 19.4$$

There is no problem at this value.

(3) Selection of accuracy grade and preload

Based on "A-3-4 3. Application examples of accuracy," select accuracy grade PN and preload Z1 for material handling system.

(4) Calculation of deformation

Calculate deformation by the weight of the mounted work W2. From "Rigidity of LU series," the rigidity of linear guide LU15AL with Z1 preload is:

$K_s = K_r = 45 \text{ (N/}\mu\text{m)} = 45 \text{ 000 (N/}\text{mm)}$

Deformation by the weight of the mounted work W_2 can be obtained as the difference in deformation when W_2 applies or does not apply.

From Pattern 4 in Table 2.2 (page A19) Work mounted:

$$\delta_{x1} = Y_d \cdot \frac{F_{s2} - F_{s1}}{L_b \cdot K_s} + Z_d \cdot \frac{F_{r1} - F_{r2}}{L_b \cdot K_r}$$

$$= -90 \times \frac{-100 - 0}{100 \times 45000} + 120 \times \frac{40 - (-165)}{100 \times 45000}$$

$$= 0.0075 \text{ (mm)} = 7.5 \text{ (um)}$$

Similarly,
$$\delta_{y1} = -0.0082 \text{ (mm)} = -8.2 \text{ (}\mu\text{m)}$$

 $\delta_{z1} = 0.0123 \text{ (}m\text{m)} = 12.3 \text{ (}\mu\text{m)}$

NSK

No work mounted:

$$\delta_{x2} = Y_{d} \cdot \frac{F_{s2} - F_{s1}}{L_{b} \cdot K_{s}} + Z_{d} \cdot \frac{F_{r1} - F_{r2}}{L_{b} \cdot K_{r}}$$

$$= -90 \times \frac{-100 - 0}{100 \times 45000} + 120 \times \frac{10 - (-35)}{100 \times 45000}$$

$$= 0.0032 \text{ (mm)} = 3.2 \text{ (µm)}$$

Similarly,
$$\delta_{v2} = -0.0023$$
 (mm) = -2.3 (μ m)

$$\delta_{22} = 0.0039 \text{ (mm)} = 3.9 \text{ (}\mu\text{m)}$$

Therefore, the difference in deformation by whether

there is a mounted work or not is as follows:

$$\delta_x = \delta_{x1} - \delta_{x2} = 7.5 - 3.2 = 4.3 \, (\mu m)$$

$$\delta_{v} = \delta_{v1} - \delta_{v2} = -8.2 - (-2.3) = -5.9 \,(\mu\text{m})$$

$$\delta_z = \delta_{z1} - \delta_{z2} = 12.3 - 3.9 = 8.4 \, (\mu m)$$

2. Machining center

The following is a calculation example of a horizontal type machining center. Arrangements of each axis are shown in Fig. 11.2 (front view) and Fig. 11.3 (side view).

Operating conditions

Dimensions and load conditions are:

X axis column's weight Wx: 7 500 (N)

Y axis spindle head's weight Wy: 2 500 (N) Wz: 5500(N) Z axis table's weight

X axis rail span XL,: 450 (mm)

X axis ball slide span

 XL_{b} : 310 (mm) Y axis rail span YL,: 410 (mm)

Y axis ball slide span YL_{h} : 308 (mm)

ZL: 660 (mm) Z axis rail span Z axis ball slide span ZL_{h} : 420 (mm)

X axis stroke: 400 (mm) Y axis stroke: 350 (mm) Z axis stroke: 500 (mm) Average rapid traverse speed: 15 (m/min)

[Max. 30 (m/min)]

Starting accelerating speed : 1 (G)

Milling speed : 2.5 (m/min) Drilling speed : 0.8 (m/min)

Cutting load

Milling process Fx = Fy = 1000 (N)

Fz = 3000 (N)Drilling process

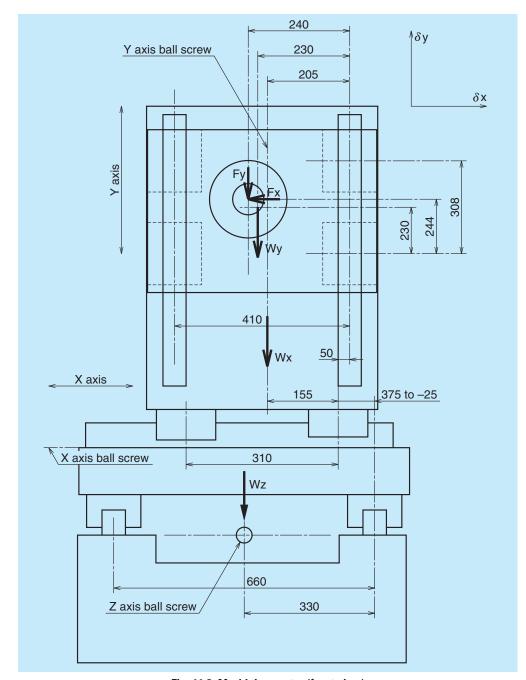


Fig. 11.2 Machining center (front view)

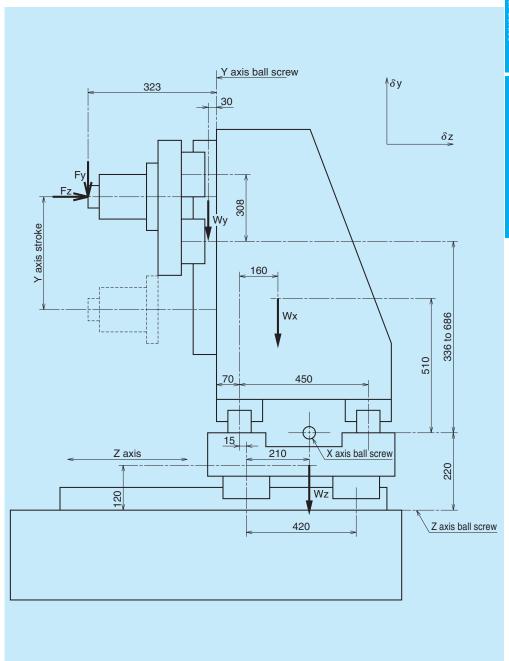


Fig. 11.3 Machining center (side view)

(1) Selection of linear guide model

From the operating conditions, the linear guide should be LA Series which is suitable for the machining center.

Select below temporarily from shaft diameter of ball screw:

X axis LA55

Y axis LA35

Z axis LA65

(2) Selection of accuracy grade and preload

For machining center, select accuracy grade P5 and preload Z3.

(3) Calculation of life expectancy

Examination shall be done in three cases, no cutting load, milling process, and drilling process.

Inertial force associated with the starting acceleration is not considered in this case. However, it must be calculated for more accurate figures.

Calculation of the loads that apply to the ball slide In case of no cutting load: Fx = Fy = Fz = 0Calculate load on X, Y, Z axes using "Table 2.2" in "A-3-2.2 2. Calculating load to a ball slide." X axis: Loads to be considered Wx and Wv Y axis: Loads to be considered Wy Z axis: Loads to be considered Wx, Wy, and Wz

nit:	

Unit: N

-986

Axis	Load direction	Slide1	Slide2	Slide3	Slide4
X axis	Vertical direction Fr	1 156	955	4 045	3 844
	Lateral direction Fs	0	0	0	0
Y axis	Vertical direction Fr	122	-122	122	-122
	Lateral direction Fs	102	-102	102	-102
Z axis	Vertical direction Fr	765	3 860	3 890	6 985
	Lateral direction Fs	0	0	0	0

In case of milling process: Fx = Fy = 1000 (N) Similarly,

X axis: Loads to be considered Wx, Wy, Fx, and Fy Y axis: Loads to be considered Wy, Fx, and Fy Z axis: Loads to be considered Wx, Wy, Wz, Fx,

Lateral direction Fs

and Fv

The table below shows the calculation of each load coordinates at stroke end which imposes most strict condition.

486

	Axis	Load direction	Slide1	Slide2	Slide3	Slide4
Ī	X axis	Vertical direction Fr	2 277	-1 039	6 539	3 224
	A dais	Lateral direction Fs	997	-997	997	-997
	Y axis	Vertical direction Fr	252	-1 040	1 040	-252
	1 4213	Lateral direction Fs	54	-554	54	-554
Ī	Z axis	Vertical direction Fr	-771	3 796	4 453	9 020
	Z 0X13					

-986

486

In case of drilling process: Fz = 3000 (N)

X axis: Loads to be considered Wx, Wy, and Fz Y axis: Loads to be considered Wy and Fz Z axis: Loads to be considered Wx, Wy, Wz, and Fz

The table below shows calculation of each load coordinates at a stroke end which imposes most strict condition.

Unit: N

NSK

					0
Axis	Load direction	Slide1	Slide2	Slide3	Slide4
X axis	Vertical direction Fr	Al direction Fr 4 256 4 055 945 I direction Fs 919 581 919 Il direction Fr 305 938 561 I direction Fs 102 -102 102 Il direction Fr 4 872 -247 7 997	744		
A dais	Lateral direction Fs	919	581	919	581
Y axis	Vertical direction Fr	305	938	561	1 195
1 4215	Lateral direction Fs	102	-102	102	-102
Z axis	Vertical direction Fr	4 872	-247	7 997	2 878
Z dxis	Lateral direction Fs	839	-839	839	-839

Calculation of dynamic equivalent load

Next, find dynamic equivalent load under each cutting condition. From "Table 2.3" in "A-3-2.2 3. Calculation of dynamic equivalent load," the necessary loads, Fr and Fse are, as the linear guide model is LA Series, obtained as follows.

Vertical dynamic equivalent load Fr = Fr

Lateral dynamic equivalent load

Fse = Fs \cdot tan α = Fs

From the above, calculate Fe using formulas for full dynamic equivalent loads shown in page A23. From calculation, the largest full dynamic equivalent loads are as follows.

Axis	Largest full dynamic equivalent load Fe (N)					
AXIS	No cutting load	For milling process	For drilling process			
X axis	4 045	7 038	4 716			
Y axis	173	1 317	1 246			
Z axis	6 985	9 513	8 417			

Calculation of full dynamic equivalent load taking account of preload

It is necessary to include the amount of preload for the calculation of rating life when Z3 preload is specified. Consider each preload and calculate full dynamic equivalent load. Calculate Fep using formulas in "A-3-3 6. Load and rating life when the preload is taken into

Preload P (X axis linear guide LA55): 8 100 (N) Preload P (Y axis linear guide LA35): 3 450 (N) Preload P (Z axis linear guide LA65): 13 800 (N) From the above, the full dynamic equivalent loads taking preload into account are smaller

than the load at which preload is relieved.

Assis	Largest full dynamic equivalent load Fe (N)					
Axis	No cutting load	For milling process	For drilling process			
X axis	10 336	12 104	10 724			
Y axis	3 542	4 171	4 131			
Z axis	17 663	19 138	18 494			

Calculation of mean effective load

Calculate the mean effective loads from full dynamic equivalent loads. If duty cycle in the cutting process is not clear, set the mean effective load to 70% of the largest full dynamic equivalent load in all processes.

Therefore,

X axis: $12\ 104 \times 0.7 = 8\ 473\ (N)$ Y axis: $4\,171 \times 0.7 = 2\,920$ (N) Z axis: $19\ 138 \times 0.7 = 13\ 397\ (N)$

Determine various coefficients

Determine them based on "A-3-2.2 5. Various coefficients."

For this case the factors are following.

Load coefficient $f_{\rm w}$: 1.5

Hardness coefficient f_{H} : 1

Calculation of rating life

Based on the calculated loads and various coefficients, calculate the rating life from "A-3-2.2 6. Calculation of rating life."

Basic dynamic load rating C

(X axis linear guide LA55): 139 000 (N)

Basic dynamic load rating C

(Y axis linear guide LA35): 61 500 (N)

Basic dynamic load rating C

(Z axis linear guide LA65): 260 000 (N)

Load coefficient f_w : 1.5 Hardness coefficient f_w : 1

Rating fatigue life
$$L = 50 \times \left(\frac{f_H \cdot C}{f_W \cdot F_M} \right)$$

From this.

In case of X axis Lx = 65410 (km)

In case of Y axis $L_{V} = 138440 (km)$

In case of Z axis Lz = 108300 (km)

In case of roller linear guides, refer to "A-3-2.2 6.

Calculation of rating life" (page A26).

Examination of static loads based on "A-3-2.2 7" Basic static load rating C_0

(X axis linear guide LA55): 215 000 (N)

Basic static load rating C_0

(Y axis linear guide LA35): 98 000 (N)

Basic static load rating C_0

(Z axis linear guide LA65): 420 000 (N)

Examine a case of high-load milling process with large load.

X axis
$$fs = \frac{C_0}{P_0} = \frac{C_0}{(F_r + F_s)} = \frac{215\ 000}{(6\ 539 + 997)} = 28.5$$

Similarly,

Y axis $f_{S} = 61.5$

Z axis fs = 42.0

Therefore, there is no problem.

(3) Calculation of deformation

Calculate deformation at the processing points.

(The stroke position is the stroke end positions on Y axis and X axis.)

Rigidity of X axis linear guide LA55Z3: 1 400 (N/µm) Rigidity of Y axis linear guide LA35Z3: 825 (N/µm) Rigidity of Z axis linear guide LA65Z3: 1 730 (N/µm)

Calculate using Pattern 4 in Table 2.2.

Load conditions	Deformation	Deform	Total deformation		
Load Conditions	direction	X axis	Y axis	Z axis	(µm)
Table weight	δ×	-0.2	-0.1	-3.1	-3.4
alone	δγ	-4.6	-0.3	-4.2	-9.1
alone	δz	-4.3	-0.1	-4.9	-9.3
	δ×	-9.9	-1.3	-6.7	-17.9
Milling process	δγ	-6.4	-1.7	-5.2	-13.3
	δz	-6.1	-0.4	-7.7	-14.2
	δ×	-0.9	-0.3	-4.6	-5.8
Drilling process	δγ	1.4	0.8	2.8	5.0
	δz	5.5	1.2	7.6	14.3

Therefore, deformation at processing points at time of milling is:

 $\delta x = -17.9 - (-3.4) = -14.5 (\mu m)$

 $\delta y = -13.3 - (-9.1) = -4.2 (\mu m)$

 $\delta z = -14.2 - (-9.3) = -4.9 (\mu m)$

Deformation at processing points at time of drilling is:

 $\delta x = -5.8 - (-3.4) = -2.4 (\mu m)$

 $\delta y = 5.0 - (-9.1) = 14.1 (\mu m)$

 $\delta z = 14.3 - (-9.3) = 23.6 (\mu m)$

If a rating life of this long period is not required, select a smaller linear guide model, and calculate the life again. To reduce deformation at the processing point, select a linear guide model with higher rigidity, and then calculate the life again.

A-3-12 Reference

The articles in "Motion & Control (NSK Technical Journals)" which refer to NSK linear guides are listed in the table below for user convenience.

"Motion & Control" is compiled to introduce NSK products and its technologies.

For inquiries and orders of "Motion & Controls," please contact your local NSK sales offices, or Representatives.

Table 12.1 Motion & Control (NSK Technical Journal): Articles relating to linear guides (1997 -)

Issue No.	Date of Publication	Articles related to linear guides
No.5	Dec. 1998	Development of the NSK K1 Seal for Linear Guides
No.8	May. 2000	NSK Linear Guides for High-Temperature Environments
No.9	Oct. 2000	Recent Developments in Highly Precise NSK Linear Guides
No.9	Oct. 2000	High-Performance Seals for NSK Linear Guides
No.11	Oct. 2001	Development of the NSK S1 Series [™] Ball Screws and Linear Guides
100.11	001. 2001	High Load Capacity Mini LH Series of NSK Linear Guides
No.12	Apr. 2002	NSK Linear Guides & Ball Screws Equipped with NSK K1 [™] Lubrication Unit
No.12	Apr. 2002	NSK S1 Series [™] NSK Linear Guides and Ball Screws
No.13	Oct. 2002	Translide [™] -New Rolling Element Linear Motion Bearing-
No.14	May. 2003	New Generation of NSK Linear Guides Miniature PU Series
No.15	Dec. 2003	Ultra-Precision NSK Linear Guides for Machine Tools-the HA Series
No.16	Aug. 2004	Numerical analysis Technology & NSK Linear Guides for Machine Tools
No.16	Aug. 2004	NSK RA Series Roller Guide
No.18	Aug. 2005	New Generation of NSK linear Guides Miniature PU Series/PE Series
No.20	Aug. 2007	V1 Series of Highly Dust-Resistant NSK Linear Guides
		Technological Trends of NSK Linear Guides for Industrial Machines
No.21	Dec.2009	Highly Accurate HS Series of Ultra-Precision NSK Linear Guides
		Linear Guides for Food Machine and Medical Devices
		Technological Trends of NSK Linear Guides for Industrial Machines
No.22	Mar. 2011	High-Accuracy HS Series of Ultra-Precision NSK Linear Guides
		NSK Linear Guides for Food Processing Equipment and Medical Devices

A89 A90

A-4 NSK Linear Guides™

1. Structure of NSK Linear Guides

By avoiding structural complexity, and by reducing the number of components, we not only enhanced the precision of linear guides, but also are able to keep costs low. We have added NSK's patented unique structural feature to the original invention (**Fig. 1**). This contributes to higher precision and lower prices.

NSK linear guides consist of a rail and a slide (Fig. 2). The balls or rollers roll on the race way surface, and are scooped up by the end caps attached to both ends of the slide. Then, the balls or rollers go through a passage made in the slide and circulate back to the other end.

2. Characteristics of NSK Linear Guides

The use of a unique offset Gothic arch groove (Fig. 3) allows the ball type of NSK linear guides to satisfy groove designs required for specific purposes.

This unique groove design facilitates precise measurement of the ball groove, thus enabling the stable and highly accurate production of the slides and the rails for random matching. (Fig. 4)

On top of that, we have developed and marketed the NSK Roller Guides, representing the culmination of NSK's analysis technology and tribology.

Such technologies ensure the features of NSK linear guides outlined below.

(1) High precision and quality

 High precision and quality come from our superb production and measuring technologies, strengthened by extensive experience in antifriction rotary bearings and ball screw production. Our quality assurance extends to the smallest components.

(2) High reliability and durability

- · Logical simplicity in shape, along with stable processing, maintains high precision and reliability.
- Super-clean materials, our advanced heat treatment and processing technologies increase product durability.

(3) Abundant in type for any purpose

 Various series are available, and their slide models and size categories are standardized to satisfy any requirement. Our technology, polished by abundant experience in the use of special materials and surface treatments, meets the customer's most demanding expectations.

(4) Development of random-matching parts for short delivery time

The adoption of the Gothic arch groove which makes measuring easy, and a new reliable quality control
method has made random-matching of the rails and the ball or roller slides possible. The parts are
stocked as standard products, thereby reducing delivery time.

(5) Patented static load carrying capacity (shock-resistance)

• When a super-high load (impact) is applied, our Gothic arch groove spreads the load to surfaces which usually do not come into contact in the ball type NSK linear guides. This increases impact load resistance (Fig. 5).

(6) Lineup of extremely high-load capacity series

• The LA series provides a top class high-load capacity for the ball linear guides through a unique load carrying configuration with three ball recirculation circuits on the one side.

By installing rollers that are the largest possible diameter and length, the NSK roller linear guides have realized the world's highest load capacity, far superior to the roller linear guides of other companies.

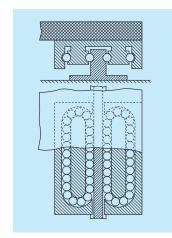


Fig. 1 • French Patent in 1932.
• Inventor: Gretsh (German)

NSK added its patented technology to the invention in Fig. 1, and improved the linear guide structure and realized low cost design.

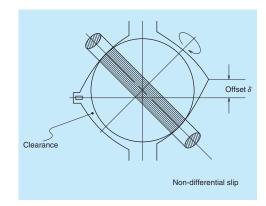


Fig. 3 Two contact point at offset Gothic arch groove

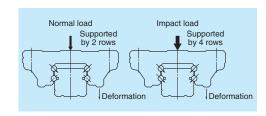


Fig. 5 Shock-resistance

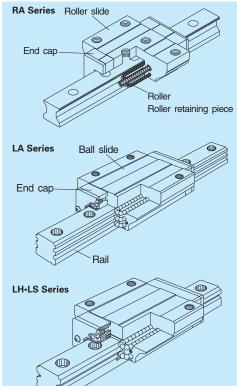


Fig. 2 Structure of NSK linear guides

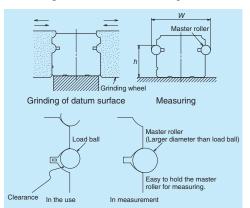


Fig. 4 Processing and measuring grooves

Measuring grooves accuracy is easy. You can obtain highly accurate results for all types of NSK series. This is why you can purchase rails and slides separately for random matching.

3. Types and Characteristics of NSK Linear Guides

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
			AN BN			
ďΣ			AL BL		_	
High vertical load carrying capacity type	Self-aligning type	LH	EM GM		+ + +	
High vertical loa				EL GL		
			FL HL			
				n-load type N, AL L1	EM, EL, FL	<u>L</u> 1

Characteristics	Applications	Page
The LH series is applicable to a wide range of uses from general industrial use to high-accuracy application. Random-matching of rails and ball slides is available as a standard. The contact angle between the ball and ball groove is set at 50 degrees. This design increases the load carrying capacity against the vertical directions, which is the main load acting direction in most operations. The DF contact structure greatly absorbs the installation error in the perpendicular direction to the rail. Balls make contact at two points thanks to the offset Gothic arch groove. This keeps friction to a minimum. High resistance against shock load due to the unique load-carrying structure. Gothic arch groove renders measuring of ball grooves accurate and easy. Standardized random-matching type allows separate purchase of rails and ball slides. Stainless steel standard type is also available for small sizes (LH15 to LH30). Stainless steel type is standard for LH08 to 12.	Cartesian type robots Robots that remove plastic molds from injection machine Material handling equipment Food processing machines Packaging/packing machines Printing machines Woodworking machines Paper manufacturing machines Measuring equipment Inspecting equipment Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Electric discharge machines Laser cutting machines Press machines Tool grinders Flat surface grinders Mc lathes Machining centers Automatic tool changers	A115
Super-high-load type BN, BL L1	GM, GL, HL	

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
			AN BN			
			AL BL			
High vertical load carrying capacity type	Self-aligning type	SH	EM GM		+ + +	
gh vertical load	Self-ali		EL GL			
豆			FL HL			
				h-load type AN, AL L1	EM, EL, FL	<u>L1</u>

Characteristics	Applications	Page
The SH series has achieved lower noise, gentler tone, and smoother motion. Random-matching of rails and ball slides is available as a standard. Lower noise and gentler tone. The contact angle between the ball and ball groove is set at 50 degrees. This design increases the load carrying capacity against the vertical directions, which is the main load acting direction in most operations. The DF contact structure greatly absorbs the installation error in the perpendicular direction to the rail. Balls make contacts at two points thanks to the offset Gothic arch groove. This keeps friction to a minimum. Unique load-carrying structure contributes to high resistance against shock load. Gothic arch groove renders measuring of ball grooves accurate and easy. Standardized random-matching type allows separate purchase of rails and ball slides. Stainless steel standard type is also available for small sizes (SH15 to SH30).	Semiconductor manufacturing equipment LCD manufacturing equipment Cartesian type robots Robots that remove plastic molds from injection machine Material handling equipment Packaging/packing machines Printing machines Printing machines Measuring equipment Inspecting equipment Medical equipment Electric discharge machines Laser cutting machines Press machines Tool grinders Flat surface grinders NC lathes Machining centers Automatic tool changers	A13
Super-high-load type BN, BL L1	GM, GL, HL	

A95 A96

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
			AN BN			
type			AL BL			
High vertical load carrying capacity type	Self-aligning type	VH	EM GM		↓ ←	
High ve			EL GL			
					FL HL	
Four-way equal load sarrying capacity type	Standard type	TS	AN		↓ → □ ← ↑	5.

	I	
Characteristics	Applications	Page
The VH series delivers outstanding dust-proof functionality and thus ensures long operating life under contaminated environments. Random-matching of rails and ball slides is available as a standard. The contact angle between the ball and the raceway is set at 50 degrees. This design increases the load carrying capacity against vertical directions, which is the main load acting direction in most operations. The DF contact structure greatly absorbs the installation error in the perpendicular direction to the rail. Thanks to the offset Gothic arch groove, balls make contacts at two points. This keeps friction to a minimum. High resistance against shock load due to the unique load carrying structure. Gothic arch groove renders measuring groove accurate and easy. Standardized random-matching type allows separate purchase of rails and ball slides. Penetration of fine contaminants is less than 1/10 of the existing products. Operating life under contaminated environments is more than 5 times longer.	Automotive manufacturing equipment Press machines Machine tools loader/un-loader Tire molding machines Woodworking machines Automatic doors	A163
High-load type AN, AL EM, E	EL, FL	
Super-high-load type BN, BL L1 GM, G	GL, HL	
The TS series is suitable for transfer equipment. The newly developed manufacturing processes contribute to low cost. Standardized random-matching type allows separate purchase of rails and ball slides.	Automotive manufacturing equipment Press machines Loader/unloader of machine tools Tire molding machines Woodworking machines Automatic doors	A185

A97 A98

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure										
	Self-aligning type		CL AL													
тре			JM EM		↓ ↑ ↑											
arrying capacity ty		LS	JL EL													
High vertical load carrying capacity type			KL FL													
Ξ̈́														High-load type		
								AL	L1	\exists						
				EM, EL, FL		\exists										

Characteristics	Applications	Page
The LS series is low in height, and is applicable to a wide range of uses from general industrial use to high-accuracy application. Random-matching of rails and ball slides is available as a standard. Compact and low profile. The contact angle between the ball and the groove is set at 50 degrees. This design increases the load carrying capacity against vertical directions, which is the main load direction prevalent in most operations. The DF contact structure greatly absorbs the installation error in the perpendicular direction of the rail. Thanks to the offset Gothic arch groove, balls make contacts at two points. This keeps friction to a minimum. High resistance against shock load due to the unique load carrying structure. Gothic arch groove renders measuring groove accurate and easy. Standardized random-matching type allows separate purchase of rails and ball slides. Stainless steel type is also available.	Cartesian type robots Robots that remove plastic molds from injection machine Material handling equipment Food processing machines Packaging/packing machines Printing machines Woodworking machines Paper manufacturing machines Measuring equipment Inspection equipment Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Electric discharge machines Laser cutting machines Press machines	A191
Medium-load type CL L1 JM, JL, KL L1		

A99 A100

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure	
		Self-aligning type	CL AL				
	Self-aligning type		JM EM		↓ → ↑		
capacity type			JL EL			1 4	
High vertical load carrying capacity type			KL FL				
vertica			High-loa	ad type	EM, EL, FL	<u>L</u> 1	
High				3			
	High moment capacity type	LW	EL		↓ ↑ ↑		

Characteristics	Applications	Page
The SS series has achieved lower noise, gentler tone, and smoother motion, and has a low and compact design. Random-matching of rails and ball slides is available as a standard. Lower noise and gentler tone. Compact and low profile. The contact angle between the ball and the ball groove is set at 50 degrees. This design increases the load carrying capacity against vertical directions, which is the main load acting direction in most operations. The DF contact structure greatly absorbs the installation error in the perpendicular direction to the rail. Thanks to the offset Gothic arch groove, balls make contacts at two points. This keeps friction to a minimum. Great resistance against shock load due to the unique load carrying structure. Gothic arch groove renders measuring ball grooves accurate and easy. Standardized random-matching type allows separate purchase of rails and ball slides.	Semiconductor manufacturing equipment LCD manufacturing equipment Cartesian type robots Robots that remove plastic molds from injection machine Material handling equipment Packaging/packing machines Printing machines Paper manufacturing machines Measuring equipment Inspection equipment Medical equipment Electric discharge machines Laser cutting machines Press machines	A213
Medium-load type CL JM,	JL, KL	
High-moment rigidity and low profile products are most suited for a single rail linear guideway system. Random-matching of rails and ball slides is available as a standard. The wide rail contributes to a high rolling moment carrying capacity and to great moment rigidity of a single rail linear guideway system. Balls contact at two points in the Gothic arch groove, thus keeping friction to a minimum. High resistance against shock load Standardized random-matching type allows separate purchase of rails and ball slides.	Semiconductor manufacturing equipment LCD manufacturing equipment Conveyor systems Medical equipment Microscope XY stages	A235

A101 A102

Categ	jory	Series	Slide shape	Shape/installation method Load direction/capacity	Rolling element contact structure	Characteristics Applications	Page
	d type		AL AR TR UR BL	→ · · · · · · · · · · · · · · · · · · ·	\$ \$	Low inertia and low dust generation miniature series. Low dust generation and highly smooth operation Super-compact size Stainless steel is the standard material. A ball retainer is a standard equipment. Standardized random-matching type allows separate purchase of rails and ball slides. Semiconductor manufacturing equipment LCD manufacturing equipment Medical equipment Optical stages Microscope XY stages Conveying system of optical fibers	A251
	Standard type	LU	AL TL AR TR BL UL	→ ←	\$5.	 Miniature series Extremely compact size Stainless steel is the standard material. A ball retainer is a standard equipment. Standardized random-matching type allows separate purchase of rails and ball slides. Miniature robots Computer peripherals Pneumatic equipment 	A261
Miniature type	capacity type	PE	AR TR UR BR	→ → ←		Wide rail miniature with low inertia and low dust generation. Low dust generation and highly smooth operation Super-compact size Stainless steel is the standard material. A ball retainer is a standard equipment. Standardized random-matching type allows separate purchase of rails and ball slides. Semiconductor manufacturing equipment Medical equipment Optical stages Microscope XY stages Conveying optical fibers	A273
Miniature type High moment capacity type	High moment	LE	AL TL AR TR BL UL CL SL	→ ÷ ←		 Miniature wide series Super-small size in wide rail type Stainless steel is the standard material. A ball retainer is a standard equipment. Standardized random-matching type allows separate purchase of rails and ball slides. Miniature robots Computer peripherals Pneumatic equipment 	A283
				Standard type High-load type		Standard type High-load type Medium-load type AL, TL, AR, TR BL, UL, BR, UR CL, SL (LE only)	
				AL, TL, AR, TR BL, UL, UR PU, LU L1 L1		PE, LE L1 L1 L1 L1 L1	
	Lightweight type	LL	PL	→ □ ←	\$\frac{1}{5}\frac{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac	 The LL series is a compact and lightweight miniature linear guide for press molding. Rails and ball slides are made of thin steel plate, and thus making them very light. Stainless steel is the standard material. Platter pen heads Robot hands Pneumatic equipment 	A297

A103 A104

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure	
sity type			AN BN				
Four-way equal load carrying capacity type	Super-rigid type	RA	AL BL		+	45°	
Four-way equa	0,		EM GM				
y type	Super-rigid type		AN BN				
Four-way equal load carrying capacity type		igid type	LA	AL BL		↓	5.
			EL GL		1		
Fou			FL HL				

Characteristics	Applications	Page
The RA series roller guides have realized the world highest load capacity. Super-high rigidity and smooth motion contribute to higher performance of machine tools. Unique and optimum design of rollers and other component facilitate the high-load capacity and high rigidity. High-performance seals, a standard feature in the roller guides, maintain the initial performance for a prolonged time. The installation of retaining piece achieves smooth motion. Standardized random-matching type allows separate purchase of rails and roller slides.	 Machining centers NC lathes Heavy cutting machine tools Gear cutters Electric discharge machines Press machines Various types of grinders 	
High-load type AN, AL	EM L ₁	A303
Super-high-load type BN, BL L1	GM L ₁	
As well as providing a low friction operation, the LA series provides a top class high-load capacity for the ball linear guides. The series is most suited for machine tools. The contact angle between the ball and the raceway is set at 45 degrees. This makes load carrying capacity and rigidity equal in vertical and lateral directions. Six-row ball grooves support the load from vertical and lateral directions, enhancing rigidity and increasing load carrying capacity. Appropriate friction Best suited for machine tools.	 Machining centers NC lathes Heavy cutting machine tools Gear cutters Electric discharge machines Press machines Various types of grinders 	
High-load type AN, AL E	L, FL	A321
Super-high-load type BN, BL L1 G	SL, HL	

A108

Cate	gory	Series	Slide shape	Shape/installation method	Load direction/capacity	Rolling element contact structure
type			AN		_	
arrying capacity t	gh-precision type		AL		•	
Four-way equal load carrying capacity type	Super rigidity, high-precision type	НА	EM		•	¥
Fo				AN, AL	L,	
oacity type	on type		AL		•	
High vertical load carrying capacity type	Self-aligning, super-precision type	HS	EM		→	
High	Se			AL 3	L,	1

Characteristics	Applications	Page
The HA Series ball guide with high-precision and high-load carrying capacity, featuring highmotion accuracy equivalent to hydrostatic linear bearings. Ball passage vibration has been reduced to one-third of conventional models by ultra-long ball slides and specification of new design. The contact angle between the ball and the raceway is set at 45 degrees. This makes load carrying capacity and rigidity equal in vertical and lateral directions. High motion accuracy is realized by the feature of super-finished ball groove (optional). End seals, bottom seals, and inner seals of high dust-proof specification are the standard equipment. Best suited for high-grade machine tools.	Die molding machines High precision processing machine Heavy cutting machine tools Gear cutters Press machines Various types of NC grinders	A341
The HS Series ball guide with high-precision featuring high-motion accuracy equivalent to hydrostatic linear bearings. Ball passage vibration has been reduced to one-third of conventional models by ultra-long ball slides and specification of new design. The contact angle between the ball and the raceway is set at 50 degrees. The load carrying capacity against vertical directions, which is the main load acting direction in most operations, increases by this design. The DF contact structure greatly absorbs the installation error in the perpendicular direction of rail. Thanks to the offset Gothic arch groove, balls make contacts at two points, thus keeping friction low.	High precision processing machines Electric discharge machines Various types of NC grinders LCD manufacturing equipment	A355

4. Guide to Technical Services

(1) CAD drawing data

NSK offers CAD data for linear guides. Please download it from the website of NSK.

NSK website

http://www.nsk.com

- · Data in drawings are filed in the actual size (some parts are simplified). You can use these data without processing.
- · Drawings are three-views projection.
- · Dimension lines are omitted to render the data as standard drawing for database.

Data offered by CAD

NSK linear guides

LH Series

SH Series

VH Series

TS Series LS Series

SS Series

LW Series **PU Series**

LU Series

PE Series

LE Series

RA Series

LA Series

HA Series

HS Series

(2) Telephone consultation with NSK engineers

This catalog contains technical explanation for each section. However, some descriptions and explanations may be insufficient due to page limitation, etc. To amend this shortcoming, NSK offers telephone assistance. NSK engineers are pleased to help you. Our local offices are listed in the last part of this catalog. Call local NSK office or Representative in your area.

5. Linear Guides: Handling Precautions

NSK linear guides are high quality and are easy to use. NSK places importance on safety in design. For maximum safety, please follow precautions as outlined below.

(1) Lubrication

- a. If your linear guide is rust prevention specification, thoroughly wipe the rust prevention oil, and put lubricant inside of slide before using.
- b. If you are using oil as lubricant, the oil may not reach the raceway depending on how the slide is installed. Consult NSK in such case.

(2) Handling

Do not drop.

Do not give impact.

- a. Slides for random-matching are installed to the provisional rail when they leave the factory. Handle the slide with care during installation to the rail.
- b. Do not disassemble the linear guide unless absolutely necessary. Not only does it allow dust to enter, but it lessens precision.
- c. The slide may move by simply leaning the rail. Make sure that the slide does not disengage from the rail.
- d. Standard end cap is made of plastic. Beating it or hitting it against an object may cause damage.

(3) Precautions in use

Do not contaminate. | Temperature limitation.

Do not hang upside down.

- a. Make every effort not to allow dust and foreign objects to enter.
- b. Please apply splash guard or bellows to the linear guide to prevent sticking resolvent or coolant when it contains corrosive material.
- c. The temperature of the place where linear guides are used should not exceed 80°C (excluding heatresistant type linear guides). A higher temperature may damage the plastic end cap.
- d. If the user cuts the rail, thoroughly remove burrs and sharp edges on the cut surface.
- e. When hanging upside-down (e.g. the rail is installed upside-down on the ceiling in which the slide faces downward), should the end cap be damaged, causing the balls or rollers to fall out, the slide may be detached from the rail and fall. For such use, take measures including installing a safety device.

(4) Storage

Store in the correct position.

a. Linear guide may bend if the rail is stored in inappropriate position. Place it on a suitable surface, and store it in a flat position.

6. Design Precautions

The following points must be heeded in examining the life.

In case of oscillating stroke

- If the balls or rollers do not rotate all the way, but only halfway, and if this minute stroke is repeated, lubricant disappears from the contact surface of balls or rollers and raceways. This generates "fretting," a premature wear. Fretting cannot be entirely prevented in such a case but it can be mitigated.
- We recommend anti-fretting grease for oscillating stroke operations. Even in a case using a standard grease, the life can be markedly prolonged by adding a normal stroke travel (about the slide length) once every several thousand cycles.

When applying pitching or yawing moment

- Load applied to the ball or roller rows inside the slide is inconsistent if pitching or yawing moment load is applied. Loads are heavy on the balls or rollers on each end of the row.
- In such a case, a heavy load lubricant grease or oil is recommended. Another countermeasure is using one size larger model of linear guide to reduce the load per ball or roller.
- Moment load is insignificant for 2-rail, 4-slide combination which is commonly used.

When an extraordinary large load is applied during stroke

- If an extraordinary large load is applied at certain position of the stroke, calculate not only the life based on the mean effective load, but also the life based on the load in this range.
- When an extraordinary heavy load is applied and thus the application of high tensile stress to fixing bolts of the rails and slides is foreseen, the strength of the bolts should be considered.

When calculated life is extraordinarily short (Less than 3 000 km in calculated life.)

- In such a case, the contact pressure to the balls or rollers and the rolling contact surface is extraordinarily high.
- When a linear guide is operated under such state continually, the life is significantly affected by the loss of lubrication and the presence of dust, and thus the actual life becomes shorter than calculated.
- It is necessary to reconsider the number of slides, the arrangement of slides, and the type of model in order to reduce the load to the slide.
- It is necessary to consider preload for calculation of rating life when selecting Z3 (medium preload) or Z4 (heavy preload) as a preload. For the calculation of full dynamic equivalent loads that consider preload, see "A-3-3 6" on page A31. Please consult NSK for details.

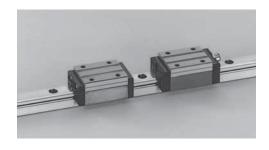
Application at high speed

- The standard maximum allowable speed of a linear guide under normal conditions is 100 m/min.
 However, the maximum allowable speed can be affected by accuracy of installation, temperature, external loading etc.
- The end cap with high speed specification must be used when operating speed exceeds the permissible speed. In such a case, please consult NSK.

A111 A112

A-5 Technical Description and Dimension Table for NSK Linear Guides

1. LH Series	A115
2. SH Series	A139
3. VH Series	A163
4. TS Series	A185
5. LS Series	A191
6. SS Series	A213
7. LW Series	A235


A-5-1 General Industrial Use

A113 A114

2. Ball slide shape

A-5-1.1 LH Series

1. Features

(1) High self-aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, and thus reducing moment rigidity.

This increases the capacity to absorb errors in installation.

(2) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, and thus increasing load carrying capacity as well as rigidity in vertical direction.

(3) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is generally carried by the top ball rows, where balls are contacting at two points. Because of this design, the bottom ball rows will carry load when a large impact load is applied vertically as shown in Fig. 3. This assures high resistance to the impact load.

(4) High accuracy

As showing in Fig. 4, fixing the master rollers to the ball grooves is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(5) Easy to handle, and designed with safety in mind.

Balls are retained in the retainer, therefore they do not fall out when the ball slide is withdrawn from the rail. (LH10 to LH65)

(6) Abundant models and sizes

Each size of LH Series has various models of ball slides, rendering the linear guide available for numerous uses.

(7) Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery. (LH15 to LH65)

High precision grade and mediun preload types

are also available in randam matching. (Special high-carbon steel products for LH15 to LH45)

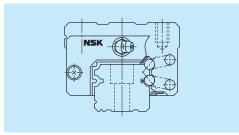


Fig. 1 LH Series

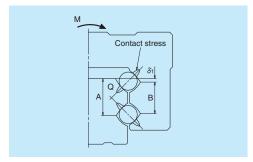


Fig. 2 Enlarged illustration of the offset Gothic arch groove

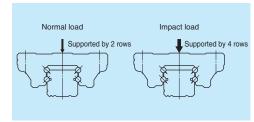


Fig. 3 When load is applied

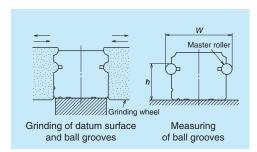


Fig. 4 Rail grinding and measuring

L. Dull 31					
Ball slide		Type (Upper row, Rating: Lower row, Ball slide length) High-load type Super-high-load type			
Model	Shape/installation method	High-load type Standard	Super-high-load type Long		
AN BN		AN L ₁	BN L ₁		
AL BL		AL	BL L1		
EM GM		EM L ₁	GM L ₁		
EL GL		EL L ₁	GL L1		
FL HL		FL L1	HL L1		
Note: Hig	h-precision grade and medium	preload of random-matching	type are not applicable to EL.		

Note: High-precision grade and medium preload of random-matching type are not applicable to EL, GL, FL, and HL models.

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1

Unit: um

	Offic. pri								
	Pre	loaded asser	ng)	Random-matching type					
Rail length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	High precision PH	Normal grade PC		
- 50	2	2	2	4.5	6	2	6		
50 – 80	2	2	3	5	6	3	6		
80 – 125	2	2	3.5	5.5	6.5	3.5	6.5		
125 – 200	2	2	4	6	7	4	7		
200 – 250	2	2.5	5	7	8	5	8		
250 – 315	2	2.5	5	8	9	5	9		
315 – 400	2	3	6	9	11	6	11		
400 – 500	2	3	6	10	12	6	12		
500 - 630	2	3.5	7	12	14	7	14		
630 – 800	2	4.5	8	14	16	8	16		
800 – 1 000	2.5	5	9	16	18	9	18		
1 000 – 1 250	3	6	10	17	20	10	20		
1 250 – 1 600	4	7	11	19	23	11	23		
1 600 – 2 000	4.5	8	13	21	26	13	26		
2 000 – 2 500	5	10	15	22	29	15	29		
2 500 – 3 150	6	11	17	25	32	17	32		
3 150 – 4 000	9	16	23	30	34	23	34		

Notes: 1)High-precision grade of random-matching type is available in LH15 to LH45.

2)LH08, 10, and 12 are not available in random-matching type. For LH08,10, and 12, accuracy of P4, P5, P6, and PN grades are available.

(2) Accuracy standard

The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades, while the random-matching type has High precision PH and Normal PC grade.

Tolerance of preloaded assembly

Tolerance of preloaded assembly	Та	ble 2						Un	it: µm
Accuracy grade Characteristics	Ultra precision P3	Super pr		High pre		Precision P6	0	Normal PN	.0
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	LH08,10,12 ±10 3	LH15 - ±10 5	LH08,10,12 ±20 5	LH15 - ±20 7	LH08,10,12 ±40 7	LH15 - ±40 15	LH08,10,12 ±80 15	LH15 - ±80 25
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	LH08,10,12 ±10 5	LH15 - ±15 7	LH08,10,12 ±15 7	LH15 - ±25 10	LH08,10,12 ±25 10	LH15 - ±50 20	LH08,10,12 ±50 20	LH15 - ±100 30
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		5	Shown	in Table	1, Fig.	5 , and Fi	g. 6		

Note: For LH08, 10, and 12, accuracy of P4, P5, P6, and PN grades are available.

Tolerance of random-matching type

Table 3 Unit: μm									
Accuracy grade	High prec	ision grade PH	Normal	grade PC					
Characteristics Model No.	LH15, 20, 25, 30, 35	LH45	LH15, 20, 25, 30, 35	LH45, 55, 65					
Mounting height H	±20	±30	±20	±30					
Variation of mounting height H	15①	20①	15①	20①					
	30②	35②	30②	35②					
Mounting width W ₂ or W ₃	±30	±35	±30	±35					
Variation of mounting width W ₂ or W ₃	20	30	25	30					
Running parallelism of surface C to surface A									

Notes: 1) LH08, 10 and 12 are not available in the random-matching type.

2) ① Variation on the same rail ② Variation on multiple rails

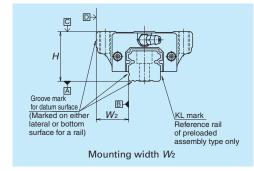

(3) Combinations of accuracy and preload

Table 4

			Ac	curacy gra	de		
	Ultra precision	Super precision	High precision	Precision grade	Normal grade	High precision	Normal grade
thout NSK K1 lubrication unit	P3	P4	P5	P6	PN	PH	PC
th NSK K1 lubrication unit	К3	K4	K5	K6	KN	KH	KC
NSK K1 for food and medical equipment	F3	F4	F5	F6	FN	FH	FC
Fine clearance					0		
Z0					0	_	_
Slight preload			0	\circ	\circ	_	_
Z1							
Medium preload					_	_	_
Z3)				
Random-matching type with fine clearance ZT	_	_	_	_	_	_	0
Random-matching type with slight preload ZZ	_	_	_	_	_	0	0
Random-matching type with slight preload ZH	_	_	_	_	_	0	0
	th NSK K1 lubrication unit NSK K1 for food and medical equipment Fine clearance Z0 Slight preload Z1 Medium preload Z3 Random-matching type with fine clearance ZT Random-matching type with slight preload ZZ Random-matching type with slight preload	thout NSK K1 lubrication unit th NSK K1 lubrication unit th NSK K1 lubrication unit th NSK K1 for food and medical equipment F3 Fine clearance Z0 Slight preload Z1 Medium preload Z3 Random-matching type with fine clearance ZT Random-matching type with slight preload ZZ Random-matching type with slight preload	thout NSK K1 lubrication unit th NSK K1 lubrication unit K3 K4 NSK K1 for food and medical equipment F3 F4 Fine clearance Z0 Slight preload Z1 Medium preload Z3 Random-matching type with fine clearance ZT Random-matching type with slight preload ZZ Random-matching type with slight preload	Ultra precision Super precision High precision thout NSK K1 lubrication unit P3 P4 P5 th NSK K1 lubrication unit K3 K4 K5 n NSK K1 for food and medical equipment F3 F4 F5 Fine clearance	Ultra precision Super precision High precision Precision grade thout NSK K1 lubrication unit P3 P4 P5 P6 th NSK K1 lubrication unit K3 K4 K5 K6 NSK K1 for food and medical equipment F3 F4 F5 F6 Fine clearance	thout NSK K1 lubrication unit th NSK K1 lubrication unit K3 K4 K5 K6 KN n NSK K1 for food and medical equipment F3 F4 F5 F6 FN Fine clearance Z0 Slight preload Z1 Medium preload Z3 Random-matching type with fine clearance ZT Random-matching type with slight preload ZZ Random-matching type with slight preload	Ultra precision Super precision High precision Precision grade Normal grade High precision thout NSK K1 lubrication unit P3 P4 P5 P6 PN PH th NSK K1 lubrication unit K3 K4 K5 K6 KN KH NSK K1 for food and medical equipment F3 F4 F5 F6 FN FH Fine clearance Z0

Notes: 1)Medium preload of random-matching type is available in LH15 to LH45. 2)LH08, 10, and 12 are not available in random-matching type.

(4) Assembled accuracy

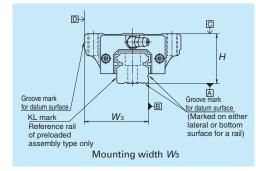
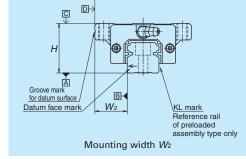



Fig. 5 Special high carbon steel

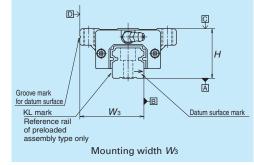


Fig. 6 Stainless steel

(5) Preload and rigidity

We offer six levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with random-matching type of Medium preload ZH, Slight preload ZZ and Fine clearance ZT.

· Preload and rigidity of preloaded assembly

Table 5

	Table 5									
		Duolo	ad /NI\	Rigidity (N/μm)						
	Model No.	Preio	ad (N)	Vertical	direction	Lateral direction				
	wiodei No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload			
		Z1	Z3	Z1	Z3	Z1	Z3			
	LH08 AN	5	_	33	_	23	_			
	LH10 AN	9	_	44	_	31	_			
	LH12 AN	22	_	68	_	47	_			
Ф	LH15 AN, EM, EL, FL	78	490	137	226	98	186			
type	LH20 AN, EM, EL, FL	147	835	186	335	137	245			
	LH25 AL, AN, EM, EL, FL	196	1 270	206	380	147	284			
9	LH30 AL, AN	245	1 570	216	400	157	294			
High-load	LH30 EM, EL, FL	294	1 770	265	480	186	355			
工	LH35 AL, AN, EM, EL, FL	390	2 350	305	560	216	390			
	LH45 AN, AL, EM, EL, FL	635	3 900	400	745	284	540			
	LH55 AN, EM, EL, FL	980	5 900	490	910	345	645			
	LH65 AN, EM, EL, FL	1 470	8 900	580	1 070	400	755			
9	LH15 BN, GM, GL, HL	98	685	196	345	137	284			
type	LH20 BN, GM, GL, HL	196	1 080	265	480	196	355			
	LH25 BL, BN, GM, GL, HL	245	1 570	294	560	216	400			
으	LH30 BL, BN, GM, GL, HL	390	2 260	360	665	265	480			
uper-high-load	LH35 BL, BN, GM, GL, HL	490	2 940	430	795	305	570			
ř.	LH45 BL, BN, GM, GL, HL	785	4 800	520	960	370	695			
edn	LH55 BL, BN, GM, GL, HL	1 180	7 050	635	1 170	440	835			
Š	LH65 BN, GM, GL, HL	1 860	11 300	805	1 480	550	1 040			

Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15µm.

Clearance and preload of random-matching type

Table 6

Unit: un

	ie o	Unit: µm	
Model No.	Fine clearance ZT	Slight preload ZZ	Medium preload ZH
LH15	-4 — 15	-4 — 0	−8 — −3.5
LH20		-5 — O	−9 — −3.5
LH25		-5 — O	-11 — <i>-</i> 5.5
LH30		-7 — 0	-13 — -6
LH35	-5 — 15	-7 — 0	-14 — -7
LH45		-7 — 0	−17 — −9
LH55		-9 — 0	
LH65		-9 — 0	

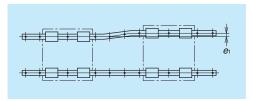
Notes: 1) Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

2) LH08, 10, and 12 are not available in random-matching type.

4. Maximum rail length

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grades.

 Table 7 Length limitations of rails
 Unit: mm


 Series
 Size Material
 08
 10
 12
 15
 20
 25
 30
 35
 45
 55
 65

 LH
 Special high carbon steel
 375
 600
 800
 1 800
 3 500
 3 500
 3 500
 3 900
 3 900
 3 900
 3 900
 3 900
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500
 3 500</td

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

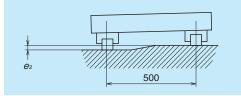


Fig. 7

Fig. 8

Table 8										Un	iit: μm	
Value	Preload		Model No.									
value	i reload	LH08	LH10	LH12	LH15	LH20	LH25	LH30	LH35	LH45	LH55	LH65
Permissible values of	Z0, ZT	9	12	19	22	30	40	45	55	65	80	110
parallelism in two rails e_1	Z1, ZZ	8	11	18	18	20	25	30	35	45	55	70
parallelisiti ili two falls e ₁	Z3, ZH	_	_	-	13	15	20	25	30	40	45	60
Permissible values of	Z0, ZT	375 μm/500 mm										
parallelism (height) in two rails e ₂	Z1, ZZ, Z3, ZH					330) µm/5	00 mr	n			

(2) Shoulder height of the mounting surface and corner radius r

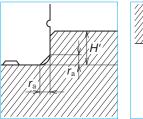


Fig. 9 Shoulder for the rail datum surface

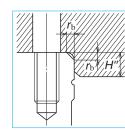


Fig. 10 Shoulder for the ball slide datum surface

Model No.	Corner radius	s (maximum)	Shoulder height		
Model No.	$r_{\rm a}$	$r_{\rm b}$	H'	H"	
LH08	0.3	0.5	1.8	3	
LH10	0.3	0.5	2.1	4	
LH12	0.5	0.5	2.7	4	
LH15	0.5	0.5	4	4	
LH20	0.5	0.5	4.5	5	
LH25	0.5	0.5	5	5	
LH30	0.5	0.5	6	6	
LH35	0.5	0.5	6	6	
LH45	0.7	0.7	8	8	
LH55	0.7	0.7	10	10	
LH65	1	1	11	11	

Table 9

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 11 and Table 10 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 12)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of $M6 \times 1$, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

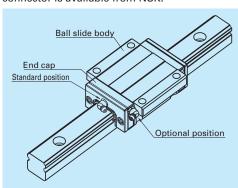


Fig. 12 Mounting position of lubrication accessories

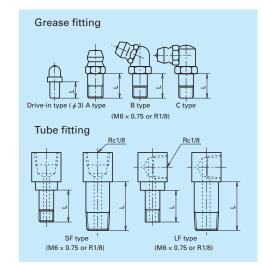


Fig. 11 Grease fitting and tube fitting

	Unit: mm		
Model No.	Dust-proof	Grease fitting	Tube fitting
	specification	Thread body length L	Thread body length L
	Standard	5	-
11140	With NSK K1	10	-
LH12	Double seal	*	_
	Protector	*	_
	Standard	5	-
LH15	With NSK K1	10	-
LH15	Double seal	*	-
	Protector	*	_
	Standard	5	-
11100	With NSK K1	12	_
LH20	Double seal	10	-
	Protector	10	-
	Standard	5	5
11105	With NSK K1	12	12
LH25	Double seal	10	9
	Protector	10	9
	Standard	5	6
11100	With NSK K1	14	13
LH30	Double seal	12	11
	Protector	12	11
	Standard	5	6
11105	With NSK K1	14	13
LH35	Double seal	12	11
	Protector	12	11
	Standard	8	17
11145	With NSK K1	18	21.5
LH45	Double seal	14	17
	Protector	14	17
	Standard	8	17
	With NSK K1	18	21.5
LH55	Double seal	14	17
	Protector	14	17
	Standard	8	17
11105	With NSK K1	20	25.5
LH65	Double seal	16	19
	Protector	16	17

*) A connector is required for this model. Please contact NSK for grease fittings.

7. Dust-proof components

(1) Standard specification

The LH Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom. However, the bottom seals are not used to LH08 and 10.

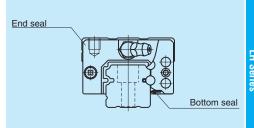
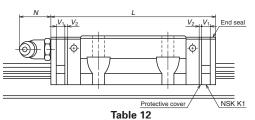



Table 11 Seal friction per hall slide (maximum value)

Table 11 Geal Highlight Sale (Haxillian Value)										Unit: N	
Series Size	08	10	12	15	20	25	30	35	45	55	65
LH	0.5	1	1.5	8	9	10	10	12	17	22	29

(2) NSK K1[™] lubrication unit

Table 12 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

Unit: mm

10010 12								
Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N	
LH08	Standard	AN	24	31	3	0.5	_	
LH10	Standard	AN	31	40	4	0.5	_	
LH12	Standard	AN	45	54	4	0.5	(4)	
111115	Standard	AN, EM, EL, FL	55	65.6	4 -	0.0	(5)	
LH15	Long	BN, GM, GL, HL	74	84.6	4.5	0.8	(5)	
11100	Standard	AN, EM, EL, FL	69.8	80.4	4.5	0.0	(1.4)	
LH20	Long	BN, GM, GL, HL	91.8	102.4	4.5	0.8	(14)	
LUOF	Standard	AL, AN, EM, EL, FL	79.0	90.6	F 0	0.0	(1.4)	
LH25	Long	BL, BN, GM, GL, HL	107	118.6	5.0	0.8	(14)	
	Standard	AL, AN	85.6	97.6		1.0		
LH30	Flange type	EM, EL, FL	98.6	110.6	5.0		(14)	
	Long	BL, BN, GM, GL, HL	124.6	136.6				
11105	Standard	AL, AN, EM, EL, FL	109	122		1.0	(4.4)	
LH35	Long	BL, BN, GM, GL, HL	143	156	5.5	1.0	(14)	
11145	Standard	AL, AN, EM, EL, FL	139	154	0.5	1.0	(1.5)	
LH45	Long	BL, BN, GM, GL, HL	171	186	6.5	1.0	(15)	
LUEE	Standard	AL, AN, EM, EL, FL	163	178	0.5	1.0	(1.5)	
LH55	Long	BL, BN, GM, GL, HL	201	216	6.5	1.0	(15)	
LUCE	Standard	AN, EM, EL, FL	193	211	0.0	1.0	(16)	
LH65	Long	BN, GM, GL, HL	253	271	8.0	1.0		

Notes: 1) NSK K1 for food and medical equipments are available for LH12 to LH35.

2) Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V₁ × Number of NSK K1) + (Thickness of the protective cover, $V_2 \times 2$)

(3) Double seal

Use a double seal set as showing in **Table 13**, when installing an extra seal to completed standard products. (**Fig. 14**)

When installing a grease fitting after the installation of double seals, a connector as showing in **Fig.14** is required.

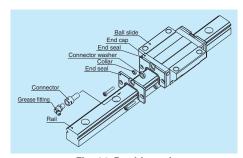


Fig. 14 Double seal

Table 13 Double-seal set

Model No.	Refere	nce No.	Increased thickness V ₃	
WIOGET IVO.	Without connector	With connector	(mm)	
LH15	LH15WS-01	*	2.5	
LH20	LH20WS-01	LH20WSC-01	2.5	
LH25	LH25WS-01	LH25WSC-01	2.8	
LH30	LH30WS-01	LH30WSC-01	3.6	
LH35	LH35WS-01	LH35WSC-01	3.6	
LH45	LH45WS-01	LH45WSC-01	4.3	
LH55	LH55WS-01	LH55WSC-01	4.3	
LH65	LH65WS-01	LH65WSC-01	4.9	

(4) Protector

Use a protector set as showing **Table 14**, when installing a protector to completed standard products. (**Fig.15**)

When installing a grease fitting after the installation of protectors, a connector as showing in Fig.15 is required.

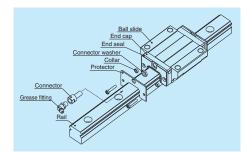


Fig. 15 Protector

Table 14 Protector set

Model No.	Refere	Increased thickness V ₄	
Wiodel No.	Without connector	With connector	(mm)
LH15	LH15PT-01	*	2.7
LH20	LH20PT-01	LH20PTC-01	2.9
LH25	LH25PT-01	LH25PTC-01	3.2
LH30	LH30PT-01	LH30PTC-01	4.2
LH35	LH35PT-01	LH35PTC-01	4.2
LH45	LH45PT-01	LH45PTC-01	4.9
LH55	LH55PT-01	LH55PTC-01	4.9
LH65	LH65PT-01	LH65PTC-01	5.5

*) For installation of a connector to a drive-in type grease fitting, contact NSK. Note: Double seal and protector for LH08, 10, and 12, please consult NSK.

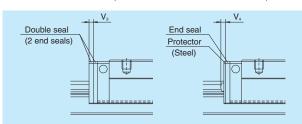


Fig. 16

(5) Cap to plug the rail mounting bolt hole Table 15 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
Woder No.	secure rail	reference No.	/case
LH12	M3	LG-CAP/M3	20
LH15	M4	LG-CAP/M4	20
LH20	M5	LG-CAP/M5	20
LH25	M6	LG-CAP/M6	20
LH30, LH35	M8	LG-CAP/M8	20
LH45	M12	LG-CAP/M12	20
LH55	M14	LG-CAP/M14	20
LH65	M16	LG-CAP/M16	20

(7) Bellows

- Use a bellows fastener kit as showing Table 17, when installing bellows to completed standard products. A bellows fastener kit is supplied with one of bellows fastener, two of M1 set screws, two of M2 set screws, and two collars for M2 set screw as showing Fig.7.7 on page A55.
- When NSK K1, double seals or protectors are used, the set screws of bellows fastener kit are unable to use.

Please contact NSK for details.

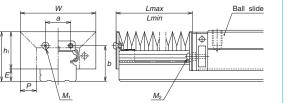
 Bellows fastener is available only for the horizontal mounting positions. For other mounting positions, sliding plate is required (see Fig. 7.10 on page A56).

For fixing to the rail, make tap holes to the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes by using a machine screw. NSK processes a tap hole to the rail end face when ordered with a linear guide.

 Please consult NSK for the bellows of LH08, 10, 12, and 15.

(6) Inner seal

Inner seal is only available for models shown in the table below.


Table 16

Series	Model No.
LH	LH20, LH25, LH30, LH35, LH45, LH55, LH65

Table 17 Bellows fastner kit reference No.

Model No.	Kit reference No.
LH20	LH20FS-01
LH25	LH25FS-01
LH30	LH30FS-01
LH35	LH35FS-01
LH45	LH45FS-01
LH55	LH55FS-01
LH65	LH65FS-01

Dimension tables of bellows LH Series

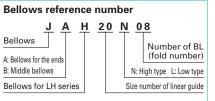


Fig. 17 Dimensions of bellows

Table 18 Dimensions of bellows	Table	18	Dimensions	of	bellows
--------------------------------	-------	----	-------------------	----	---------

Unit: mm

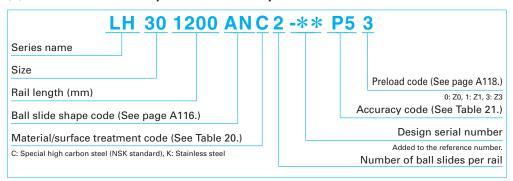
Model No.	Н	h ₁	Ε	W	P	а	b	BL minimum length	M₁Tap x depth	M₂Tap x depth	
JAH20N	29.5	24.5	5	48	10	13	22	17	M3 × 5	M2.5 × 16	
JAH25L	35	28	7	51	10	16	26	17	M3 × 5	M3 × 18	
JAH25N	39	32	/	61	15	10	20	17	1VI3 X 3	1VI3 X 10	
JAH30L	41	32	9	60	12	18	31	17	M4 × 6	M4 × 22	
JAH30N	44	35	9	66	15	10	31	17	1V14 X 0	1VI4 X ZZ	
JAH35L	47	37.5	9.5	72	15	24	34	17	M4 × 6	M4 × 23	
JAH35N	54	44.5	9.5	82	20	24	34	17	1V14 X 0	1014 X Z3	
JAH45L	59	45	14	83	15	32	44.5	17	M5 × 8	M5 × 28	
JAH45N	69	55	14	103	25	32	44.5	17	IVID X 8	IVI5 × 28	
JAH55L	69	54	15	101	20	40	50.5	17	M5 × 8	M5 × 30	
JAH55N	79	64	13	121	30	40	50.5	17	O X CIVI	IVIO X 30	
JAH65N	89	73	16	131	30	48	61	17	M6×8	M6 × 35	

Table 19	Numbers of	ot tolas (RF)	and lengths	of bellows
----------	------------	---------------	-------------	------------

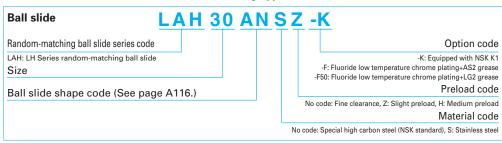
Unit: mm

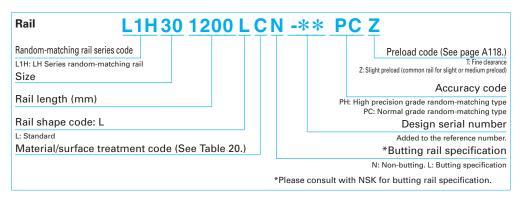
MadalNa	Number of BL	2	4	6	8	10	12	14	16	18	20
Model No.	Lmin	34	68	102	136	170	204	238	272	306	340
JAH20N	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAHZUN	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAH25L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAHZ5L	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAH25N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAHZUN	<u>L</u> max	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH30L	Stroke	134	268	402	536	670	804	938	1 072	1 206	1 340
JAHSUL	Lmax	168	336	504	672	840	1 008	1 176	1 344	1 512	1 680
JAH30N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAHSUN	<u>L</u> max	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH35L	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAHSSL	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH35N	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAHSSIN	<u>L</u> max	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAH45L	Stroke	176	352	528	704	880	1 058	1 232	1 408	1 584	1 760
JAI 143L	<u>L</u> max	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH45N	Stroke	316	632	948	1 264	1 580	1 896	2 212	2 528	2 844	3 160
JAI 14511	Lmax	350	700	1 050	1 400	1 750	2 100	2 450	2 800	3 150	3 500
JAH55L	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAHJJL	<u>L</u> max	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAH55N	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
JAI 19914	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200
JAH65N	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
JAI 100IV	<u>L</u> max	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on the both sides, then by dividing the sum by 2.


A125 A126

8. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.


Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

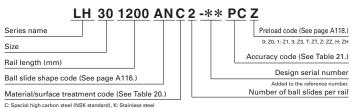
The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only preload codes of "fine clearance T", "slight preload Z" and "medium preload H" are available (refer to page A118).

Table 20 Material/surface treatment code

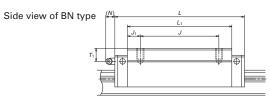
Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel (LH08 to LH30 only)
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

Note: High-precision grade and medium preload of random-matching type are not available in stainless steel.

Table 21 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Ultra precision grade	P3	K3	F3
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
High precision grade (random-matching type)	PH	KH	FH
Normal grade (random-matching type)	PC	KC	FC

Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.


A127 A128

9. Dimensions LH-AN (High-load type / Standard)

LH-BN (Super-high-load type / Long)

	As	ssemb	oly					В	all slid	le						
Model No.	Height			Width	Length		Mour	nting hole					Grease	Grease fitting		
Iviodei No.	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
LH08AN LH10AN LH12AN	11 13 20	2.1 2.4 3.2	4 5 7.5	16 20 27	24 31 45	10 13 15	10 12 15	M2×0.4×2.5 M2.6×0.45×3 M4×0.7×5	3 3.5 6	15 20.2 31	2.5 4.1 8	8.9 10.6	6		<u> </u>	_
LH15AN LH15BN	28	4.6	9.5	34	55 74	26	26	M4×0.7×6	4	31 39 58	6.5 16	16.8 23.4	8	φ3 φ3	8.5	3.3
LH20AN LH20BN	30	5	12	44	69.8 91.8	32	36 50	M5×0.8×6	6	50 72	7 11	25	12	M6×0.75	5	11
LH25AN LH25BN	40	7	12.5	48	79 107	35	35 50	M6×1×9	6.5	58 86	11.5 18	33	12	M6×0.75	10	11
LH30AN LH30BN	45	9	16	60	85.6 124.6	40	40 60	M8×1.25×10	10	59 98	9.5 19	36	14	M6×0.75	10	11
LH35AN LH35BN	55	9.5	18	70	109 143	50	50 72	M8×1.25×12	10	80 114	15 21	45.5	15	M6×0.75	15	11
LH45AN LH45BN	70	14	20.5	86	139 171	60	60 80	M10×1.5×17	13	105 137	22.5 28.5	56	17	Rc1/8	20	13
LH55AN LH55BN	80	15	23.5	100	163 201	75	75 95	M12×1.75×18	12.5	126 164	25.5 34.5	65	18	Rc1/8	21	13
LH65AN LH65BN	90	16	31.5	126	193 253	76	70 120	M16×2×20	25	147 207	38.5 43.5	74	23	Rc1/8	19	13

Notes: 1) LH08 does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

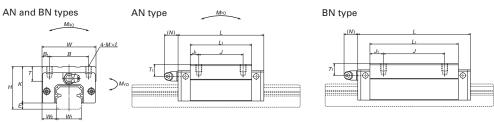
- 2) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.
- 3) Only stainless steel models are available for LH08 to LH12.

Reference number for ball slide of random-matching type

Ball slide

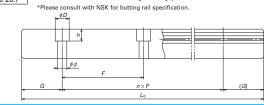
LAH 30 AN S Z -K

Random-matching ball slide series code


LAH: LH Series random-matching ball slide
Size

Ball slide shape code (See page A116.)

Cyption code


A: Equipped with NSK K1

-F: Fluoride low temperature chrome plating-4SZ grease
-F50: Fluoride low temperature chrome plating-4SZ grease
-F76: Fluoride low temperat

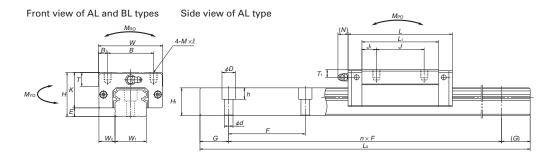
Reference number for rail of random-matching type

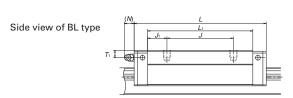
Rail	L1H30 1200 L C	<u>N -** PC Z</u>
Random-matching L1H: LH Series ran Size		Preload code (See page A118.) T. Fine clearance. Z: Slight preload (common rail for medium preload) Accuracy code
Rail length (r	nm)	PH: High precision grade. PC: Normal grade Design serial number
Rail shape co	de: L	Added to the reference number. *Butting rail specification
Material/surf	ace treatment code (See Table 20.)	N: Non-butting. L: Butting specification *Please consult with NSK for butting rail specification.
		<u> </u>

Unit:	mm

			Rail					Basi	c load ra	iting			Wei	ght
Width	Height	Pitch	Mounting	G	Max. length	Dynamic	Static		Statio	momer	nt (N·m)		Ball slide	Rail
			bolt hole		L_{0max} .	С	C_{\circ}	M_{RO}	N	1 _{PO}	Λ	1 _{YO}		
W_1	H_1	F	$d \times D \times h$	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
8	5.5	20	2.4×4.2×2.3	-	(375)	1 240	2 630	7.25	4.55	32.5	3.8	27.2	0.013	0.31
10 12	6.5 10.5	25 40	3.5×6×3.5 3.5×6×4.5	10 15	(600) (800)	2 250 5 650	4 500 11 300	16.2 47.5	10.5 41.5	73.0 254	8.8 35	61.0 214	0.026 0.082	0.44 0.88
					2 000	10 800		108	94.5	575	79.5	480	0.082	
15	15	60	4.5×7.5×5.3	20				166	216	1 150	181	965	0.26	1.6
20	18	60	6×9.5×8.5	20	3 960	17 400	32 500	219	185	1 140	155	955	0.33	2.6
					(3 500)	23 500		340	420	2 230	355	1 870	0.48	
23	22	60	7×11×9	20	3 960	25 600 34 500		360 555	320 725	1 840 3 700	267 610	1 540 3 100	0.55 0.82	3.6
					4 000		51 500	490	350	2 290	292	1 920	0.77	
28	26	80	9×14×12	20		46 000		870	1 030	5 600	865	4 700	1.3	5.2
34	29	80	9×14×12	20	4 000	47 500	80 500	950	755	4 500	630	3 800	1.5	7.2
34	29	80	9×14×12	20	4 000	61 500	117 000	1 380	1 530	8 350	1 280	7 000	2.1	7.2
45	38	105	14×20×17	22.5	3 990		140 000		1 740	9 750	1 460	8 150	3.0	12.3
	00	100	14/20/17	22.0	0 000		187 000		3 000	15 600	2 520	13 100		12.0
53	44	120	16×23×20	30	3 960		198 000		3 000	16 300		13 700		16.9
		0					264 000		5 150	26 300		22 100		
63	53	150	18×26×22	35	3 900		281 000 410 000			27 900 51 500		23 400 43 500		24.3

⁴⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C_{im} for a 100-km rating fatigue life, divide C by 1.26.


6) High-precision grade and medium preload of random-matching type are available for LH15 to LH45 of high-carbon steel products.


⁵⁾ Random matching is available for LH15 to LH65.

LH-AL (High-load type / Standard) LH-BL (Super-high-load type / Long)

LH 30 1200 AL C 2 -** PC Z

Series name
Size
Rail length (mm)
Ball slide shape code (See page A116.)
Material/surface treatment code (See Table 20.)
C: Special high carbon steel (NSK standard), K: Stainless steel

		As	ssemb	ly					В	all slid	е						
Mod	del No.	Height			Width	Length		Mour	nting hole						Grease	fittin	g
10100	101 TVO.	Н	Ε	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	B ₁	L ₁	J_1	K	T	Hole size	<i>T</i> ₁	N
	25AL 25BL	36	7	12.5	48	79 107	35	35 50	M6×1×6	6.5	58 86	11.5 18	29	12	M6×0.75	6	11
	30AL 30BL	42	9	16	60	85.6 124.6	40	40 60	M8×1.25×8	10	59 98	9.5 19	33	14	M6×0.75	7	11
	35AL 35BL	48	9.5	18	70	109 143	50	50 72	M8×1.25×8	10	80 114	15 21	38.5	15	M6×0.75	8	11
	45AL 45BL	60	14	20.5	86	139 171	60	60 80	M10×1.5×10	13	105 137	22.5 28.5	46	17	Rc1/8	10	13
	55AL 55BL	70	15	23.5	100	163 201	75	75 95	M12×1.75×13	12.5	126 164		55	15	Rc1/8	11	13

Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type

Ball slide

LAH 30 AL S Z -K

Random-matching ball slide series code

LAH: LH Series random-matching ball slide
Size

Ball slide shape code (See page A116.)

Dytion code

A: Equipped with NGK K1

-F. Fluoride low temperature chrome plating-AI2 grease
-F80: Fluoride low temperature chrome plating-AI2 grease

Preload code

No code: Fine clearance, Z: Slight preload, H: Medium preload

Material code

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

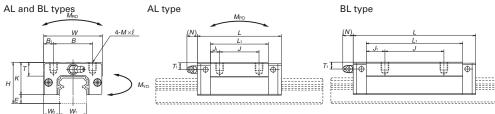
No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel


No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

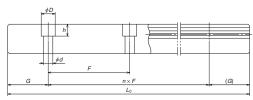
No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Stanlines steel

No code: Special high carbon steel (NMS stand): Special high carbon steel (NMS stand)

Reference number for rail of random-matching type

Rail L1H30 1200 LCN -** PC Z


Random-matching rail series code
L1H: LH Series random-matching rail Size

Rail length (mm)

Rail shape code: L
L: Standard
Material/surface treatment code (See Table 20.)

Rail shape code: L
Preload code (See page A118.)
Prichage (See page A118.)
Prichage (See page A118.)
Preload common rail for medium preload)
Accuracy code
PH: High precision grade
PC: Normal grade
Design serial number
Added to the reference number.
*Butting rail specification
*Please consult with NSK for butting rail specification.

Unit: mm

			Rail					Basi	c load ra	iting			Wei	ght
Width	Height	Pitch	Mounting	G	Max. length	Dynamic	Static		Statio	momer	nt (N·m)		Ball slide	Rail
			dy Dy h Informati			С	C_{0}	M_{RO}	<i>N</i>	1 _{PO}	٨	I_{YO}		
W_1	H_1	F	$d \times D \times h$	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
23	22	60	7×11×9	20	3 960 (3 500)	25 600 34 500	46 000 71 000	360 555	320 725	1 840 3 700	267 610	1 540 3 100	0.46 0.69	3.6
28	26	80	9×14×12	20	4 000 (3 500)	31 000 46 000		490 870	350 1 030	2 290 5 600	292 865	1 920 4 700	0.69 1.16	5.2
34	29	80	9×14×12	20	4 000	47 500 61 500	80 500 117 000	950 1 380	755 1 530	4 500 8 350	630 1 280	3 800 7 000	1.2 1.7	7.2
45	38	105	14×20×17	22.5	3 990		140 000 187 000	2 140 2 860	1 740 3 000	9 750 15 600	1 460 2 520	8 150 13 100	2.2 2.9	12.3
53	44	120	16×23×20	30	3 960		198 000 264 000		3 000 5 150	16 300 26 300		13 700 22 100		16.9

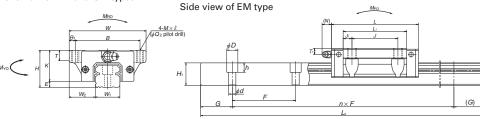
²⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and a vertical and constant load to the ball slide mounting surface. To convert C to C_{1m} for a 100-km rating fatigue life, divide C by 1.26.

A131 A132

³⁾ High-precision grade and medium preload of random-matching type are available for LH15 to LH45 of high-carbon steel products.

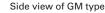
Series name

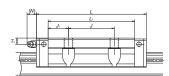
Size


LH-EM (High-load type / Standard) LH-GM (Super-high-load type / Long)

LH 30 1200 EM C 2 -** PC Z Preload code (See page A118.) 0: Z0. 1: Z1. 3: Z3. T: ZT. Z: ZZ. H: ZH Accuracy code (See Table 21.) Rail length (mm) Design serial number

Material/surface treatment code (See Table 20.) C: Special high carbon steel (NSK standard), K: Stainless steel


Ball slide shape code (See page A116.)

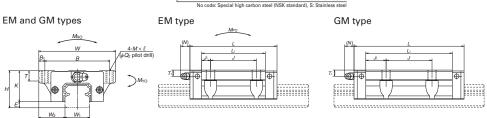

Front view of EM and GM types

Added to the reference number

Number of ball slides per rail

	As	sem	bly						Bal	l slide							
Model No.	Height			Width	Length		١	Mounting hole							Grease	fittin	g
Model No.	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	Q_2	B ₁	L ₁	J_1	К	Т	Hole size	T ₁	N
LH15EM LH15GM	24	4.6	16	47	55 74	38	30	M5×0.8×7	4.4	4.5	39 58	4.5 14	19.4	8	φ 3	4.5	3.3
LH20EM LH20GM	30	5	21.5	63	69.8 91.8	53	40	M6×1×9.5	5.3	5	50 72	5 16	25	10	M6×0.75	5	11
LH25EM LH25GM	36	7	23.5	70	79 107	57	45	M8×1.25×10 (M8×1.25×11.5)	6.8	6.5	58 86	6.5 20.5	29	11 (12)	M6×0.75	6	11
LH30EM LH30GM	42	9	31	90	98.6 124.6	72	52	M10×1.5×12 (M10×1.5×14.5)	8.6	9	72 98	10 23	33	11 (15)	M6×0.75	7	11
LH35EM LH35GM	48	9.5	33	100	109 143	82	62	M10×1.5×13	8.6	9	80 114	9 26	38.5	12	M6×0.75	8	11
LH45EM LH45GM	60	14	37.5	120	139 171	100	80	M12×1.75×15	10.5	10	105 137	12.5 28.5	46	13	Rc1/8	10	13
LH55EM LH55GM	70	15	43.5	140	163 201	116	95	M14×2×18	12.5	12	126 164	15.5 34.5	55	15	Rc1/8	11	13
LH65EM LH65GM	90	16	53.5	170	193 253	142	110	M16×2×24	14.6	14	147 207	18.5 48.5	74	23	Rc1/8	19	13

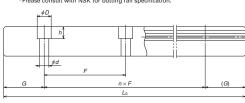
Notes: 1) Parenthesized dimensions are for items made of stainless steel.


2) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

A133

NSK

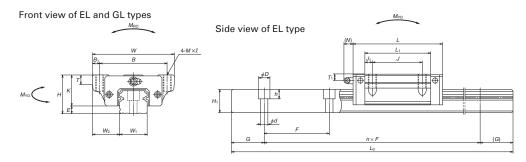
Reference number for ball slide of random-matching type

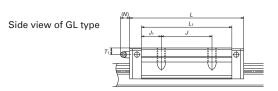

LAH 30 EMSZ-K Ball slide Random-matching ball slide series code LAH: LH Series random-matching ball slide -K: Equipped with NSK K1 -F: Fluoride low temperature chrome plating+AS2 grease -F50: Fluoride low temperature chrome plating+LG2 grease Preload code Ball slide shape code (See page A116.) No code: Fine clearance, Z: Slight preload, H: Medium prel Material code

Reference number for rail of random-matching type

L1H30 1200 L C N -** PC Z Rail Random-matching rail series code L1H: LH Series random-matching rail Size Accuracy code Rail length (mm) Design serial number Rail shape code: L Added to the reference number *Butting rail specification Material/surface treatment code (See Table 20.) N: Non-butting. L: Butting specification
*Please consult with NSK for butting rail specification.

			Rail					Basi	c load ra	ting			We	ight
Width	Height	Pitch	Mounting	G	Max. length	Dynamic	Static		Static	momen	t (N·m)		Ball	Rail
			bolt hole		L_{omax} .	С	C_{\circ}	M_{RO}	\ \nabla	1 _{PO}	Λ	1 _{YO}	slide	
W_1	H_1	F	$d \times D \times h$	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	20	2 000 (1 800)	10 800 14 600	20 700 32 000	108 166	94.5 216	575 1 150	79.5 181	480 965	0.17 0.25	1.6
20	18	60	6×9.5×8.5	20	3 960 (3 500)	17 400 23 500	32 500 50 500	219 340	185 420	1 140 2 230	155 355	955 1 870	0.45 0.65	1 7 h
23	22	60	7×11×9	20	3 960 (3 500)	25 600 34 500	46 000 71 000	360 555	320 725	1 840 3 700	267 610	1 540 3 100	0.63 0.93	3.6
28	26	80	9×14×12	20	4 000 (3 500)		63 000 91 500	600 870	505 1 030	3 150 5 600	425 865	2 650 4 700	1.2 1.6	5.2
34	29	80	9×14×12	20	4 000		80 500 117 000	950 1 380	755 1 530	4 500 8 350	630 1 280	3 800 7 000	1.7 2.4	7.2
45	38	105	14×20×17	22.5	3 990	81 000 99 000	140 000 187 000	2 140 2 860	1 740 3 000	9 750 15 600	1 460 2 520	8 150 13 100	3 3.9	12.3
53	44	120	16×23×20	30	3 990		198 000 264 000	3 600 4 850	3 000 5 150	16 300 26 300		13 700 22 100	-	16.9
63	53	150	18×26×22	35	3 900		281 000 410 000					23 400 43 500	-	24.3


³⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and a vertical and constant load to the ball slide mounting surface. To convert C to C_{100} for a 100-km rating fatigue life, divide C by 1.26.


⁴⁾ High-precision grade and medium preload of random-matching type are available for LH15 to LH45 of high-carbon steel products.

LH-EL (High-load type / Standard) LH-GL (Super-high-load type / Long)

LH 30 1200 EL C 2 -** PC Z Series name Size Rail length (mm) Ball slide shape code (See page A116.) Material/surface treatment code (See Table 20.) Preload code (See page A118.) Preload code (See page A118.) Accuracy code (See Table 21.) Design serial number Added to the reference number. Number of ball slides per rail

C: Special high carbon steel (NSK standard), K: Stainless steel

	As	ssemb	oly					В	all slid	le						
Model No.	Height			Width	Length		Mour	nting hole						Grease	fittin	g
wioder No.	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
LH15EL LH15GL	24	4.6	16	47	55 74	38	30	M5×0.8×8	4.5	39 58	4.5 14	19.4	8	ø 3	4.5	3.3
LH20EL LH20GL	30	5	21.5	63	69.8 91.8	53	40	M6×1×10	5	50 72	5 16	25	10	M6×0.75	5	11
LH25EL LH25GL	36	7	23.5	70	79 107	57	45	M8×1.25×16 (M8×1.25×12)	6.5	58 86	6.5 20.5	29	11 (12)	M6×0.75	6	11
LH30EL LH30GL	42	9	31	90	98.6 124.6	72	52	M10×1.5×18 (M10×1.5×15)	9	72 98	10 23	33	11 (15)	M6×0.75	7	11
LH35EL LH35GL	48	9.5	33	100	109 143	82	62	M10×1.5×20	9	80 114	9 26	38.5	12	M6×0.75	8	11
LH45EL LH45GL	60	14	37.5	120	139 171	100	80	M12×1.75×24	10	105 137	12.5 28.5	46	13	Rc1/8	10	13
LH55EL LH55GL	70	15	43.5	140	163 201	116	95	M14×2×28	12	126 164	15.5 34.5	55	15	Rc1/8	11	13
LH65EL LH65GL	90	16	53.5	170	193 253	142	110	M16×2×24	14	147 207	18.5 48.5	74	23	Rc1/8	19	13

Notes: 1) Parenthesized dimensions are for items made of stainless steel.

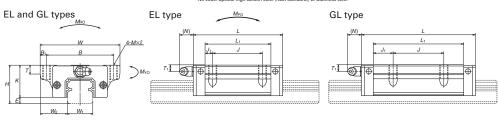
Reference number for ball slide of random-matching type

Ball slide

LAH 30 ELSZ-K

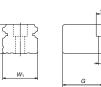
Random-matching ball slide series code

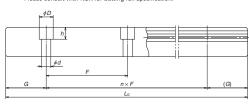
LAH: LH Series random-matching ball slide
Size


Ball slide shape code (See page A116.)

Option code

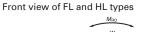
Figure Size

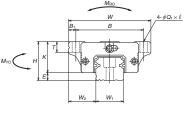

Grandom-matching ball slide
Figure Size

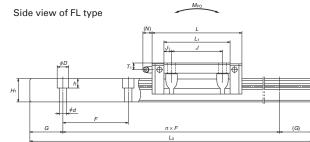

Figurate low temperature chrome pisting-482 grease
Figurate low temperature chrome pisting

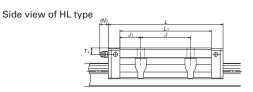
Reference number for rail of random-matching type

L1H30 1200 L C N -** PC Z Rail Random-matching rail series code Preload code (See page A118.) L1H: LH Series random-matching rail T: Fine clearance. Z: Slight preload Size Accuracy code: PC PC: Normal grade is only available Rail length (mm) Design serial number Added to the reference number Rail shape code: L *Butting rail specification Material/surface treatment code (See Table 20.) N: Non-butting. L: Butting specification *Please consult with NSK for butting rail specification.


			Rail					Basi	c load ra	iting			Wei	ght
Width	Height	Pitch	Mounting	G	Max. length	Dynamic	Static		Static	moment	(N·m)		Ball slide	Rail
			bolt hole		L_{0max} .	С	C_{\circ}	M_{RO}	N	1 _{PO}	N	1 _{YO}		
W_1	H_1	F	$d \times D \times h$	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	20	2 000 (1 800)		20 700 32 000	108 166	94.5 216	575 1 150	79.5 181	480 965	0.17 0.25	1.6
20	18	60	6×9.5×8.5	20	3 960 (3 500)	17 400 23 500	32 500 50 500	219 340	185 420	1 140 2 230	155 355	955 1 870	0.45 0.65	2.6
23	22	60	7×11×9	20	3 960 (3 500)	25 600 34 500		360 555	320 725	1 840 3 700	267 610	1 540 3 100	0.63 0.93	3.6
28	26	80	9×14×12	20	4 000 (3 500)	35 500 46 000		600 870	505 1 030	3 150 5 600	425 865	2 650 4 700	1.2 1.6	5.2
34	29	80	9×14×12	20	4 000		80 500 117 000	950 1 380	755 1 530	4 500 8 350	630 1 280	3 800 7 000	1.7 2.4	7.2
45	38	105	14×20×17	22.5	3 990		140 000 187 000	2 140 2 860	1 740 3 000	9 750 15 600	1 460 2 520	8 150 13 100	3.0 3.9	12.3
53	44	120	16×23×20	30	3 960		198 000 264 000			16 300 26 300	2 510 4 350	13 700 22 100		16.9
63	53	150	18×26×22	35	3 900		281 000 410 000			27 900 51 500		23 400 43 500		24.3


³⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁∞ for a 100-km rating fatigue life, divide C by 1.26.


²⁾ External appearance of stainless steel ball slides differs from those of carbon steel ball slides.


⁴⁾ High-precision grade and medium preload of random-matching type are not available for EL and GL models.

C: Special high carbon steel (NSK standard), K: Stainless steel

	As	sem	bly					Ва	all slid	е						
Model No.	Height			Width	Length		N	Mounting hole						Grease	fittin	g
Model No.	Н	Ε	$W_{\scriptscriptstyle 2}$	W	L	В	J	$Q_1 \times \ell$	B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
LH15FL LH15HL	24	4.6	16	47	55 74	38	30	4.5×7	4.5	39 58	4.5 14	19.4	8	φ3	4.5	3.3
LH20FL LH20HL	30	5	21.5	63	69.8 91.8	53	40	6×9.5	5	50 72	5 16	25	10	M6×0.75	5	11
LH25FL LH25HL	36	7	23.5	70	79 107	57	45	7×10 (7×11.5)	6.5	58 86	6.5 20.5	29	11 (12)	M6×0.75	6	11
LH30FL LH30HL	42	9	31	90	98.6 124.6	72	52	9×12 (9×14.5)	9	72 98	10 23	33	11 (15)	M6×0.75	7	11
LH35FL LH35HL	48	9.5	33	100	109 143	82	62	9×13	9	80 114	9 26	38.5	12	M6×0.75	8	11
LH45FL LH45HL	60	14	37.5	120	139 171	100	80	11×15	10	105 137	12.5 28.5	46	13	Rc1/8	10	13
LH55FL LH55HL	70	15	43.5	140	163 201	116	95	14×18	12	126 164	15.5 34.5	55	15	Rc1/8	11	13
LH65FL LH65HL	90	16	53.5	170	193 253	142	110	16×24	14	147 207	18.5 48.5	74	23	Rc1/8	19	13

Notes: 1) Parenthesized dimensions are for items made of stainless steel

Reference number for ball slide of random-matching type

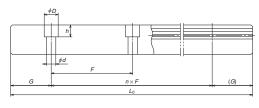
LAH 30 FL SZ-K Ball slide Random-matching ball slide series code LAH: LH Series random-matching ball slide -K: Equipped with NSK K1 -F: Fluoride low temperature chrome plating+AS2 grease -F50: Fluoride low temperature chrome plating+LG2 grease Ball slide shape code (See page A116.)

Preload code Material code

FL and HL types FL type HL type 4- φQ1× l

Reference number for rail of random-matching type

L1H30 1200 L C N -** PC Z Rail


Random-matching rail series code L1H: LH Series random-matching rail Size Rail length (mm) Rail shape code: L

Material/surface treatment code (See Table 20.)

Preload code (See page A118.) T: Fine clearance. Z: Slight preload Accuracy code: PC PC: Normal grade is only available Design serial number Added to the reference number *Butting rail specification N: Non-butting. L: Butting specification

*Please consult with NSK for butting rail specification.

			Rail					Basi	c load ra	ting			We	ight
Width	Height	Pitch	Mounting	G	Max. length	Dynamic	Static		Static	momen	t (N·m)		Ball	Rail
			bolt hole		L_{0max} .	С	C_0	$M_{\scriptscriptstyle{RO}}$	٨	I_{PO}	٨	\mathcal{N}_{YO}	slide	
VV_1	H_1	F	$d \times D \times h$	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	20	2 000 (1 800)	10 800 14 600	20 700 32 000	108 166	94.5 216	575 1 150	79.5 181	480 965	0.17 0.25	
20	18	60	6×9.5×8.5	20	3 960 (3 500)	17 400 23 500	32 500 50 500	219 340	185 420	1 140 2 230	155 355	955 1 870	0.45 0.65	1 / h
23	22	60	7×11×9	20	3 960 (3 500)	25 600 34 500	46 000 71 000	360 555	320 725	1 840 3 700	267 610	1 540 3 100	0.63 0.93	
28	26	80	9×14×12	20	4 000 (3 500)	35 500 46 000	63 000 91 500	600 870	505 1 030	3 150 5 600	425 865	2 650 4 700	1.2 1.6	5.2
34	29	80	9×14×12	20	4 000	47 500 61 500	80 500 117 000	950 1 380	755 1 530	4 500 8 350	630 1 280	3 800 7 000	1.7 2.4	7.2
45	38	105	14×20×17	22.5	3 990		140 000 187 000		1 740 3 000	9 750 15 600	1 460 2 520	8 150 13 100	3 3.9	12.3
53	44	120	16×23×20	30	3 990		198 000 264 000			16 300 26 300	2 510 4 350		-	16.9
63	53	150	18×26×22	35	3 900		281 000 410 000		4 950	27 900 51 500	4 150 8 450			24.3

³⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C_{100} for a 100-km rating fatigue life, divide C by 1.26.

²⁾ External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

⁴⁾ High-precision grade and medium preload of random-matching type are not available for FL and HL models.

A-5-1.2 SH Series

1. Features

(1) Lower noise and gentler tone

Incorporating a retaining piece and optimizing the circulation path enables steel ball circulation stability and the prevention of ball collision, and thus resulting in noise reduction.

(2) Smoother motion

Improved steel ball circulation stability, free of interference between the balls improves dynamic friction characteristics, resulting in smooth and stable motion, which is especially effective for low speed motion.

(3) Low dust generation

A resin retaining piece, which prevents steel balls collision, features effective low dust generation characteristics compared to conventional products.

(4) High self-aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, reducing moment rigidity. This increases the capacity to absorb errors in installation.

(5) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, increasing load carrying capacity as well as rigidity in vertical direction.

(6) High resistance against impact load

The bottom ball groove is formed in the Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is generally carried by the top rows, where balls are contacting at two points. Because of this design, the bottom rows will carry load when a large impact load is applied vertically as shown in Fig. 3. This assures high resistance to the impact load.

(7) High accuracy

As showing in **Fig. 4**, fixing the master rollers to the ball grooves is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(8) Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

High-precision grade and medium preload types are also available in random matching (Special high-carbon steel products for SH15 to SH45)

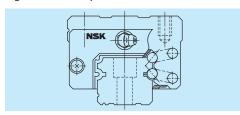


Fig. 1 SH Series

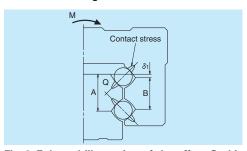


Fig. 2 Enlarged illustration of the offset Gothic arch groove

Fig. 3 When load is applied

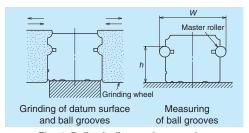


Fig. 4 Rail grinding and measuring

2. Ball slide shape

Ball slide	Shape/installation method	Type (Upper row, Rating: L High-load type Standard	ower row, Ball slide length) Super-high-load type
AN BN		Standard AN L1 One of the standard of the s	BN L1
AL BL		AL	BL
EM GM		EM L ₁	GM L ₁
EL GL		EL L1	GL L1
FL HL		FL L1	HL L1

Note: High-precision grade and medium preload of random-matching type are not applicable to EL, GL, FL, and HL models.

3. Accuracy and preload

(1) Running parallelism of ball slide

Unit: µm

			Tubio	<u> </u>			Unit: µm
	Pre	loaded asser	nbly (not ran	dom match	ing)	Random-ma	atching type
Rail length (mm)	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	High precision PH	Normal grade PC
- 50	2	2	2	4.5	6	2	6
50 – 80	2	2	3	5	6	3	6
80 – 125	2	2	3.5	5.5	6.5	3.5	6.5
125 – 200	2	2	4	6	7	4	7
200 – 250	2	2.5	5	7	8	5	8
250 – 315	2	2.5	5	8	9	5	9
315 – 400	2	3	6	9	11	6	11
400 – 500	2	3	6	10	12	6	12
500 - 630	2	3.5	7	12	14	7	14
630 – 800	2	4.5	8	14	16	8	16
800 – 1 000	2.5	5	9	16	18	9	18
1 000 – 1 250	3	6	10	17	20	10	20
1 250 – 1 600	4	7	11	19	23	11	23
1 600 – 2 000	4.5	8	13	21	26	13	26
2 000 – 2 500	5	10	15	22	29	15	29
2 500 – 3 150	6	11	17	25	32	17	32
3 150 – 4 000	9	16	23	30	34	23	34
Notes: High precision	on grade of ran	dom-matching	type is availabl	e for SH15 to S	SH45.		

Table 1

Notes: High precision grade of random-matching type is available for SH15 to SH45.

(2) Accuracy standard

The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades, while the random-matching type has High-precision PH and Normal PC grade.

Tolerance of preloaded assembly

role falloc of prelocated assembly	Та	ble 2			Unit: µm
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	±80 25
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	±100 30
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Shown in Ta	ble 1, Fig. 5 ar	nd Fig. 6	

· Tolerance of random-matching type

	Tabl	e 3		Unit: µm
Accuracy grade	High prec	ision grade PH	Normal	grade PC
Characteristics Model No.	SH15, 20, 25, 30, 35	SH45	SH15, 20, 25, 30, 35	SH45, 55
Mounting height H	±20	±30	±20	±30
Variation of mounting height H	15① 30②	20① 35②	15① 30②	20① 35②
Mounting width W ₂ or W ₃	±30	±35	±30	±35
Variation of mounting width W_2 or W_3	20	20	25	30
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		See Table 1, F	Fig. 5 and Fig. 6	

Notes: ① Variation on the same rail ② Variation on multiple rails

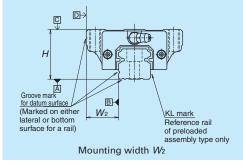

(3) Combinations of accuracy and preload_

Table 4

			Accuracy grade					
		Ultra precision	Super precision	High precision	Precision grade	Normal grade	High precision	Normal grade
Wit	hout NSK K1 lubrication unit	P3	P4	P5	P6	PN	PH	PC
Wit	h NSK K1 lubrication unit	К3	K4	K5	K6	KN	KH	KC
	Fine clearance	\cap		\cap		0		
	Z0	0		0		0		
	Slight preload	\circ		\circ				
~	Z1	0		0		0		
Preload	Medium preload	\cap		\cap				
rel	Z3	0		0				
ш	Random-matching type with slight preload							\cap
	ZZ							
	Random-matching type with medium preload ZH	_	_	_	_	_	0	0

Note: Medium preload of random-matching type is available for SH15 to SH45.

4. Assembled accuracy

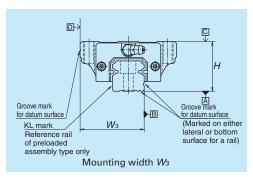
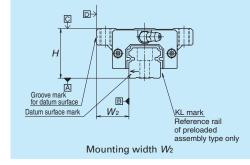



Fig. 5 Special high carbon steel

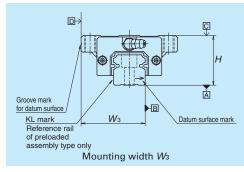


Fig. 6 Stainless steel

(5) Preload and rigidity

We offer five levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with random-matching type of Medium preload ZH and Slight preload ZZ.

· Preload and rigidity of preloaded assembly

Table 5

	lable 5							
	Preload (N)							
			Preio	au (IV)	Vertical	direction	Lateral o	direction
		Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload
			(Z1)	(Z3)	(Z1)	(Z3)	(Z1)	(Z3)
	SH15	AN, EM, EL, FL	78	441	127	215	88	166
m	SH20	AN, EM, EL, FL	147	784	157	274	127	225
type	SH25	AN, EM, AL, EL, FL	196	1 180	186	343	137	255
ad 1	SH30	AN, AL	245	1 470	196	363	137	265
High-load	SH30	EM, EL, FL	294	1 670	245	441	176	323
ij	SH35	AN, AL, EM, EL, FL	390	2 160	294	529	205	382
_	SH45	AN, AL, EM, EL, FL	635	3 700	397	727	283	529
	SH55	AN, AL, EM, EL, FL	930	5 600	482	891	336	635
ЭС	SH15	BN, GM, GL, HL	98	637	186	333	137	264
type	SH20	BN, GM, GL, HL	196	1 080	235	421	186	343
oac	SH25	BN, GM, BL, GL, HL	245	1 570	284	529	196	382
gh-I	SH30	BN, GM, BL, GL, HL	343	2 160	333	627	235	451
į	SH35	BN, GM, BL, GL, HL	490	2 840	411	755	284	529
uper-high-load	SH45	BN, GM, BL, GL, HL	785	4 600	515	944	367	686
S	SH55	BN, GM, BL, GL, HL	1 180	6 750	631	1 148	440	817

Note: Clearance for Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

However, Z0 of PN grade is 0 to 15 μ m.

· Clearance and preload of random-matching type

Table 6

unit: µm

		anne pini
Model No.	Slight preload	Medium preload
wiodei ivo.	ZZ	ZH
SH15	-4 — 0	-8 <i>—</i> -3.5
SH20	-5 — O	−9 <i>—</i> −3.5
SH25	-5 — O	-11 — -5.5
SH30	-7 — 0	−13 — −6
SH35	-7 — 0	−14 — −7
SH45	-7 — 0	−17 — −9
SH55	-9 — 0	

Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

4. Maximum rail length

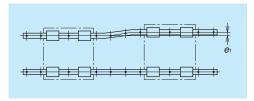

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 7 Length limitation of rails Unit: mm 🕰 Size Series 15 Material 20 25 30 35 45 55 Special high 2 000 3 960 3 960 4 000 4 000 3 990 3 960 carbon steel SH 1 800 3 500 3 500 3 500 Stainless steel

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

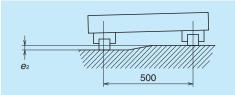
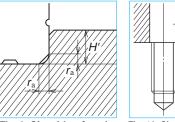



Fig. 7

Fig. 8

Table 8								Unit: µm
Value	Preload				Model No.			
value	Freioau	SH15	SH20	SH25	SH30	SH35	SH45	SH55
Permissible values of	Z0	22	30	40	45	55	65	80
parallelism in two rails e_1	Z1, ZZ	18	20	25	30	35	45	55
parallelistit ili two talis e ₁	Z3, ZH	13	15	20	25	30	40	45
Permissible values of	Z0	375 μm/500 mm						
parallelism (height) in two rails $e_{\scriptscriptstyle 2}$	Z1, ZZ, Z3, ZH	eight) in two rails e ₂ Z1, ZZ, Z3, ZH 330 μm/500 mm				nm		

(2) Shoulder height of the mounting surface and corner radius r

rail datum surface

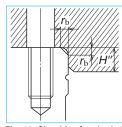


Fig. 9 Shoulder for the Fig. 10 Shoulder for the ball slide datum surface

			Unit: mm	
Madal Na	Corner radius	s (maximum)	Shoulde	r height
Model No.	r _a	$r_{\rm b}$	H'	H"
SH15	0.5	0.5	4	4
SH20	0.5	0.5	4.5	5
SH25	0.5	0.5	5	5
SH30	0.5	0.5	6	6
SH35	0.5	0.5	6	6
SH45	0.7	0.7	8	8
SH55	0.7	0.7	10	10

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 11 and Table 10 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

- · The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 12) Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.
- · When using a piping unit with thread of M6 x 1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

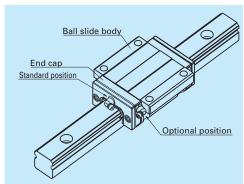


Fig. 12 Mounting position of lubrication accessories

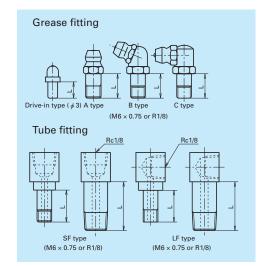


Fig. 11 Grease fitting and tube fitting

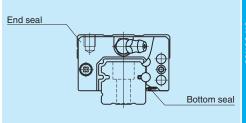
	Unit: mm		
Model No.	Dust-proof	Grease fitting	Tube fitting
	specification	Thread body length L	Thread body length L
	Standard	5	-
CLIAE	With NSK K1	10	_
SH15	Double seal	*	_
	Protector	*	_
	Standard	5	-
01100	With NSK K1	12	_
SH20	Double seal	10	_
	Protector	10	_
	Standard	5	5
CHOF	With NSK K1	12	12
SH25	Double seal	10	9
	Protector	10	9
	Standard	5	6
SH30	With NSK K1	14	13
SH30	Double seal	12	11
	Protector	12	11
	Standard	5	6
SH35	With NSK K1	14	13
SH35	Double seal	12	11
	Protector	12	11
	Standard	8	17
SH45	With NSK K1	18	21.5
SH45	Double seal	14	17
	Protector	14	17
	Standard	8	17
SH55	With NSK K1	18	21.5
21122	Double seal	14	17
	Protector	14	17

^{*)} A connector is required for this model. Please contact NSK for grease fittings

7. Dust-proof components

(1) Standard specification

The SH Series can be readily used as they have a dust protection means for normal condition. As the standard equipment, the ball slides have an end seal on both ends and bottom seals at the bottom.



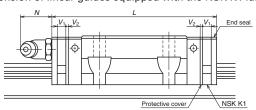

Fig. 13

Table 11 Seal friction per ball slide (maximum value)

							Unit: N
Series Size	15	20	25	30	35	45	55
SH	8	9	10	10	12	17	22

(2) NSK K1[™] lubrication unit

Table 12 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

a	b	le	12	2

Unit: mm

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N		
SH15	Standard	AN, EM, EL, FL	55	65.6	4 5	0.8	(5)		
2012	Long	BN, GM, GL, HL	74	84.6	4.5	0.8	(5)		
CLIOO	Standard	AN, EM, EL, FL	69.8	80.4	4.5	0.0	(1.4)		
SH20	Long	BN, GM, GL, HL	91.8	102.4	4.5	0.8	(14)		
CLIDE	Standard	AN, AL, EM, EL, FL	79.0	90.6	E 0	0.0	(1.4)		
SH25	Long	BN, BL, GM, GL, HL	107	118.6	5.0	0.8	(14)		
	Standard	AN, AL	85.6	97.6					
SH30	Flange type	EM, EL, FL	98.6	110.6	5.0	5.0	5.0	1.0	(14)
	Long	BN, BL, GM, GL, HL	124.6	136.6					
CLIOE	Standard	AN, AL, EM, EL, FL	109	122		1.0	(1.4)		
SH35	Long	BN, BL, GM, GL, HL	143	156	5.5	1.0	(14)		
CLIAE	Standard	AN, AL, EM, EL, FL	139	154	0.5	1.0	(1.5)		
SH45	Long	BN, BL, GM, GL, HL	171	186	6.5	1.0	(15)		
CLIEF	Standard	AN, AL, EM, EL, FL	163	178	0.5	1.0	(15)		
SH55	Long	BN, BL, GM, GL, HL	201	216	6.5	1.0			

Note: Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V₁ × Number of NSK K1) + (Thickness of the protective cover, $V_2 \times 2$)

A145

(3) Double seal

Use a double seal set as showing in **Table 13**, when installing an extra seal to completed standard products. (Fig. 14)

When installing a grease fitting after the installation of double seals, a connector as showing **Fig.14** is required.

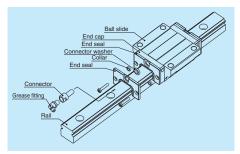


Fig. 14 Double seal

Table 13 Double-seal set

Model No.		nce No. With connector	Increased thickness V ₃ (mm)
SH15	LH15WS-01	*	2.5
SH20	LH20WS-01	LH20WSC-01	2.5
SH25	LH25WS-01	LH25WSC-01	2.8
SH30	LH30WS-01	LH30WSC-01	3.6
SH35	LH35WS-01	LH35WSC-01	3.6
SH45	LH45WS-01	LH45WSC-01	4.3
SH55	LH55WS-01	LH55WSC-01	4.3

(4) Protector

Use a protector set as showing **Table 14**, when installing a protector to completed standard products. (**Fig.15**)

When installing a grease fitting after the installation of protectors, a connector as showing **Fig.15** is required.

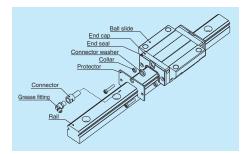


Fig. 15 Protector

Table 14 Protector set

Model No.	Referei Without connector	nce No. With connector	Increased thickness V ₄ (mm)
SH15	LH15PT-01	*	2.7
SH20	LH13F1-01 LH20PT-01	LH20PTC-01	2.7
SH25	LH25PT-01	LH25PTC-01	3.2
SH30	LH25FT-01	LH30PTC-01	4.2
SH35	LH35PT-01	LH35PTC-01	4.2
SH45	LH45PT-01	LH45PTC-01	4.9
SH55	LH55PT-01	LH55PTC-01	4.9
ЗПЭЭ	LUSSE 1-01	LHSSFTC-01	4.9

^{*)} For installation of a connector to a drive-in type grease fitting, contact NSK.

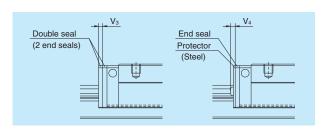


Fig. 16

(5) Cap to plug the rail mounting bolt hole

Table 15 Caps to plug rail bolt hole

	Model No.	Bolt to	Сар	Quantity			
	Model No.	secure rail	reference No.	/case			
	SH15	M4	LG-CAP/M4	20			
	SH20 M5		LG-CAP/M5 20				
	SH25	M6	LG-CAP/M6	20			
S	H30, SH35	M8	LG-CAP/M8	20			
	SH45	M12	LG-CAP/M12	20			
	SH55	M14	LG-CAP/M14	20			

(6) Inner seal

Inner seal is only available for the models shown below.

Table 16

Series	Model No.
SH	SH20, SH25, SH30, SH35, SH45, SH55

(7) Bellows

Use a bellows fastener kit as showing **Table 17**, when installing bellows to completed standard products. A bellows fastener kit is supplied with one of bellows fastener, two of M1 set screws, two of M2 set screws, and two collars for M2 set screw as showing **Fig.7.7** on page A55.

 When NSK K1, double seals or protectors are used, the set screws of bellows fastener kit are unable to use.

Please contact NSK for details.

 Bellows fastener is available only for the horizontal mounting positions. For other mounting positions, sliding plate is required (see Fig. 7.10 on page A56).

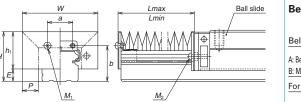

For fixing to the rail, make tap holes to the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes by using a machine screw. NSK processes a tap hole to the rail end face when ordered with a linear guide.

Table 17 Bellows fastner kit reference No.

lodel No.	Kit reference No.
SH20	LH20FS-01
SH25	LH25FS-01
SH30	LH30FS-01
SH35	LH35FS-01
SH45	LH45FS-01
SH55	LH55FS-01

A147 A148

Dimension tables of bellows SH Series

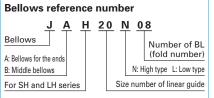


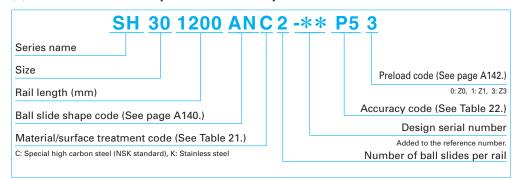
Fig. 17 Dimensions of bellows

			Та	ble 18	Dimensi	ons of b	ellows			Unit: mm	
Model No.	Н	h ₁	Е	W	Р	а	b	BL minimum length	M₁Tap x depth	M₂Tap x depth	
JAH20N	29.5	24.5	5	48	10	13	22	17	M3 × 5	M2.5 × 16	
JAH25L	35	28	7	51	10	16 26		26 17 M3	M3 × 5	M3 × 18	
JAH25N	39	32	/	61	15			17	IVIS X S	IVIS X 10	
JAH30L	41	32	9	60	12	18	31	17	M4 × 6	M4 × 22	
JAH30N	44	35	9	66	15	10	31	17	1014 × 0	1VI+ X ZZ	
JAH35L	47	37.5	9.5	72	15	24	34	17	M4 × 6	M4 × 23	
JAH35N	54	44.5	9.5	82	20	24	34	17	1014 × 0	1014 × 23	
JAH45L	59	45	14	83	15	32	44.5	17	M5 × 8	M5 × 28	
JAH45N	69	55	14	103	25	32	44.0	17	O X CIVI	IVID X 28	
JAH55L	69	54	15	101	20	40	50.5	17	M5 × 8	M5 × 30	
JAH55N	79	64	13	121	30	40	50.5	''	IVIOXO	1010 X 30	

	Ta	able 19	Numbe	ers of fo	ds (BL)	and len	gths of	bellows			Unit: mm
Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
iviodei ivo.	<u>L</u> min	34	68	102	136	170	204	238	272	306	340
JAH20N	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAHZUN	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAH25L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAHZUL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAH25N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
0/11/2011	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH30L	Stroke	134	268	402	536	670	804	938	1 072	1 206	1 340
3A1130L	Lmax	168	336	504	672	840	1 008	1 176	1 344	1 512	1 680
JAH30N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAHJUN	<u>L</u> max	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH35L	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAHOSE	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH35N	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAI 15514	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAH45L	Stroke	176	352	528	704	880	1 058	1 232	1 408	1 584	1 760
JAI 143L	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAH45N	Stroke	316	632	948	1 264	1 580	1 896	2 212	2 528	2 844	3 160
JAH43N	Lmax	350	700	1 050	1 400	1 750	2 100	2 450	2 800	3 150	3 500
JAH55L	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAI 100L	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAH55N	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
MICCLIME	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on the both sides, then by dividing the sum by 2.

Note: We recommend using SH Series in a clean environment in order to utilize their full range of capabilities.


A149 A150

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

L1H 30 1200 L C N	-** PC Z
Random-matching rail series code L1H: SH Series random-matching rail Size	Preload code (See page A142.) z: Slight preload (common rail for slight or medium preload)
	Accuracy code PH: High precision grade random-matching type
Rail length (mm)	PC: Normal grade random-matching type Design serial number
Rail shape code: L	Added to the reference number.
L: Standard	*Butting rail specification
Material/surface treatment code (See Table 21.)	N: Non-butting. L: Butting specification
*PIe	ease consult with NSK for butting rail specification.

The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only preload code of "medium preload H" and "slight preload Z" are available (refer to page A142).

Table 21 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel (SH15 to SH30 only)
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

Note: High-precision grade and medium preload of random-matching type are not available in stainless steel.

Table 22 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	K3
Super precision grade	P4	K4
High precision grade	P5	K5
Precision grade	P6	K6
Normal grade	PN	KN
High precision grade (random-matching type)	PH	KH
Normal grade (random-matching type)	PC	KC

Note: Refer to page A38 for NSK K1 lubrication unit.

A151 A152

9. Dimensions

SH-AN (High-load type / Standard)

SH-BN (Super-high-load type / Long)

Series name

Size

Rail length (mm)

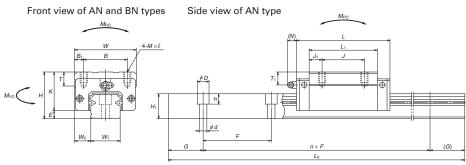
Ball slide shape code (See page A140.)

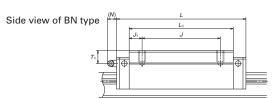
Material/surface treatment code (See Table 21.)

C: Special high carbon steel (NSK standard), K: Stainless steel

Series ANC 2 -** PC Z

Preload code (See page A142.)


0: 20, 1: 21, 3: 23, 2: ZZ, H: ZH


Accuracy code (See Table 22.)

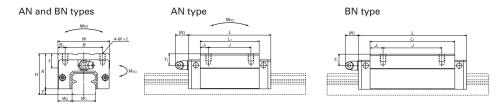
Design serial number

Added to the reference number.

Number of ball slides per rail

	A	ssem	bly						Ball	slide						
Model No.	Height			Width	Length		Mou	nting hole						Greas	e fittii	ng
Model No.	Н	E	W_2	W	L	В	J	M×pitch×ℓ	B_1	<i>L</i> ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
SH15AN SH15BN	28	4.6	9.5	34	55 74	26	26	26 M4×0.7×6		39 58	6.5 16	23.4	8	\$ 3	8.5	3.3
SH20AN SH20BN	30	5	12	44	69.8 91.8	32	36 50	M5×0.8×6	6	50 72	7 11	25	12	M6×0.75	5	11
SH25AN SH25BN	40	7	12.5	48	79 107	35	35 50	M6×1×9	6.5	58 86	11.5 18	33	12	M6×0.75	10	11
SH30AN SH30BN	45	9	16	60	85.6 124.6	40	40 60	M8×1.25×10	10	59 98	9.5 19	36	14	M6×0.75	10	11
SH35AN SH35BN	55	9.5	18	70	109 143	50	50 72	T M8×1 25×12		80 114	15 21	45.5	15	M6×0.75	15	11
SH45AN SH45BN	70	14	20.5	86	139 171	60	60 80	M10×1.5×17	13	105 137	22.5 28.5	56	17	Rc1/8	20	13
SH55AN SH55BN	80	15	23.5	100	163 201	75	75 95	M12×1.75×18	12.5	126 164	25.5 34.5	65	18	Rc1/8	21	13

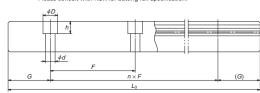
Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.


Reference number for ball slide of random-matching type

Ball slide
SAH 30 AN Z -K

Andom-matching ball slide series code
SAH: SH Series random-matching ball slide
Size
Ball slide shape code (See page A140.)

SAH: SH Series random-matching ball slide
Size


Preload code
2: Slight preload, the Medium preload

Reference number for rail of random-matching type

Rail	L1H 30 1200 I	<u> CN -** PC Z</u>
Random-matching	rail series code	Preload code (See page A142.)
L1H: SH Series ran	dom-matching rail	Z: Slight preload (common rail for medium preload)
Size		Accuracy code
Rail length (n	nm)	PH: High precision grade PC: Normal grade
Rail shape co	do: I	Design serial number
I: Standard	ue. L	Added to the reference number.
	ace treatment code (See Table 21.	*Butting rail specification
iviateriai/suria	ace treatment code (See Table 21.	N: Non-butting. L: Butting specification
		*Please consult with NSK for butting rail specification.

	Rail							Basic	load rat		We	ight		
Width	Height	Pitch	Mounting	G	Max. length	Dynamic	Static		Static	momer	nt (N·m)	(N·m)		Rail
			bolt hole		$L_{ m 0max}$	С	C_{0}	M_{RO}	M	I _{PO}	N	1 _{YO}	slide	
W_1	H_1	F	$d \times D \times h$	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	20	2 000 (1 800)	10 100 13 400		98 147	87 193	525 1 020	_	-	0.18 0.26	1.6
20	18	60	6×9.5×8.5	20	3 960 (3 500)	16 300 21 600	29 600 44 500	199 298	167 360	1 050 1 990		875 1 670	0.33 0.48	2.6
23	22	60	7×11×9	20	3 960 (3 500)	22 400 32 000	37 500 62 500	295 490	246 615	1 540 3 300	_	1 290 2 780	0.55 0.82	3.6
28	26	80	9×14×12	20	4 000 (3 500)	31 000 46 000	51 500 91 500	490 870	365 1 060	2 270 5 600		1 910 4 700	_	5.2
34	29	80	9×14×12	20	4 000	47 500 61 500	80 500 117 000	950 1 380	780 1 600	4 500 8 300		3 750 7 000	_	7.2
45	38	105	14×20×17	22.5	3 990		128 000 175 000	1 970 2 680		9 000 14 700		7 550 12 400		12.3
53	44	120	16×23×20	30	3 960		181 000 247 000			15 100 24 800	-	12 700 20 800		16.9

²⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to Compfor a 100-km rating fatigue life, divide C by 1.26.

³⁾ High-precision grade and medium preload of random-matching type are available for SH15 to SH45 of high-carbon steel products.

SH-AL (High-load type / Standard) SH-BL (Super-high-load type / Long)

SH 30 1200 AL C 2 -** PC Z

Series name

Size

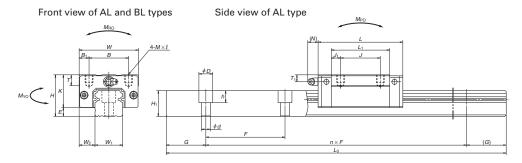
Rail length (mm)

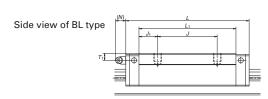
Ball slide shape code (See page A140.)

Material/surface treatment code (See Table 21.)

C: Special high carbon steel (NSK standard), K: Stainless steel

Preload code (See page A142.)


0: 20, 1: 21, 3: 23, 2: ZZ, H: ZH


Accuracy code (See Table 22.)

Design serial number

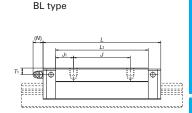
Added to the reference number.

Number of ball slides per rail

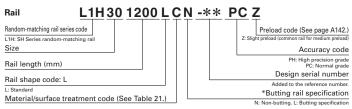
	A	ssem	bly						Ball	slide						
Model No.	Height			Width	Length		Mou	nting hole						Grease	fittir	ıg
wiodei No.	Н	Е	W ₂	W	,	В	1	M×pitch×ℓ	B ₁	,	J_1	K		Hole size	<i>T</i> ₁	N
OHOTAL	- ' '		V V 2	00	70	D	05	IVIADITOTIAL	<i>D</i> ₁	L ₁	- 1	- / /	,	11016 3126	71	7.0
SH25AL SH25BL	36	7	12.5	48	79 107	35	35 50	M6×1×6	6.5	58 86	11.5 18	29	12	M6×0.75	6	11
SH30AL	42	9	16	60	85.6	40	40	M8×1.25×8	10	59	9.5	33	14	M6×0.75	7	11
SH30BL	42	9	10	60	124.6	40	60	IVI8X 1.25X8	10	98	19	33	14	IVI0XU.75	/	
SH35AL	48	9.5	18	70	109	50	50	M8×1.25×8	10	80	15	38.5	15	M6×0.75	8	11
SH35BL	40	0.0	10	70	143	50	72	1010×1.23×0	10	114	21	30.3	13	1010/0.73	U	' '
SH45AL	60	14	20.5	86	139	60	60	M10×1.5×10	13	105	22.5	46	17	Rc1/8	10	13
SH45BL	00	14	20.5	00	171	00	80	10110×1.5×10	13	137	28.5	40	1 /	1101/0	10	10
SH55AL	70	15	23.5	100	163	75	75	M12×1.75×13	12.5	126	25.5	55	15	Rc1/8	11	13
SH55BL	70	15	20.0	100	201	/5	95	10112 ~ 1.75 × 13	12.0	164	34.5	55	10	1101/0	1 1	10

Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type

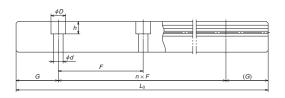

Ball slide SAH 30 AL Z -K

Random-matching ball slide series code
SAH: SH Series random-matching ball slide
Size
Ball slide shape code (See page A140.)


SAH: SH Series random-matching ball slide
Size
Preload code
2: Slight preload, the Medium preload

AL and BL types

AL type



Reference number for rail of random-matching type

*Please consult with NSK for butting rail specification.

Unit: mm

A156

						D. I. I. I. I								ic. iiiiii
			Rail					Basic	load rat	ing			We	ight
Width	Height	Pitch	Mounting	G	Max. length	Dynamic	Static		Static	momen	it (N·m)		Ball	Rail
			bolt hole		$L_{ m 0max}$	С	C_{\circ}	M_{RO}	\sim	1 _{PO}	Λ	I_{YO}	slide	
W_1	H_1	F	$d \times D \times h$	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
23	22	60	7×11×9	20	3 960	22 400	37 500	295	246	1 540	207	1 290	0.46	3.6
23	22	00	/ / / / / / / / / / / / / / / / / / / /	20	(3 500)	32 000	62 500	490	615	3 300	515	2 780	0.69	3.6
28	26	80	9×14×12	20	4 000	31 000	51 500	490	365	2 270	305	1 910	0.69	5.2
20	20	00	9X14X12	20	(3 500)	46 000	91 500	870	1 060	5 600	885	4 700	1.16	5.2
34	29	80	9×14×12	20	4 000	47 500	80 500	950	780	4 500	655	3 750	1.2	7.2
34	23	00	3/14/12	20	4 000	61 500	117 000	1 380	1 600	8 300	1 340	7 000	1.7	7.2
45	38	105	14×20×17	22.5	3 990	76 500	128 000	1 970	1 550	9 000	1 300	7 550	3.0	12.3
45	30	103	14/20/17	22.5	3 330	94 500	175 000	2 680	2 760	14 700	2 320	12 400	3.9	12.5
53	44	120	16×23×20	30	3 960	113 000	181 000	3 300	2 640	15 100	2 210	12 700	4.7	16.9
55	74	120	10/20/20		0 000	140 000	247 000	4 550	4 800	24 800	4 050	20 800	6.1	10.5

²⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.

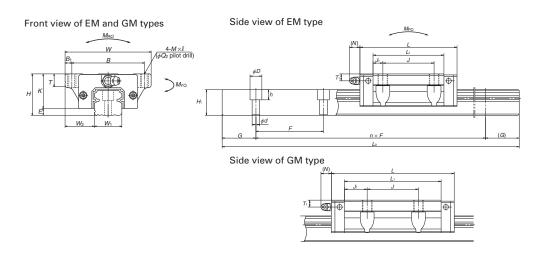
A155

³⁾ High-precision grade and medium preload of random-matching type are available for SH15 to SH45 of high-carbon steel products.

SH-EM (High-load type / Standard) SH-GM (Super-high-load type / Long)

Series name

Size


Rail length (mm)

Ball slide shape code (See page A140.)

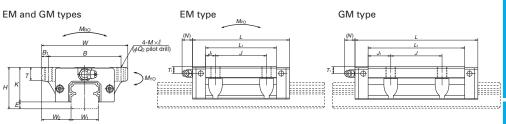
Material/surface treatment code (See Table 21.)
C: Special high carbon steel (NSK stainless steel)

Preload code (See page A142.)
0: 20, 1: 21, 3: 23, 2: ZZ, H: 2H
Accuracy code (See Table 22.)

Design serial number
Added to the reference number.
Number of ball slides per rail

	A:	sseml	bly						Ва	all slid	le						
Model No.	Height			Width	Length		М	ounting hole							Grease	e fittir	ng
iviodel No.	Н	Ε	W_2	W	L	В	J	M×pitch×ℓ	$Q_{\scriptscriptstyle 2}$	B ₁	L ₁	J_1	Κ	Т	Hole size	<i>T</i> ₁	N
SH15EM SH15GM	24	4.6	16	47	55 74	38	30	M5×0.8×7	4.4	4.5	39 58	4.5 14	19.4	8	φ 3	4.5	3.3
SH20EM SH20GM	30	5	21.5	63	69.8 91.8	53	40	M6×1×9.5	5.3	5	50 72	5 16	25	10	M6×0.75	5	11
SH25EM SH25GM	36	7	23.5	70	79 107	57	45	M8×1.25×10 (M8×1.25×11.5)	6.8	6.5	58 86	6.5 20.5	29	11 (12)	M6×0.75	6	11
SH30EM SH30GM	42	9	31	90	98.6 124.6	72	52	M10×1.5×12 (M10×1.5×14.5)	8.6	9	72 98	10 23	33	11 (15)	M6×0.75	7	11
SH35EM SH35GM	48	9.5	33	100	109 143	82	62	M10×1.5×13	8.6	9	80 114	9 26	38.5	12	M6×0.75	8	11
SH45EM SH45GM	60	14	37.5	120	139 171	100	80	M12×1.75×15	10.5	10	105 137	12.5 28.5	46	13	Rc1/8	10	13
SH55EM SH55GM	70	15	43.5	140	163 201	116	95	M14×2×18	12.5	12	126 164	15.5 34.5	55	15	Rc1/8	11	13

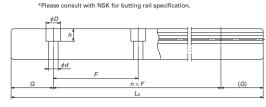
Notes: 1) Parenthesized dimensions are applicable to stainless steel products.


Reference number for ball slide of random-matching type

Ball slide SAH 30 EM Z -K

Random-matching ball slide series code
SAH: SH Series random-matching ball slide
Size
Ball slide shape code (See page A140.)

SAH: SH Series random-matching ball slide
Size


Preload code
2. Slight preload, the Medium preload

Reference number for rail of random-matching type

Rail	L1H30 1200 L	<u> </u>
Random-matching	rail series code	Preload code (See page A142.)
L1H: SH Series rar	dom-matching rail	Z: Slight preload (common rail for medium preload)
Size		Accuracy code
Rail length (r	nm)	PH: High precision grade PC: Normal grade
B :: 1		Design serial number
Rail shape co	de: L	Added to the reference number.
L: Standard		*Butting rail specification
Material/surf	ace treatment code (See Table 21.)	N: Non-butting. L: Butting specification
		ADI

H₁

													UII	iit: mim
			Rail					Basic	load rat	ing			We	eight
Width	Height	Pitch	Mounting	G	Max. length	Dynamic	Static		Static	momen	nt (N·m)		Ball	Rail
			bolt hole		$L_{ m 0max}$	С	C _o	M _{RO}	M	PO	٨	1 _{YO}	slide	
W_1	H_1	F	d×D×h	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	20	2 000	10 100	18 800	98	87	525	73	440	0.17	1.6
15	15	00	4.5×7.5×5.3	20	(1 800)	13 400	28 200	147	193	1 020	162	855	0.25	1.0
20	18	60	6×9.5×8.5	20	3 960	16 300	29 600	199	167	1 050	141	875	0.45	2.6
20	10	00	0x9.5x6.5	20	(3 500)	21 600	44 500	298	360	1 990	305	1 670	0.65	2.0
23	22	60	7×11×9	20	3 960	22 400	37 500	295	246	1 540	207	1 290	0.63	3.6
23	22	00	781189	20	(3 500)	32 000	62 500	490	615	3 300	515	2 780	0.93	3.0
28	26	80	9×14×12	20	4 000	35 500	63 000	600	540	3 150	450	2 630	1.2	5.2
20	20	00	9X14X12	20	(3 500)	46 000	91 500	870	1 060	5 600	885	4 700	1.6	5.2
34	29	80	9×14×12	20	4 000	47 500	80 500	950	780	4 500	655	3 750	1.7	7.2
54	23	00	3/14/12	20	4 000	61 500	117 000	1 380	1 600	8 300	1 340	7 000	2.4	7.2
45	38	105	14×20×17	22.5	3 990	76 500	128 000	1 970	1 550	9 000	1 300	7 550	3	12.3
40	30	105	14/20/17	22.5	3 330	94 500	175 000	2 680	2 760	14 700	2 320	12 400	3.9	12.3
53	44	120	16×23×20	30	3 960	113 000	181 000	3 300	2 640	15 100	2 210	12 700	5	16.9
55	44	120	10/23/20	30	3 300	140 000	247 000	4 550	4 800	24 800	4 050	20 800	6.5	10.9

³⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface.

To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.

²⁾ External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

⁴⁾ High-precision grade and medium preload of random-matching type are available for SH15 to SH45 of high-carbon steel products.

SH-EL (High-load type / Standard) SH-GL (Super-high-load type / Long)

SH 30 1200 ELC2 -** PCZ

Series name

Size

Rail length (mm)

Ball slide shape code (See page A140.)

Material/surface treatment code (See Table 21.)

C: Special high carbon steel (NSK stainless steel

Preload code (See page A142.)

0: 20, 1: 21, 3: 23, 2: 22

Accuracy code (See Table 22.)

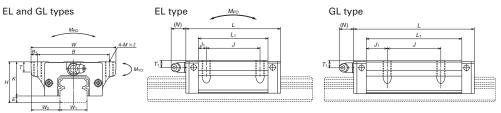
Design serial number

Added to the reference number.

Number of ball slides per rail

	A:	ssem	bly						Ball	slide						
Model No.	Height			Width	Length		Mou	inting hole						Grease	fittin	g
wiodei No.	Н	E	W ₂	W	L	В	J	M×pitch×ℓ	B ₁	L ₁	J_1	K	T	Hole size	<i>T</i> ₁	N
SH15EL SH15GL	24	4.6	16	47	55 74	38	30	M5×0.8×8	4.5	39 58	4.5 14	19.4	8	φ 3	4.5	3.3
SH20EL SH20GL	30	5	21.5	63	69.8 91.8	53	40	M6×1×10	5	50 72	5 16	25	10	M6×0.75	5	11
SH25EL SH25GL	36	7	23.5	70	79 107	57	45	M8×1.25×16 (M8×1.25×12)	6.5	58 86	6.5 20.5	29	11 (12)	M6×0.75	6	11
SH30EL SH30GL	42	9	31	90	98.6 124.6	72	52	M10×1.5×18 (M10×1.5×15)	9	72 98	10 23	33	11 (15)	M6×0.75	7	11
SH35EL SH35GL	48	9.5	33	100	109 143	82	62	M10×1.5×20	9	80 114	9 26	38.5	12	M6×0.75	8	11
SH45EL SH45GL	60	14	37.5	120	139 171	100	80	M12×1.75×24	10	105 137	12.5 28.5	46	13	Rc1/8	10	13
SH55EL SH55GL	70	15	43.5	140	163 201	116	95	M14×2×28	12	126 164	15.5 34.5	55	15	Rc1/8	11	13

Notes: 1) Parenthesized dimensions are applicable to stainless steel products.


Reference number for ball slide of random-matching type

Ball slide SAH 30 EL Z -K

Random-matching ball slide series code
SAH: SH Series random-matching ball slide
Size

Ball slide shape code (See page A140.)

Ball slide shape code (See page A140.)

Reference number for rail of random-matching type

Rail L1H30 1200 LCN -** PC Z

Random-matching rail series code

L1H: SH Series random-matching rail
Size

Rail length (mm)

Rail shape code: L

L: Standard

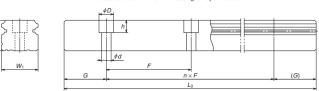
Material/surface treatment code (See Table 21.)

Random-matching rail series code

Preload code (See page A142.)

Accuracy code: PC

PC: Normal grade is only available.


Design serial number

Addet the reference number.

*Butting rail specification

N: Non-butting. L: Butting specification

*Please consult with NSK for butting rail specification.

			Rail			Basic load rating							We	ight
Width	Height	Pitch	Mounting	G	Max. length	Dynamic	Static		Static	momer	nt (N·m)		Ball	Rail
			bolt hole		$L_{ m 0max}$	С	C_{0}	M_{RO}	N	l _{PO}	<i>∧</i>	1 _{YO}	slide	
W_1	H_1	F	d×D×h	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	20	2 000 (1 800)	10 100 13 400	18 800 28 200	98 147	87 193	525 1 020		-	0.17 0.25	1.6
20	18	60	6×9.5×8.5	20	3 960 (3 500)	16 300 21 600	29 600 44 500	199 298	167 360	1 050 1 990			0.45 0.65	2.6
23	22	60	7×11×9	20	3 960 (3 500)	22 400 32 000	37 500 62 500		246 615	1 540 3 300		1 290 2 780	0.63 0.93	3.6
28	26	80	9×14×12	20	4 000 (3 500)	35 500 46 000	63 000 91 500		540 1 060	3 150 5 600		2 630 4 700		5.2
34	29	80	9×14×12	20	4 000	47 500 61 500	80 500 117 000		780 1 600	4 500 8 300	655 1 340	3 750 7 000		7.2
45	38	105	14×20×17	22.5	3 990		128 000 175 000		1 550 2 760		1 300 2 320	7 550 12 400		12.3
53	44	120	16×23×20	30	3 960		181 000 247 000					12 700 20 800		16.9

³⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.

²⁾ External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

⁴⁾ High-precision grade and medium preload of random-matching type are not available for EL and GL models.

SH-FL (High-load type / Standard) SH-HL (Super-high-load type / Long)

SH 30 1200 FL C2 -** PC Z

Series name

Size

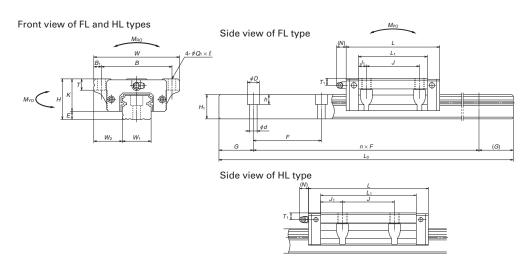
Rail length (mm)

Ball slide shape code (See page A140.)

Material/surface treatment code (See Table 21.)

C: Special high carbon steel (NSK standard), K: Stainless steel

Preload code (See page A142.)


0: 20, 1: 21, 3: 23, 2: 22

Accuracy code (See Table 22.)

Design serial number

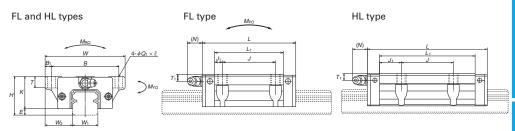
Added to the reference number.

Number of ball slides per rail

	A	ssem	bly						Ball	slide						
Model No.	Height			Width	Length		Mou	nting hole						Grease	fittin	g
wioder No.	Н	Ε	W_2	W	L	В	J	$Q_1\!\! imes\!\ell$	B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
SH15FL SH15HL	24	4.6	16	47	55 74	38	30	4.5×7	4.5	39 58	4.5 14	19.4	8	φ 3	4.5	3.3
SH20FL SH20HL	30	5	21.5	63	69.8 91.8	53	40	6×9.5	5	50 72	5 16	25	10	M6×0.75	5	11
SH25FL SH25HL	36	7	23.5	70	79 107	57	45	7×10(7×11.5)	6.5	58 86	6.5 20.5	29	11 (12)	M6×0.75	6	11
SH30FL SH30HL	42	9	31	90	98.6 124.6	72	52	9×12(9×14.5)	9	72 98	10 23	33	11 (15)	M6×0.75	7	11
SH35FL SH35HL	48	9.5	33	100	109 143	82	62	9×13	9	80 114	9 26	38.5	12	M6×0.75	8	11
SH45FL SH45HL	60	14	37.5	120	139 171	100	80	11×15	10	105 137	12.5 28.5	46	13	Rc1/8	10	13
SH55FL SH55HL	70	15	43.5	140	163 201	116	95	14×18	12	126 164	15.5 34.5	55	15	Rc1/8	11	13

Notes: 1) Parenthesized dimensions are applicable to stainless steel products.

A161

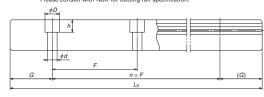

2) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type

Ball slide SAH 30 FL Z -K

Random-matching ball slide series code
SAH: SH Series random-matching ball slide
Size
Ball slide shape code (See page A140.)

SAH: SH Series random-matching ball slide
Size
Preload code
2: Slight preload



Reference number for rail of random-matching type

L1H30 1200 L C N -** P C Z Rail Random-matching rail series code Preload code (See page A142.) L1H: SH Series random-matching rai Z: Slight preload only Accuracy code: PC PC: Normal grade is only available. Rail length (mm) Design serial number Added to the reference number. Rail shape code: L *Butting rail specification I · Standard N: Non-butting. L: Butting specification Material/surface treatment code (See Table 21.)

*Please consult with NSK for butting rail specification.

Unit: mm

A162

			Rail				Basic	load rat	ing			We	ight	
Width	Height	Pitch	Mounting	G	Max. length	Dynamic	Static		Static	momer	nt (N·m)		Ball	Rail
			bolt hole		$L_{ m omax}$	С	C _o	M_{RO}	N	1 _{PO}	٨	1 _{YO}	slide	
W_1	H_1	F	d×D×h	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	20	2 000 (1 800)	10 100 13 400	18 800 28 200	98 147	87 193	525 1 020		-	0.17 0.25	1.6
20	18	60	6×9.5×8.5	20	3 960 (3 500)	16 300 21 600	29 600 44 500	199 298	167 360	1 050 1 990		875 1 670	0.45 0.65	2.6
23	22	60	7×11×9	20	3 960 (3 500)	22 400 32 000	37 500 62 500	295 490	246 615	1 540 3 300	1	1 290 2 780	0.63 0.93	3.6
28	26	80	9×14×12	20	4 000 (3 500)	35 500 46 000	63 000 91 500	600 870	540 1 060	3 150 5 600		2 630 4 700		5.2
34	29	80	9×14×12	20	4 000	47 500 61 500	80 500 117 000	950 1 380	780 1 600	4 500 8 300		3 750 7 000		7.2
45	38	105	14×20×17	22.5	3 990		128 000 175 000	1 970 2 680	1 550 2 760	9 000 14 700		7 550 12 400	_	12.3
53	44	120	16×23×20	30	3 960		181 000 247 000					12 700 20 800	_	16.9

³⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.

⁴⁾ High-precision grade and medium preload of random-matching type are not available for FL and HL models.

A-5-1.3 VH Series

1. Features

(1) High-performance end seals

High-performance end seals with a multi-lip structure prevent the entry of various foreign matters.

(2) NSK K1[™] lubrication unit (standard)

Outstanding lubrication support of NSK K1 further improves sealing capability and durability. Additional NSK K1 units can be mounted for specific usage conditions and environments.

(3) Tapped holes on a rail bottom surface (optional)

In addition to standard mounting bolt holes (counterbores on a rail top surface), a specification for tapped holes on a rail bottom surface for enhanced sealing capability is available for the VH Series. (Refer to the dimension table.)

(4) High self-aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, reducing moment rigidity.

This increases the capacity to absorb errors in installation.

(5) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, thus increasing load carrying capacity as well as rigidity in vertical direction.

(6) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is generally carried by the top rows, at where balls are contacting at two points. Because of this design, the bottom rows will carry load when a large impact load

is applied vertically as shown in **Fig. 3**. This assures high resistance to the impact load.

(7) High accuracy

As showing in **Fig. 4**, fixing the master rollers to the ball grooves is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(8) Random matching type

Random-matching of rails and ball slides are available.

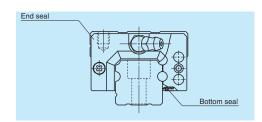


Fig. 1 VH Series

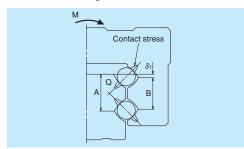


Fig. 2 Enlarged illustration of the offset Gothic arch groove

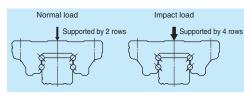


Fig. 3 When load is applied

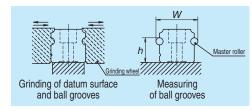


Fig. 4 Rail grinding and measuring

●Comparison with NSK standard products

Less than 1/10 the level of fine contaminants

Results of dust-proof tests reveal that the entry of fine contaminants is reduced to less than one-tenth of existing standard series due to improvements in sealing capability.

Test sample : VH30AN
Speed : 16.7 mm/sec
Contaminant : Graphite powder

(average grain size: 0.037 mm) +

Grease

Operating life under contaminated environments is more than 5 times longer

Durability test with rubber fragments

Extreme durability tests under contaminated environments using rubber fragments show that durability of the VH Series extended more than five times longer than the existing standard series, as shown in the graph.

Test sample : VH30AN, preload code Z1 (preload of 245 N)
Rail orientation : Horizontal (wall mount)

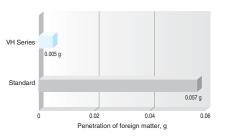
Speed : 500 mm/sec Lubrication : AS2 grease

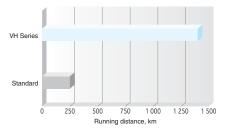
(prepacked AS2 only)
Contaminant : Rubber fragments

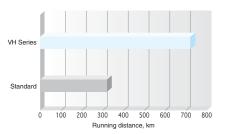
Durability test with fine wood particles

Extreme durability tests in a contaminated environment with fine wood particles show that durability of the VH Series is more than doubled compared to the standard series, as shown in the graph.

Test sample : VH30AN


Rail orientation : Horizontal (wall mount)


Speed : 400 mm/sec Lubrication : AS2 grease


(prepacked AS2 only)

(preload of 3 200 N)

Contaminant : Fine wood particles

Before the passage of ball slide (Heavily contaminated with wood particle)

After the passage of ball slide (All contaminant particles are swept away)

A163

2. Ball slide shape

Ball slide		Type (Upper row, Rating: L	ower row, Ball slide length)
Model	Shape/installation method	High-load type Standard	Super-high-load type Long
AN BN		AN L1	BN L ₁
AL BL		AL L1	BL
EM GM		EM L1	GM L ₁
FL HL		FL L1	HL L1
EL GL		EL L1	GL L1

3. Accuracy and preload

(1) Running parallelism of ball slide

Unit: µm Random-Preloaded assembly (not random matching) matching type Rail length Ultra Super High Precision Normal grade Normal grade KN KC (mm) precision K3 precision K4 precision K5 grade K6 KC over or less - 50 2 4.5 6 50 - 802 2 3 5 6 6 80 - 125 2 2 3.5 5.5 6.5 6.5 125 - 2002 2 4 6 7 200 - 250 2 2.5 5 7 8 8 250 - 3152 2.5 5 8 9 9 315 - 4002 3 6 9 11 11 400 - 500 2 3 6 10 12 12 500 - 630 3.5 12 14 14 2 7 630 - 8002 8 14 4.5 16 16 9 18 800 - 10002.5 5 16 18 1 000 - 1 250 3 6 10 17 20 20 1 250 - 1 600 4 11 19 23 23 1600 - 2000 4.5 8 13 21 26 26

Table 1

(2) Accuracy standard

2 000 - 2 500

2 500 - 3 150

3 150 – 4 000

The preloaded assembly has five accuracy grades; Ultra precision K3, Super precision K4, High precision K5, Precision K6, and Normal KN grades, while the random-matching type has Normal KC grade only.

15

17

23

22

25

30

• Tolerance of preloaded assembly

5

6

10

11

16

	Та	ble 2			Unit: µm			
Accuracy grade Characteristics	Ultra precision K3	Super precision K4	High precision K5	Precision grade K6	Normal grade KN			
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	±80 25			
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	±100 30			
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 , Fig. 5 and Fig. 6							

Tolerance of random-matching type: Normal grade KC

	Table 3	Unit: µm				
Model No. Characteristics	VH15, 20, 25, 30, 35	VH45, 55				
Mounting height H	±20	±30				
Variation of mounting height H	15① 30②	20① 35②				
Mounting width W_2 or W_3	±30	±35				
Variation of mounting width W₂ or W₃	25	30				
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1, F i	g. 5 and Fig. 6				

Note: ① Variation on the same rail ② Variation on multiple rails

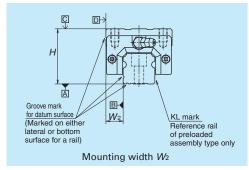
29

32

34

29

32


34

(3) Combinations of accuracy and preload

Table 4

			Table 4				
				Accurac	cy grade		
		Ultra precision	Super precision	High Precision	Precision grade	Normal grade	Normal grade
Wit	h NSK K1 lubrication unit	K3	K4	K5	K6	KN	KC
	Fine clearance						
	Z0			0			_
	Slight preload						
	Z1						
Preload	Medium preload						
Prel	Z3						
	Random-matching type with fine clearance			_	_		
	ZT		_			_	
	Random-matching type with slight preload						
	ZZ	_	_	_	_	_	0

(4) Assembled accuracy

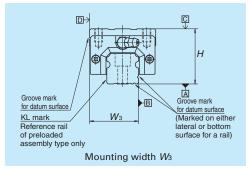
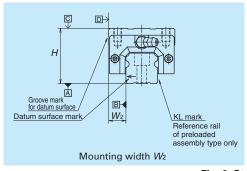



Fig. 5 Special high carbon steel

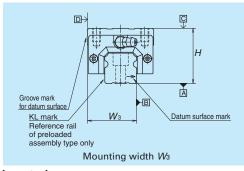


Fig. 6 Stainless steel

(5) Preload and rigidity

We offer five levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with random-matching type of Fine clearance ZT and Slight preload ZZ.

· Preload and rigidity of preloaded assembly

	Table 5								
	Preload (N)								
	Model No.	Preio	au (IV)	Vertical of	direction	Lateral	direction		
	Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload		
		Z1	Z3	Z1	Z3	Z1	Z3		
	VH15 AN, EM, EL, FL	78	490	137	226	98	186		
40	VH20 AN, EM, EL, FL	147	835	186	335	137	245		
type	VH25 AN, AL, EM, EL, FL	196	1 270	206	380	147	284		
	VH30 AN, AL	245	1 570	216	400	157	294		
9-	VH30 EM, EL, FL	294	1 770	265	480	186	355		
High-load	VH35 AN, AL, EM, EL, FL	390	2 350	305	560	216	390		
_	VH45 AN, AL, EM, EL, FL	635	3 900	400	745	284	540		
	VH55 AN, AL, EM, EL, FL	980	5 900	490	910	345	645		
type	VH15 BN, GM, GL, HL	98	685	196	345	137	284		
	VH20 BN, GM, GL, HL	196	1 080	265	480	196	355		
oac	VH25 BN, BL, GM, GL, HL	245	1 570	294	560	216	400		
늄	VH30 BN, BL, GM, GL, HL	390	2 260	360	665	265	480		
-ji	VH35 BN, BL, GM, GL, HL	490	2 940	430	795	305	570		
Super-high-load	VH45 BN, BL, GM, GL, HL	785	4 800	520	960	370	695		
S	VH55 BN, BL, GM, GL, HL	1 180	7 050	635	1 170	440	835		

Note: Clearance for Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

However, Z0 of PN grade is 0 to 15 μm.

· Preload of random-matching type

	Table 6	Unit: µm	
Model No.	Fine clearance	Slight preload	
wiodei ivo.	ZT	ZZ	
VH15	−4 − 15	-4 - 0	
VH20		- 5 - 0	
VH25		- 5 - 0	
VH30		-7 - 0	
VH35	_5 – 15	-7 - 0	
VH45		-7 - 0	
VH55		-9 - 0	

Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

4. Maximum rail length

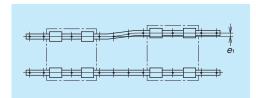

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 7 Length limitations of rails Ur							Unit: mm	
Series	Size							
Octios	Material	15	20	25	30	35	45	55
VH	Special high carbon steel	2 000	3 960	3 960	4 000	4 000	3 990	3 960
	Stainless steel	1 800	3 500	3 500	3 500			

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

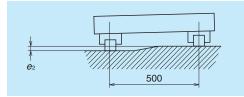


Fig. 7

Fig. 8

Table 8	Unit: um
	Onii: um

								O min pini
Value	Drolood	Model No.						
Value	Preload	VH15	VH20	VH25	VH30	VH35	VH45	VH55
Permissible values of	Z0, ZT	22	30	40	45	55	65	80
	Z1, ZZ	18	20	25	30	35	45	55
parallelism in two rails e ₁	Z3	13	15	20	25	30	40	45
Permissible values of	Z0, ZT	375 μm/500 mm						
parallelism (height) in two rails e_2	Z1, ZZ, Z3	330 μm/500 mm						

(2) Shoulder height of the mounting surface and corner radius r

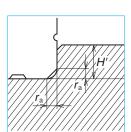


Fig. 9 Shoulder for the

rail datum surface

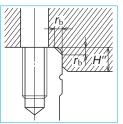


Fig. 10 Shoulder for the ball

Model No.	Corner radiu:	s (maximum)	Shoulder height		
wouer ivo.	$r_{\rm a}$	$r_{\rm b}$	H'	H"	
VH15	0.5	0.5	4	4	
VH20	0.5	0.5	4.5	5	
VH25	0.5	0.5	5	5	
VH30	0.5	0.5	6	6	
VH35	0.5	0.5	6	6	
VH45	0.7	0.7	8	8	
1/455	0.7	0.7	10	10	

Table 9

Unit: mm

(3) Specification for tapped holes on a rail bottom surface

- Applicable accuracy grades are precision grade
 (K6) and normal grades (KN and KC) only.
- The minimum rail length for production is 400 mm
- The tapping pitch is the same as the pitch for regular mounting bolt holes. Please refer to the dimension table.

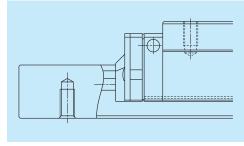


Fig. 11

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 12 and Table 10 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

Please ask NSK for stainless lubrication accessories.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 13)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6 \times 1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

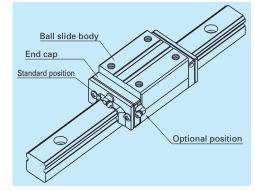


Fig. 13 Mounting position of lubrication accessories

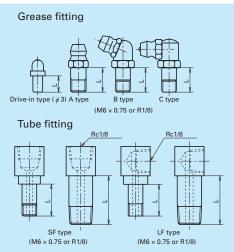


Fig. 12 Grease fitting and tube fitting

	Table 10 Unit: mr						
Model No.	Dust-proof	Grease fitting	Tube fitting				
	specification	Thread body length L	Thread body length L				
	Standard*	10	-				
VH15	Double seal	**	_				
	Protector	**	_				
	Standard*	12	_				
VH20	Double seal	18	_				
	Protector	18	-				
	Standard*	12	16				
VH25	Double seal	18	23***				
	Protector	18	18				
	Standard*	14	18				
VH30	Double seal	22	25				
	Protector	22	19				
	Standard*	14	15				
VH35	Double seal	22	25				
	Protector	22	22				
	Standard*	18	21.5				
VH45	Double seal	22	32				
	Protector	28	30				
	Standard*	18	20				
VH55	Double seal	22	32				
	Protector	28	30				

- *) NSK K1 units are mounted as a standard specification for VH series.
- **) A connector is required for grease fitting. Please contact
- ***) Only available for AN and BN type ball slides.

7. Dust-proof components

(1) Standard specification

To keep foreign matters from entering inside the ball slide, VH Series has an end seal on both ends, and bottom seals at the bottom.

Two NSK K1, one at each end, are installed as the standard equipment.

15

11

20

13

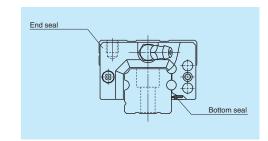


Fig. 14

Table 11 Seal friction per ball slide (maximum value)

Dali 3	Unit: N			
25	30	35	45	55
14	17	23	33	44

(2) Double seal and protector

Size

Series

VH

For VH Series, double-seal and protector can be installed only before shipping from the factory. Please consult NSK when you require them.

Table 12 shows the ball slide length when a double seal set and a protector are installed.

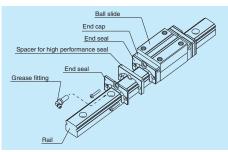


Fig. 15 Double seal



Fig. 16 Protector

Table 12 Dimension of installing dust-proof optional components

Unit: mm

Madal Na	Ball slide	Ball slide		Ball slide length L	
Model No.	length	model	Standard	Double seal installation	Protector installation
VH15	Standard type	AN, EM, EL, FL	70.6	81.6	77
VПІЭ	Long type	BN, GM, GL, HL	89.6	100.6	96
VH20	Standard type	AN, EM, EL, FL	87.4	100.4	94.2
VHZU	Long type	BN, GM, GL, HL	109.4	122.4	116.2
VH25	Standard type	AN, AL, EM, EL, FL	97	110	104.4
VHZS	Long type	BN, BL, GM, GL, HL	125	138	132.4
	Standard type	AN, AL	104.4	120.4	114.8
VH30	Flanged type	EM, EL, FL	117.4	133.4	127.8
	Long type	BN, BL, GM, GL, HL	143.4	159.4	153.8
VH35	Standard type	AN, AL, EM, EL, FL	128.8	144.8	139.2
VH35	Long type	BN, BL, GM, GL, HL	162.8	178.8	173.2
VH45	Standard type	AN, AL, EM, EL, FL	161.4	180.4	174.2
V 1145	Long type	BN, BL, GM, GL, HL	193.4	212.4	206.2
VH55	Standard type	AN, AL, EM, EL, FL	185.4	204.4	198.2
CCFIV	Long type	BN, BL, GM, GL, HL	223.4	242.4	236.2

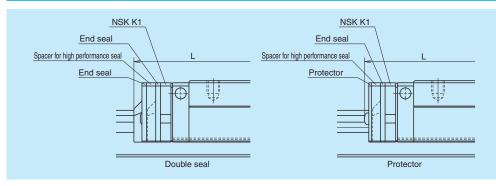


Fig. 17

(3) Cap to plug the rail mounting bolt hole Table 13 Caps to plug rail bolt hole

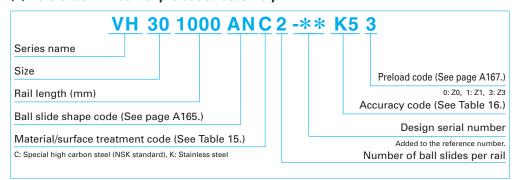
Model No.	Bolt to	Сар	Quantity
Wiodel No.	secure rail	reference No.	/case
VH15	M4	LG-CAP/M4	20
VH20	M5	LG-CAP/M5	20
VH25	M6	LG-CAP/M6	20
VH30, VH35	M8	LG-CAP/M8	20
VH45	M12	LG-CAP/M12	20
VH55	M14	LG-CAP/M14	20

(4) Inner seal

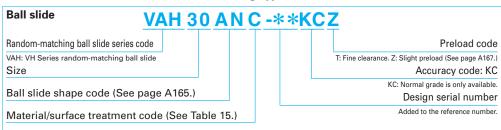
The availability of inner seal is limited to the models shown below.

Table 14

Series	Model No.
VH	VH20, VH25, VH30, VH45, VH55


A171

8. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

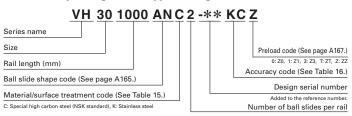
V1H30 1000 L C	N -** PC Z
Random-matching rail series code	Preload code (See page A167.)
V1H: VH Series random-matching rail	T: Fine clearance. Z: Slight preload
Size	Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available.
nair length (min)	Design serial number
Rail shape code: L	Added to the reference number.
L: Standard	*Butting rail specification
Material/surface treatment code (See Table 15.)	N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

The reference number coding for the assembly of random-matching type is the same as that of preloaded assembly. However, the preload code of "fine clearance T" and "slight preload Z" is only applicable (refer to page A167).

Table 15 Material/surface treatment code

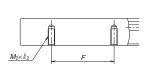
Code	Description
С	Special high carbon steel (NSK standard) + counterbores on a rail top surface
K	Stainless steel + counterbores on a rail top surface
D	Special high carbon steel with surface treatment + counterbores on a rail top surface
Н	Stainless steel with surface treatment + counterbores on a rail top surface
V	Special high carbon steel (NSK standard) + tapped holes on a rail bottom surface
J	Stainless steel + tapped holes on a rail bottom surface
W	Special high carbon steel with surface treatment + tapped holes on a rail bottom surface
S	Stainless steel with surface treatment + tapped holes on a rail bottom surface
Z	Other, special

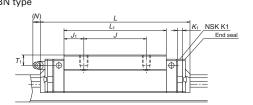
Table 16 Accuracy code


Accuracy	Standard (with NSK K1)
Ultra precision grade	К3
Super precision grade	K4
High precision grade	K5
Precision grade	K6
Normal grade	KN
Normal grade (random-matching type)	KC

Note: Refer to page A38 for NSK K1 lubrication unit.

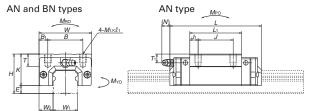
A173 A174

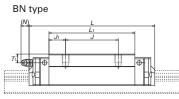

Unit: mm


9. Dimensions VH-AN (High-load type / Standard) VH-BN (Super-high-load type/ Long)

Front view of AN and BN type Side view of AN type

Specification for tapped holes on a rail Side view of BN type

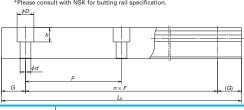

	A:	ssem	bly						Ball	slide)						
Model	Height			Width	Length		Мо	unting hole							Gre	ase 1	itting
No.																	
	Н	Ε	W_2	W	L	В	J	$M_1 \times \text{pitch} \times \ell_1$	B₁	L ₁	J_1	Κ	Τ	K ₁	Hole size	T_1	Ν
VH15AN VH15BN	1 72	4.6	9.5	34	70.6〈 77〉 89.6〈 96〉	26	26	M4×0.7×6	4	39 58	6.5 16	23.4	8	4.5	φ 3	8.5	1 〈 8.2〉
VH20AN VH20BN	1 30 1	5	12	44	87.4 (94.2) 109.4 (116.2)	32	36 50	M5×0.8×6	6	50 72	7 11	25	12	4.5	M6×0.75	5	11.1 (12.3)
VH25AN VH25BN	1 40 1	7	12.5	48	97 (104.4) 125 (132.4)	35	35 50	M6×1×9	6.5	00	11.5 18		12	5	M6×0.75	10	9.6 (12.9)
VH30AN VH30BN	1/15	9	16	60	104.4 (114.8) 143.4 (153.8)	ZI(1)	40 60	M8×1.25×10	10	59 98	9.5 19	36	14	5	M6×0.75	10	11.4 (14.2)
VH35AN VH35BN	1 55 1	9.5	18	70	128.8 (139.2) 162.8 (173.2)	50	50 72	M8×1.25×12	10	80 114	71	45.5	15	5.5	M6×0.75	15	10.9 (13.7)
VH45AN VH45BN	1 70	14	20.5	86	161.4 (174.2) 193.4 (206.2)	60	60 80	M10×1.5×17			22.5 28.5		17	6.5	Rc1/8	20	12.5 (14.1)
VH55AN VH55BN	ı en i	15	23.5	100	185.4 (198.2) 223.4 (236.2)	75	75 95	M12×1.75×18	12.5	126 164	25.5 34.5	65	18	6.5	Rc1/8	21	12.5 (14.1)


Notes: 1) Figure inside () is the dimension when equipped with the protector.

- 2) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.
- 3) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

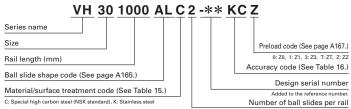
Reference number for ball slide of random-matching type

VAH 30 AN C -**KCZ Ball slide Random-matching ball slide series code Preload code (See page A167.) VAH: VH Series random-matching ball slide T: Fine clearance. Z: Slight preload Accuracy code: KC KC: Normal grade is only available. Ball slide shape code (See page A165.) Design serial number Added to the reference number. Material/surface treatment code (See Table 15.)

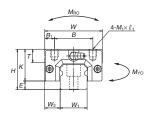


Reference number for rail of random-matching type

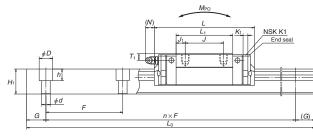
Rail	V1H30 1000 L C	<u>N -** PC Z</u>
Random-matching	rail series code	Preload code (See page A167.)
V1H: VH Series rai	ndom-matching rail	T: Fine clearance. Z: Slight preload
Size		Accuracy code: PC
Rail length (r	mm)	PC: Normal grade is only available. Design serial number
Rail shape co	ode: L	Added to the reference number.
L: Standard		*Butting rail specification
Material/surf	ace treatment code (See Table 15.)	N: Non-butting. L: Butting specification
		*Please consult with NSK for butting rail specification.
		, \$D ,

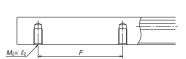

i Oli												t. IIIIIII				
				Rail				Basic load rating								
Width	Height	Pitch	Mounting hole	Tapped hole	G	Maximum	Dynamic	Static		Static	momer	nt (N·m)		Ball	Rail	
						length	С	C_{\circ}	M _{RO}	N	PO	N	1 _{YO}	slide		
W_1	H_1	F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)	
15	15	60	4.5×7.5×5.3	M5×0.8×8	20	2 000	10 800	20 700	108	94.5	575	79.5	480	0.18	1.6	
10	10	00	4.0/7.0/0.0	1010/0.0/0	20	[1 800]	14 600	32 000	166	216	1 150	181	965	0.26	1.0	
20	10	-00	0.05.05	N40: -1: -10	20	3 960	17 400	32 500	219	185	1 140	155	955	0.33	2.0	
20	18	60	6×9.5×8.5	M6×1×10	20	[3 500]	23 500	50 500	340	420	2 230	355	1 870	0.48	2.6	
23	22	60	7×11×9	M6×1×12	20	3 960	25 600	46 000	360	320	1 840	267	1 540	0.55	3.6	
23	22	00	781189	IVIOXIXIZ	20	[3 500]	34 500	71 000	555	725	3 700	610	3 100	0.82	3.0	
28	26	80	9×14×12	M8×1.25×15	20	4 000	31 000	51 500	490	350	2 290	292	1 920	0.77	5.2	
20	20	00	9X14X12	1010 × 1.20 × 10	20	[3 500]	46 000	91 500	870	1 030	5 600	865	4 700	1.3	5.2	
24	20	80	0.414.410	M0v1 0Ev17	20	4.000	47 500	80 500	950	755	4 500	630	3 800	1.5	7.2	
34	29	80	9×14×12	M8×1.25×17	20	4 000	61 500	117 000	1 380	1 530	8 350	1 280	7 000	2.1	1.2	
45	38	105	14220217	M12×1.75×24	22 5	3 990	81 000	140 000	2 140	1 740	9 750	1 460	8 150	3.0	12.3	
45	30	105	14X2UX17	IVI12X1.73X24	22.5	3 990	99 000	187 000	2 860	3 000	15 600	2 520	13 100	3.9	12.3	
53	44	120	16×23×20	M14×2×24	30	3 960	119 000	198 000	3 600	3 000	16 300	2 510	13 700	4.7	16.9	
55	44	44 120 16×23×20 1V114×2×24 30	30	3 900	146 000	264 000	4 850	5 150	26 300	4 350	22 100	6.1	10.9			

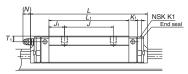
⁴⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C_{100} for a 100-km rating fatigue life, divide C by 1.26.


A175 A176

Unit: mm


VH-AL (High-load type / Standard) VH-BL (Super-high-load type / Long)


Front view of AL and BL type


Side view of AL type

Specification for tapped holes on a rail bottom face

Side view of BL type

	A	ssem	bly		Ball slide												
Model	Height			Width	Length		Мо	unting hole							Gre	ase '	fitting
No.	Н	Ε	W_2	W	L	В	J	$M_1 \times \text{pitch} \times \ell_1$	B₁	L ₁	J_1	К	Т	<i>K</i> ₁	Hole size	<i>T</i> ₁	N
VH25AL VH25BL	36	7	12.5	_	1175 /137/1			M6×1×6	6.5	86	18		12	5	M6×0.75	6	9.6 (12.9)
VH30AL VH30BL	1 1/2	9	16		104.4 (114.8) 143.4 (153.8)	1	I DU	M8×1.25×8	10	59 98	9.5 19	33	14	5	M6×0.75	7	11.4 (14.2)
VH35AL VH35BL	48	9.5	18		1162 8 (1 /3 2)	1	1//	M8×1.25×8	10	80 114	-	38.5	15	5.5	M6×0.75	8	10.9 (13.7)
VH45AL VH45BL	60	14	20.5		1193 4 (206 2)		180	M10×1.5×10	13		22.5 28.5	I/Ih	17	6.5	Rc1/8	10	12.5 (14.1)
VH55AL VH55BL	70	15	23.5	100	185.4 (198.2) 223.4 (236.2)	75	75 95	M12×1.75×12	12.5	126 164	25.5 34.5	55	15	6.5	Rc1/8	11	12.5 (14.1)

Notes: 1) Figure inside $\langle \ \rangle$ is the dimension when equipped with the protector.

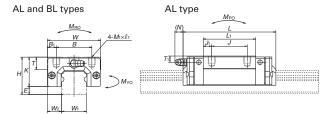
- 2) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.
- 3) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

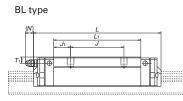
Reference number for ball slide of random-matching type

Ball slide

VAH 30 AL C -**KCZ

Random-matching ball slide series code


VAH: VH Series random-matching ball slide
Size

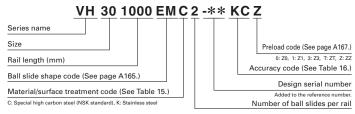

Preload code (See page A167.)

T. Fine clearance. Z: Slight preload
Accuracy code: KC

KC: Normal grade is only available.
Design serial number

Added to the reference number.

Reference number for rail of random-matching type

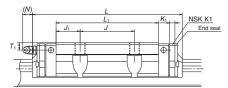

	5 7.	
Rail V1H30 1000 L	<u>CN -** PC Z</u>	
Random-matching rail series code	Preload code (See page A167.)	
V1H: VH Series random-matching rail	T: Fine clearance. Z: Slight preload	
Size	Accuracy code: PC	
Doil Ionath (man)	PC: Normal grade is only available.	
Rail length (mm)	Design serial number	
Rail shape code: L	Added to the reference number.	
L: Standard	*Butting rail specification	
Material/surface treatment code (See Table 15.)	N: Non-butting. L: Butting specification	
	*Please consult with NSK for butting rail specification.	
	$\frac{\phi D}{\phi}$	
1711		
H > (
	<i>φd</i>	
	G n×F	(G)
	L ₀	
	In the second se	

					12							-1			
				Rail					Basic I	oad rati	ing			We	ight
Width	Height	Pitch	Mounting hole	Tapped hole	G	Maximum	Dynamic	Dynamic Static Static moment (N·m)		Static moment		moment (N·m)			Rail
						length	С	C_{\circ}	M _{RO}	N	1 _{PO}	N	1 _{YO}	slide	
W_1	H ₁	F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
23	22	60	7×11×9	M6×1×12	20	3 960	25 600	46 000	360	320	1 840	267	1 540	0.46	3.6
23	22	00	//////	IVIOXIXIZ	20	[3 500]	34 500	71 000	555	725	3 700	610	3 100	0.69	3.0
28	26	80	9×14×12	M8×1.25×15	20	4 000	31 000	51 500	490	350	2 290	292	1 920	0.69	5.2
20	20	00	3/14/12	1010 × 1.25 × 15	20	[3 500]	46 000	91 500	870	1 030	5 600	865	4 700	1.16	5.2
34	29	80	9×14×12	M8×1.25×17	20	4 000	47 500	80 500	950	755	4 500	630	3 800	1.2	7.2
34	23	00	3/14/12	1010 × 1.25 × 17	20	4 000	61 500	117 000	1 380	1 530	8 350	1 280	7 000	1.7	7.2
45	38	105	14×20×17	M12×1.75×24	22.5	3 990	81 000	140 000	2 140	1 740	9 750	1 460	8 150	2.2	12.3
45	30	103	14/20/17	10112 × 1.73 × 24	22.0	3 990	99 000	187 000	2 860	3 000	15 600	2 520	13 100	2.9	12.3
53	44	120	16×23×20	M14×2×24	30	3 960	119 000	198 000	3 600	3 000	16 300	2 510	13 700	3.7	16.9
55	44	120	10223220	1011472724	30	3 300	146 000	264 000	4 850	5 150	26 300	4 350	22 100	4.7	10.9

⁴⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁∞ for a 100-km rating fatigue life, divide C by 1.26.

A177 A178

VH-EM (High-load type / Standard) VH-GM (Super-high-load type / Long)



Front view of EM and GM type Side view of EM type $\frac{M_{\text{PO}}}{M_{\text{PO}}} = \frac{A - M_{\text{IV}} \, \ell_{1}}{M_{\text{PO}}} = \frac{A - M_{\text{IV}} \, \ell_{1}}{M_{\text{$

Specification for tapped holes on a rail bottom face

Side view of GM type

	As	sem	bly						В	all sli	de							
Model	Height			Width	Length		Ν	Nounting hole								Gre	ease	fitting
No.								$Q_1 \times \ell_1$										
	Н	Ε	W_2	W	L	В	J	$M_1 \times \text{pitch} \times \ell_1$	Q_2	B ₁	L_1	J_1	Κ	Τ	K ₁	Hole size	T_1	Ν
VH15EM VH15GM	24	4.6	16	47	70.6 〈 77〉 89.6 〈 96〉	38	30	M5×0.8×7	4.4	4.5	39 58	4.5 14	19.4	8	4.5	ø 3	4.5	1 〈 8.2〉
VH20EM VH20GM	30	5	21.5	63	87.4 (94.2) 109.4 (116.2)	53	40	M6×1×9.5	5.3	5	50 72	116	25	10	4.5	M6×0.75	5	11.1 (12.3)
VH25EM VH25GM	36	7	23.5	70	97 〈104.4〉 125 〈132.4〉	57	45	M8×1.25×10 [M8×1.25×11.5]	6.8	6.5	58 86	6.5 20.5	29	11 [12]	5	M6×0.75	6	9.6 (12.9)
VH30EM VH30GM	42	9	31	90	117.4 (127.8) 143.4 (153.8)	1 / /	52	M10×1.5×12 [M10×1.5×14.5]	8.6	9	72 98	-	33	11 [15]	5	M6×0.75	7	11.4 (14.2)
VH35EM VH35GM	48	9.5	33	100	162.8(1/3.2)	82	1		8.6		80 114	7h	38.5		5.5	M6×0.75	8	10.9 (13.7)
VH45EM VH45GM	60	14	37.5	120	161.4 (174.2) 193.4 (206.2)	100	80	M12×1.75×15	10.5	10	105 137	12.5 28.5	46	13	6.5	Rc1/8	10	12.5 (14.1)
VH55EM VH55GM	70	15	43.5	140	185.4 (198.2) 223.4 (236.2)	116	95	M14×2×18	12.5	וווי לי ווו		15.5 34.5	55	15	6.5	Rc1/8	11	12.5 (14.1)

Notes: 1) Figure inside $\langle \ \rangle$ is the dimension when equipped with the protector.

- 2) Figure inside [] is applied to stainless products.
- 3) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.
- 4) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

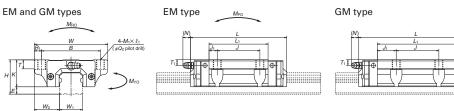
Reference number for ball slide of random-matching type

Ball slide

VAH 30 EM C -***KCZ

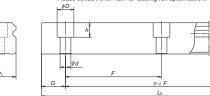
Random-matching ball slide series code
VAH: VH Series random-matching ball slide
Size

Ball slide shape code (See page A165.)


Material/surface treatment code (See Table 15.)

Preload code (See page A167.)

T. Fine clearance. Z: Slight preload
Accuracy code: KC
KC: Normal grade is only available.

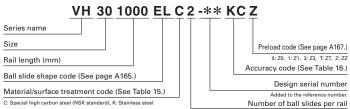

Design serial number

Added to the reference number.

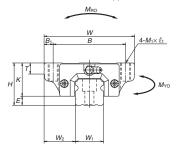
Reference number for rail of random-matching type

			•
Rail	V1H30 1000 L	<u>CN-*</u>	* PC Z
Random-matching	rail series code		Preload code (See page A167.)
V1H: VH Series ran	ndom-matching rail		T: Fine clearance. Z: Slight preload
Size			Accuracy code: PC
Rail length (r	nm)		PC: Normal grade is only available. Design serial number
Rail shape co	ode: L	'	Added to the reference number.
L: Standard			*Butting rail specification
Material/surf	ace treatment code (See Table 15.)		N: Non-butting. L: Butting specification
	,	*Please	consult with NSK for butting rail specification.
		φD	• • • • • • • • • • • • • • • • • • • •

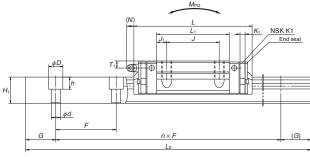
- 1	Init:	mn

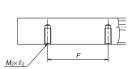

	Rail							Basic load rating							Weight	
Width	Height	Pitch	Mounting hole	Tapped hole	G	Maximum	Dynamic	Static		Static moment (N·m)			Ball	Rail		
						length L _{Omax}	С	C _o	M _{RO}	N	1 _{PO}	N	1 _{YO}	slide		
W_1	H ₁	F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)		(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)	
15	15	60	4.5×7.5×5.3	M5×0.8×8	20	2 000	10 800	20 700	108	94.5	575			0.17	1 1 6	
						[1 800]	14 600	32 000	166	216	1 150	181	965	0.25		
20	10		C. O F. O F	N 40110		3 960	17 400	32 500	219	185	1 140	155	955	0.45	0.0	
20	18	60	6×9.5×8.5	M6×1×10	20	[3 500]	23 500	50 500	340	420	2 230	355	1 870	0.65	2.6	
23	22	60	7×11×9	M6×1×12	20	3 960	25 600	46 000	360	320	1 840	267	1 540	0.63	3.6	
23	22	00	781189	IVIOXIXIZ	20	[3 500]	34 500	71 000	555	725	3 700	610	3 100	0.93	3.0	
28	26	80	9×14×12	M8×1.25×15	20	4 000	35 500	63 000	600	505	3 150	425	2 650	1.2	5.2	
20	20	00	9X14X1Z	1010 × 1.20 × 10	20	[3 500]	46 000	91 500	870	1 030	5 600	865	4 700	1.6	5.2	
24	20	00	9×14×12	M0v1 0Ev17	20	4 000	47 500	80 500	950	755	4 500	630	3 800	1.7	7.0	
34	29	80	9×14×12	M8×1.25×17	20	4 000	61 500	117 000	1 380	1 530	8 350	1 280	7 000	2.4	7.2	
45	38	105	14,20,17	M12×1.75×24	22 5	3 990	81 000	140 000	2 140	1 740	9 750	1 460	8 150	3.0	12.3	
45	30	105	14X2UX17	VI12X1./3X24	22.5	3 990	99 000	187 000	2 860	3 000	15 600	2 520	13 100	3.9	12.3	
53	11	120	16×23×20	M14×2×24	30	3 960	119 000	198 000	3 600	3 000	16 300	2 510	13 700	5.0	16.9	
53	44	120	10x23x20	IVI14XZXZ4	30	3 900	146 000	264 000	4 850	5 150	26 300	4 350	22 100	6.5	10.9	

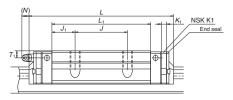
⁵⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface.


To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.

A179 A180

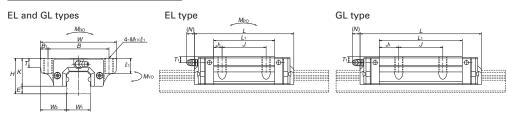

VH-EL (High-load type / Standard) VH-GL (Super-high-load type / Long)


Front view of EL and GL type


Side view of EL type

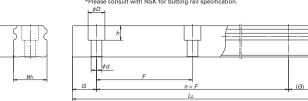
Specification for tapped holes on a rail bottom face

Side view of GL type


	A:	Assembly)						
Model	Height			Width	Length		Мо	unting hole							Gre	ase f	itting
No.																	
	Н	Ε	W_2	W	L	В	J	$M_1 \times \text{pitch} \times \ell_1$	B₁	L ₁	J_1	Κ	Τ	<i>K</i> ₁	Hole size	T_1	Ν
VH15EL VH15GL	24	4.6	16	47	70.6〈 77〉 89.6〈 96〉	38	30	M5×0.8×8	4.5	39 58	4.5 14	19.4	8	4.5	ø 3	4.5	1 〈 8.2〉
VH20EL VH20GL	30	5	21.5	63	87.4 (94.2) 109.4 (116.2)	53	40	M6×1×10	5	50 72	5 16	25	10	4.5	M6×0.75	5	11.1 (12.3)
VH25EL VH25GL	36	7	23.5	70	97 (104.4) 125 (132.4)	h /	45	M8×1.25×16 [M8×1.25×12]	6.5	58 86	6.5 20.5	29	11 [12]	5	M6×0.75	6	9.6 (12.9)
VH30EL VH30GL	42	9	31	90	117.4 (127.8) 143.4 (153.8)	1.7	52	M10×1.5×18 [M10×1.5×15]	9	72 98	10 23	33	11 [15]	5	M6×0.75	7	11.4 (14.2)
VH35EL VH35GL	48	9.5	33	100	128.8 (139.2) 162.8 (173.2)	82	62	M10×1.5×20	9	80 114	9 26	38.5	12	5.5	M6×0.75	8	10.9 (13.7)
VH45EL VH45GL	60	14	37.5	120	161.4 (174.2) 193.4 (206.2)	100	80	M12×1.75×24	10	105 137	28.5	46		6.5	Rc1/8	10	12.5 (14.1)
VH55EL VH55GL	70	15	43.5	140	185.4 (198.2) 223.4 (236.2)	116	95	M14×2×28	12	126 164	15.5 34.5	55	15	6.5	Rc1/8	11	12.5 (14.1)

Notes: 1) Figure inside $\langle \ \rangle$ is the dimension when equipped with the protector.

- 2) Figure inside [] is applied to stainless products.
- 3) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.
- 4) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.


Reference number for ball slide of random-matching type

Ball slide VAH 30	DELC-**KCZ
Random-matching ball slide series code	Preload code (See page A167.)
VAH: VH Series random-matching ball slide Size	T: Fine clearance. Z: Slight preload Accuracy code: KC
Ball slide shape code (See page A165.)	KC: Normal grade is only available. Design serial number
Material/surface treatment code (See Ta	ble 15.) Added to the reference number.

Reference number for rail of random-matching type

Random-matching	rail series code					Preload code (See page A167.)
V1H: VH Series rai	ndom-matching rail					T: Fine clearance. Z: Slight preload
Size						Accuracy code: PC
Rail length (r	nm)					PC: Normal grade is only available. Design serial number
Rail shape co	de: L					Added to the reference number.
L: Standard			_			*Butting rail specification
Material/surf	ace treatment code	See Table 15	.)			N: Non-butting. L: Butting specification
Material/surf	ace treatment code	See Table 15	.)	*Please	consult v	with NSK for butting rail specification
				φD		3

Unit: mm

					Rail			Basic load rating								Weight	
W	idth	Height	Pitch	Mounting hole	Tapped hole	G	Maximum	Dynamic	Dynamic Static Static moment (N·m)			Ball	Rail				
							length L _{0max}	С	C_{0}	M _{RO}	N	M_{PO} M_{YO}			slide		
V	V_1	H_1	F	$d \times D \times h$	$M_2 imes ext{pitch} imes extbf{\ell_2}$	(reference)		(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)	
1	15	15	60	4.5×7.5×5.3	M5×0.8×8	20	2 000	10 800	20 700	108	94.5	575			0.17	1.6	
							[1 800]	14 600	32 000	166	216	1 150	_		0.25		
_	20	18	60	6×9.5×8.5	M6×1×10	20	3 960	17 400	32 500	219	185	1 140	155	955	0.45	2.6	
2	ا 2	18	00	0X9.5X8.5	IVIOXIXIU	20	[3 500]	23 500	50 500	340	420	2 230	355	1 870	0.65	2.0	
2	23	22	60	7×11×9	M6×1×12	20	3 960	25 600	46 000	360	320	1 840	267	1 540	0.63	3.6	
_	-	22	00	721120	IVIOXIXIZ	20	[3 500]	34 500	71 000	555	725	3 700	610	3 100	0.93	0.0	
_	28	26	80	9×14×12	M8×1.25×15	20	4 000	35 500	63 000	600	505	3 150	425	2 650	1.2	5.2	
	-0	20	00	5/14/12	1010 1.20 10	20	[3 500]	46 000	91 500	870	1 030	5 600	865	4 700	1.6	0.2	
-	34	29	80	9×14×12	M8×1.25×17	20	4 000	47 500	80 500	950	755	4 500	630	3 800	1.7	7.2	
_)4	23	00	3/14/12	1010 × 1.25 × 17	20	4 000	61 500	117 000	1 380	1 530	8 350	1 280	7 000	2.4	1.2	
_	15	38	105	14~20~17	M12×1.75×24	22.5	3 990	81 000	140 000	2 140	1 740	9 750	1 460	8 150	3.0	12.3	
-	ا د	30	103	14820817	1011221.73224	22.0	3 330	99 000	187 000	2 860	3 000	15 600	2 520	13 100	3.9	12.5	
-	53	11	120	16×23×20	M14×2×24	30	3 960	119 000	198 000	3 600	3 000	16 300	2 510	13 700	5.0	16.9	
5	00	44	120	10x23x20	IVIT4XZXZ4	30	3 900	146 000	264 000	4 850	5 150	26 300	4 350	22 100	6.5	10.9	

⁵⁾ Basic dynamic load rating is a load that allows for a 50 km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.

A181 A182

VH-FL (High-load type / Standard) VH-HL (Super-high-load type / Long)

Series name

Size

Rail length (mm)

Ball slide shape code (See page A165.)

Material/surface treatment code (See Table 15.)

C: Special high carbon steel (NSK standard), K: Stainless steel

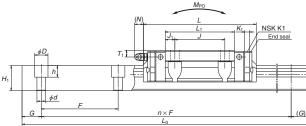
OH TO Standard (See Page A167.)

Preload code (See page A167.)

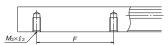
0: 20, 1: 21, 3: 23, 1: 21, 2: 22

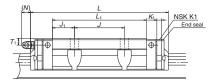

Accuracy code (See Table 16.)

Design serial number


Added to the reference number.

Number of ball slides per rail


Front view of FL and HL type



Specification for tapped holes on a rail bottom face

Side view of HL type

	A:	ssem	bly			Ball	slide)									
Model	Height			Width	Length		Мοι	unting hole							Gre	ase f	fitting
No.	l	_	147		,						,	16	_	,,		_	
	Н	Ε	W_2	W	L	В	J	$Q_1 \times \ell_1$	B₁	L ₁	J_1	K	1	K_1	Hole size	T_1	N
VH15FL VH15HL	24	4.6	16	47	70.6 〈 77〉 89.6 〈96〉	38	30	4.5×7	4.5	39 58	4.5 14	19.4	8	4.5	ø 3	4.5	1 〈 8.2〉
VH20FL VH20HL	30	5	21.5	63	87.4 (94.2) 109.4(116.2)	53	40	6×9.5	5	50 72	5 16	25	10	4.5	M6×0.75	5	11.1 (12.3)
VH25FL VH25HL	36	7	23.5	70	97 (104.4) 125 (132.4)	57	45	7×10[7×11.5]	6.5	58 86	6.5 20.5	29	11 [12]	5	M6×0.75	6	9.6 (12.9)
VH30FL VH30HL	42	9	31	90	117.4 (127.8) 143.4 (153.8)	72	52	9×12[9×14.5]	9	72 98	10 23	33	11 [15]	5	M6×0.75	7	11.4 (14.2)
VH35FL VH35HL	48	9.5	33	100	128.8 (139.2) 162.8 (173.2)	82	62	9×13	9	80 114	9 26	38.5	12	5.5	M6×0.75	8	10.9 (13.7)
VH45FL VH45HL	60	14	37.5	120	161.4 (174.2) 193.4 (206.2)	100	80	11×15	10	105 137	12.5 28.5	/lh	13	6.5	Rc1/8	10	12.5 (14.1)
VH55FL VH55HL	70	15	43.5	140	185.4 (198.2) 223.4 (236.2)	116	95	14×18	12	126 164	15.5 34.5	hh l	15	6.5	Rc1/8	11	12.5 (14.1)

Notes: 1) Figure inside $\langle \ \rangle$ is the dimension when equipped with the protector.

- 2) Figure inside [] is applied to stainless products.
- 3) VH Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.
- 4) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type

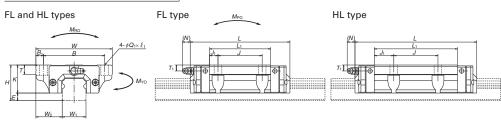
Ball slide

VAH 30 FL C -**KCZ

Random-matching ball slide series code

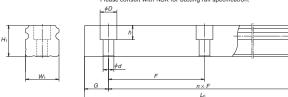
VAH: VH Series random-matching ball slide
Size

Ball slide shape code (See page A165.)


Material/surface treatment code (See Table 15.)

Preload code (See page A167.)

T: Fine clearance. 2: Slight preload
Accuracy code: KC


KC: Normal grade is only available.
Design serial number

Added to the reference number.

Reference number for rail of random-matching type

Rail	V1H30 1000 L C	<u>N -** PC Z</u>
Random-matching	rail series code	Preload code (See page A167.)
V1H: VH Series ran	ndom-matching rail	T: Fine clearance. Z: Slight preload
Size		Accuracy code: PC
Rail length (r	nm)	PC: Normal grade is only available. Design serial number
Rail shape co	ode: L	Added to the reference number.
L: Standard		*Butting rail specification
Material/surf	ace treatment code (See Table 15.)	N: Non-butting. L: Butting specification
	,,,,,	*Please consult with NSK for butting rail specification.
		φD

- 1	Init:	mn

	Rail							Basic load rating							
Width	Height	Pitch	Mounting hole	Tapped hole	G	Maximum	Dynamic	Static		Static moment (N·m)				Ball	Rail
						length L _{Omax}	С	C_{0}	M _{RO}	N	1 _{PO}	N	1 _{YO}	slide	
W_1	H ₁	F	$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	15	60	4.5×7.5×5.3	M5×0.8×8	20	2 000	10 800	20 700	108	94.5	575			0.17	1.6
10	10	00	1.0/1/1.0/10.0	1010/0.0/0		[1 800]	14 600	32 000	166	216	1 150	181	965	0.25	1.0
20	18	60	6×9.5×8.5	M6×1×10	20	3 960	17 400	32 500	219	185	1 140	155	955	0.45	2.6
20	10	00	0x9.5x6.5	IVIOXIXIO	20	[3 500]	23 500	50 500	340	420	2 230	355	1 870	0.65	2.0
23	22	60	7×11×9	M6×1×12	20	3 960	25 600	46 000	360	320	1 840	267	1 540	0.63	3.6
23	22	00	/X11X9	IVIOXIXIZ	20	[3 500]	34 500	71 000	555	725	3 700	610	3 100	0.93	3.6
28	26	80	9×14×12	M8×1.25×15	20	4 000	35 500	63 000	600	505	3 150	425	2 650	1.2	5.2
20	20	00	9X14X12	1010 × 1.20 × 10	20	[3 500]	46 000	91 500	870	1 030	5 600	865	4 700	1.6	5.2
34	29	80	9×14×12	M8×1.25×17	20	4 000	47 500	80 500	950	755	4 500	630	3 800	1.7	7.2
34	29	00	9X14X12	IVIOX 1.23X 17	20	4 000	61 500	117 000	1 380	1 530	8 350	1 280	7 000	2.4	1.2
45	38	105	14,20,47	M12×1.75×24	22 5	3 990	81 000	140 000	2 140	1 740	9 750	1 460	8 150	3.0	12.3
45	30	105	14X20X17	VI12X1./3X24	22.5	3 990	99 000	187 000	2 860	3 000	15 600	2 520	13 100	3.9	12.3
53	44	120	16×23×20	M14×2×24	30	3 960	119 000	198 000	3 600	3 000	16 300	2 510	13 700	5.0	16.9
33	44	120	10x23x20	IVI14XZXZ4	30	3 900	146 000	264 000	4 850	5 150	26 300	4 350	22 100	6.5	10.9

⁵⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to for a C_{100} for a 100-km rating fatigue life, divide C by 1.26.

A183 A184

A-5-1.4 TS Series

1. Features

(1) Inexpensive

Newly developed manufacturing process of rail and design of ball slide contribute to substantial cost reductions.

(2) High capacity

Optimum ball diameter for higher capacity design.

(3) High dust proof capability

Dust-tight high performance end seals, bottom seals, and inner seals are built-in as a standard feature. (Optional protector is available for protection against hot debris such as welding spatters or hard contaminants.)

(4) Maintenance free

NSK K1 lubrication unit is equipped as a standard specification for long-term maintenance-free operation.

(5) Rust prevention

NSK provides a lineup of products with antirust surface treatment for corrosive environments.

(6) Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

2. Ball slide shape

Ball slide Model	Shape / installation method	Туре
AN		AN

3. Accuracy and preload

- · Accuracy grade: Normal grade for transportation
- · Torelance of mounting height H: ±0.1 mm
- · Running parallelism: 100 µm or less
- · Running parallelism (height): 500 µm/500 mm
- · Clearance: 60 µm or less

4. Maximum rail length

A185

Table 1 shows the limitations of rail length.

Table 1 Length limitations of rails

	Tubic i Length		tions	or run		t: mm
Series	Size Material	15	20	25	30*	35*
TS	Special high carbon steel	1 960	2 920	4 000	4 040	4 040

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. In such a case, please consult NSK.

*) The maximum length of a rail coated with fluoride low temperature chrome plate is 4 000 mm (G = 80).

5. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 1 and Table 2 show grease fittings and tube

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. You may mount them on the side of end cap for an option. (Fig. 2)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end

When using a piping unit with thread of M6 x 1, you require a connector for the connection to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

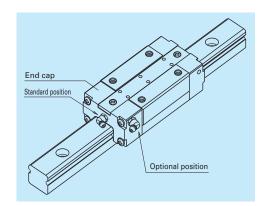


Fig. 2

6. Dust-proof components

(1) Standard specification

To keep contaminants from entering inside the ball slide, the TS Series has an end seal and NSK K1 on both ends, and bottom seals at the bottom. Also, the inner seal is a standard equipment. The series can be readily used in a normal environment.

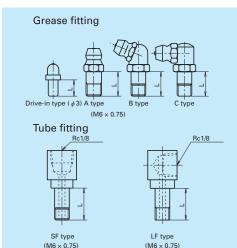


Fig. 1 Grease fitting and tube fitting

Table 2 Unit: mm											
Model No.	Dust-proof	Grease fitting	Tube fitting								
	specification	Thread body length L	Thread body length L								
TS15	Standard*	5	-								
1515	Protector	5	_								
TS20	Standard*	5	6								
1320	Protector	5	6								
TS25	Standard*	5	6								
1325	Protector	5	6								
TS30	Standard*	5	6								
1530	Protector	5	6								
TS35	Standard*	5	6								
1 335	Protector	5	6								

*) NSK K1 units are mounted as a standard specification for TS Series.

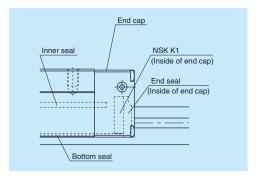


Fig. 3

A186

(2) Protector

Please consult NSK as the protector for TS Series can be installed only before shipping from the factory.

Fig. 4 and Table 3 show the ball slide length when protector is installed.

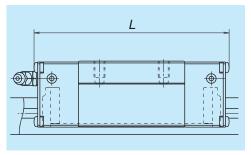


Fig. 4

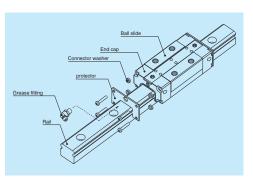


Fig. 5 Protector

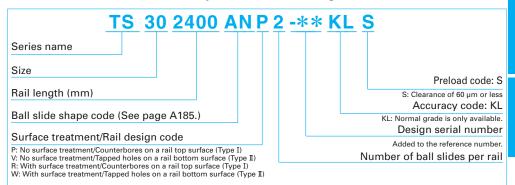
Table 3 Dimension when equipped with the protector

Model No.	Ball slide length L		
	Standard length	Protector installation*	
TS15	72.2	77.6	
TS20	87	92.8	
TS25	100	106.4	
TS30	115 123.4		
TS35	135.8	144.2	

^{*)} The table shows the ball slide length when one protector is installed in both ends.

(3) Cap to plug the rail mounting bolt hole Table 4 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
	secure rail	reference No.	/case
TS15	M4	LG-CAP/M4	20
TS20	M5	LG-CAP/M5	20
TS25	M6	LG-CAP/M6	20
TS30, TS35	M8	LG-CAP/M8	20

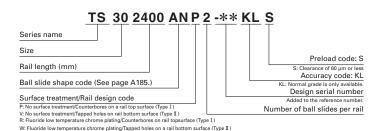

Note: Cap to plug the bolt hole for rail mounting is exclusive for rail design of type I.

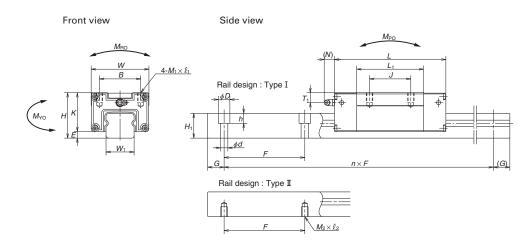
7. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for assembly of random-matching ball slide and rail




(2) Reference number for random-matching type

8. Dimensions

	Assembly Ball slide														
Model No.	Height Width Length Mounting hole				Grease fitting		width	height	Pitch						
Wiodol Wo.	H _{±0.1}	Ε	W	L	В	J	$M_1 \times \text{pitch} \times \ell_1$	L ₁	К	Hole size	<i>T</i> ₁	N	W₁	H_1	F
TS15AN	28	3	34	72.2	26	26	M4×0.7×6	39	25	φ3	6.5	5	15	14	120
TS20AN	30	3	44	87	32	36	M5×0.8×8	50	27	M6×0.75	6.5	14	20	15	120
TS25AN	40	4	48	100	35	35	M6×1×9	58	36	M6×0.75	9.5	14	23	20	120
TS30AN	45	6.5	60	115	40	40	M8×1.25×10	70	38.5	M6×0.75	9.5	14	28	25	160
TS35AN	55	8	70	135.8	50	50	M8×1.25×12	81.8	47	M6×0.75	12	14	34	30	160

Notes: 1) TS Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

Reference number for ball slide of random-matching type

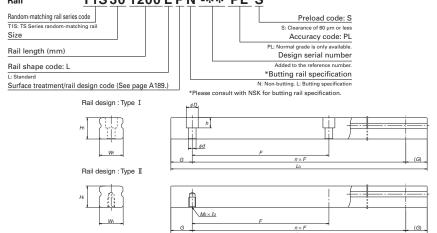
Ball slide

TAS 30 AN -F

Random-matching ball slide series code

TAS: TS Series random-matching ball slide

Size


Ball slide shape code (See page A185.)

MRO

MRO

MO COde: No surface treatment - AS2 grease
-F: Fluoride low temperature chrome plating + AS2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluoride low temperature chrome plating + LG2 grease
-F50: Fluor

Reference number for rail of random-matching type Rail T1S 30 1200 L P N -** PL S

Unit: mm

Rail	Rail				Basic load rating						Weight	
Mour	Mounting hole			Dynamic	Static		Static moment (N·m))	Ball	Rail
Type I	Type II		length	С	C_{\circ}	M_{RO}	N	1 _{PO}	N	1 _{YO}	slide	
$d \times D \times h$	$M_2 \times \text{pitch} \times \ell_2$	(Reference)	$L_{ m 0max}$	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
4.5×7.5×5.3	M4×0.7×6	20	1 960	9 800	11 800	92	63.5	585	63.5	585	0.21	1.5
6×9.5×8.5	M5×0.8×8	20	2 920	15 700	19 100	196	137	1 110	137	1 110	0.37	2.1
7×11×9	M6×1×9	20	4 000	21 800	26 000	320	217	1 730	217	1 730	0.47	3.4
9×14×12	M8×1.25×12	20	4 040*	31 000	37 500	565	395	2 810	395	2 810	0.77	5.3
9×14×12	M8×1.25×12	20	4 040*	46 500	53 000	970	635	4 750	635	4 750	1.3	7.7

²⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁₀₀ for a 100-km fatigue life, divide C by 1.26.

³⁾ Consult with NSK when using a TS Series in a single rail configuration.

^{*} Maximum length of fluoride low-temperature chrome plated products is 4 000 (G = 80).

A-5-1.5 LS Series

1. Features

(1) High self aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, and thus reducing moment rigidity. This increases the capacity to absorb errors in installation.

(2) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, and thus increasing load carrying capacity as well as rigidity against the load in vertical direction.

(3) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is usually carried by top 2 rows, where balls are contacting at two points. Because of this design, the bottom rows will carry the load when a large impact load is applied as shown in Fig. 3. This assures high resistance to the impact load.

(4) High accuracy

As showing in **Fig. 4**, fixing the measuring rollers to the ball grooves is simple thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(5) Easy to handle, and designed with safety in mind.

Balls are retained in the retainer and do not fall out when the ball slide is withdrawn from the rail.

(6) Abundant models and sizes come in series.

Each size of LS Series has several ball slide models, rendering the linear guide available for numerous uses. The LS Series also has standardized long stainless- steel rail (maximum 3 500 mm).

(7) Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

High precision grade and medium preload types are also available in random matching. (Special high-carbon steel products)

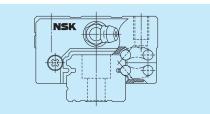


Fig. 1 LS Series

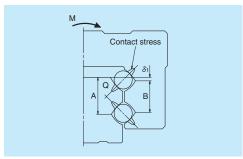


Fig. 2 Enlarged illustration of the offset Gothic arch groove

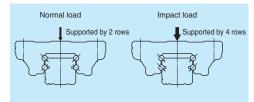


Fig. 3 When load is applied

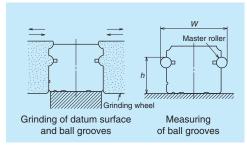


Fig. 4 Rail-grinding and measuring

2. Ball slide shape

Ball slide Model	Shape/installation method	Type (Upper row, Rating: L Medium-load type Standard	ower row, Ball slide length) High-load type Long
AL CL		CL L ₁	AL L1
EM JM		JM L ₁	EM L ₁
EL JL		JL L1	EL L ₁
FL KL		KL L1	FL L ₁

Note: High-precision grade and medium preload of random-matching type are not applicable to EL, JL, FL and KL models.

A191 A192

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1 Unit: µm

						1	Omt. pm	
	Prel	oaded asser	nbly (not ran	dom match	ing)	Random-matching type		
Rail length (mm)	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	High precision PH	Normal grade PC	
- 50	2	2	2	4.5	6	2	6	
50 – 80	2	2	3	5	6	3	6	
80 – 125	2	2	3.5	5.5	6.5	3.5	6.5	
125 – 200	2	2	4	6	7	4	7	
200 – 250	2	2.5	5	7	8	5	8	
250 – 315	2	2.5	5	8	9	5	9	
315 – 400	2	3	6	9	11	6	11	
400 – 500	2	3	6	10	12	6	12	
500 - 630	2	3.5	7	12	14	7	14	
630 – 800	2	4.5	8	14	16	8	16	
800 – 1 000	2.5	5	9	16	18	9	18	
1 000 – 1 250	3	6	10	17	20	10	20	
1 250 – 1 600	4	7	11	19	23	11	23	
1 600 – 2 000	4.5	8	13	21	26	13	26	
2 000 – 2 500	5	10	15	22	29	15	29	
2 500 – 3 150	6	11	17	25	32	17	32	
3 150 – 4 000	9	16	23	30	34	23	34	

(2) Accuracy standard

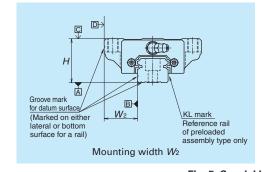
The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades, while the random-matching type has High-precision PH and Normal PC grade.

· Tolerance of preloaded assembly

,	Table 2 Unit: μm								
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN				
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	±80 25				
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	±100 30				
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		See Table	e 1, Fig. 5 and I	ig. 6					

· Tolerance of random-matching type

	Table 3	Unit: µm
Model No. Characteristics	High precision grade PH	Normal grade PC
Mounting height H	±20	±20
Variation of mounting height H	15①	15①
	30②	30②
Mounting width W_2 or W_3	±30	±30
Variation of mounting width W_2 or W_3	20	25
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1 , F	ig. 5 and Fig. 6


Notes: 1 Variation on the same rail 2 Variation on multiple rails

(3) Combinations of accuracy and preload

Table 4

			Table	т				
				Ac	curacy gra	de		
		Ultra precision	Super precision	High precision	Precision grade	Normal grade	High precision	Normal grade
Wi	thout NSK K1 lubrication unit	P3	P4	P5	P6	PN	PH	PC
Wi	th NSK K1 lubrication unit	К3	K4	K5	K6	KN	KH	KC
Wit	h NSK K1 for food and medical equipment	F3	F4	F5	F6	FN	FH	FC
	Fine clearance Z0	0	0	0	0	0	_	_
	Slight preload Z1	0	0	0	0	0	_	_
pad	Medium preload Z3	0	0	0	0	_	_	_
Preload	Random-matching type with fine clearance ZT	_	_	_	_	_	_	0
	Random-matching type with slight preload ZZ	_	_	_	_	_	0	0
	Random-matching type with medium preload ZH	_	_	_	_	_	0	0

(4) Assembled accuracy

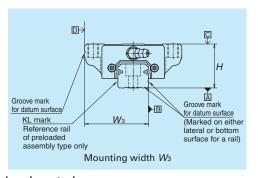
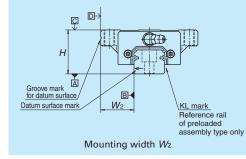



Fig. 5 Special high carbon steel

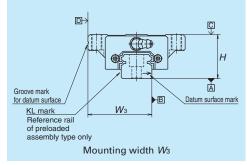


Fig. 6 Stainless steel

(5) Preload and rigidity

We offer six levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with random-matching type of Medium preload ZH, Fine clearance ZT and Slight preload ZZ.

Preload and rigidity of preloaded assembly

Table 5

	Table 5									
		Preload (N)			Rigidity	(N/µm)				
	Model No.			Vertical	direction	Lateral direction				
	woder No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload			
		Z1	Z3	Z1	Z3	Z1	Z3			
type	LS15 AL, EM, EL, FL	69	390	127	226	88	167			
άtγ	LS20 AL, EM, EL, FL	88	540	147	284	108	206			
High-load	LS25 AL, EM, EL, FL	147	880	206	370	147	275			
gh-l	LS30 AL, EM, EL, FL	245	1 370	255	460	186	345			
Ξ	LS35 AL, EM, EL, FL	345	1 960	305	550	216	400			
ype	LS15 CL, JM, JL, KL	49	294	78	147	59	108			
ad t	LS20 CL, JM, JL, KL	69	390	108	186	78	137			
الم	LS25 CL, JM, JL, KL	98	635	127	235	88	177			
Medium-load type	LS30 CL, JM, JL, KL	147	980	147	275	108	206			
Med	LS35 CL, JM, JL, KL	245	1 370	186	335	137	245			

Note: Clearance for Fine clearance Z0 is 0 to $3\mu m$. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15µm.

· Clearance and preload of random-matching type

_			_
Tο	h	۵	ĸ

	it٠	

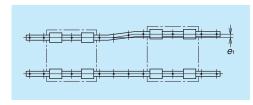
			Unit: µm
Model No.	Fine clearance	Slight preload	Medium preload
woder No.	ZT	ZZ	ZH
LS15	-4 — 15	-4 — 0	−6.5 — −2
LS20	-4 — 15	-4 — 0	−7.5 — −3
LS25	-5 — 15	-5 — O	-9 — - 3.5
LS30	-5 — 15	-5 — O	-10 — -4.5
LS35	-5 — 15	-6 — O	-12 <i>— -</i> 5

Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

4. Maximum rail length

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 7 Length limitations of rails


Unit: mm 🗳

Series	Size Material	15	20	25	30	35
16	Special high carbon steel	2 000	3 960	3 960	4 000	4 000
LS	Stainless steel	1 700	3 500	3 500	3 500	3 500

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

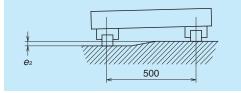


Fig. 7

Fig. 8

			Table 6			Unit: µm	
\	Preload		Model No.				
Value	rieloau	LS15	LS20	LS25	LS30	LS35	
Permissible values of parallelism in two rails e_1	Z0, ZT	20	22	30	35	40	
	Z1, ZZ	15	17	20	25	30	
	Z3, ZH	12	15	15	20	25	
Permissible values of	Z0, ZT	375 μm/500 mm 330 μm/500 mm					
parallelism (height) in two rails $e_{\scriptscriptstyle 2}$	Z1, ZZ, Z3, ZH						

Table 8

(2) Shoulder height of the mounting surface and corner radius r

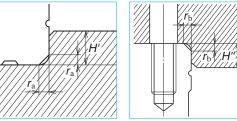


Fig. 9 Shoulder for the Fig. 10 Shoulder for the ball rail datum surface

slide datum surface

		Table 9		Unit: mm
Madal Na	Corner radius (maximum)		Shoulder height	
Model No.	$r_{\rm a}$	$r_{\rm b}$	H'	H"
LS15	0.5	0.5	4	4
LS20	0.5	0.5	4.5	5
LS25	0.5	0.5	5	5
LS30	0.5	0.5	6	6
LS35	0.5	0.5	6	6

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 11 and Table 10 show grease fittings and tube fittings.

We provide Iubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 12)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6 \times 1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

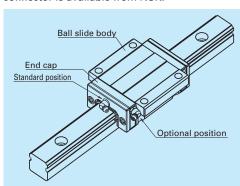


Fig. 12 Mounting position of lubrication accessories

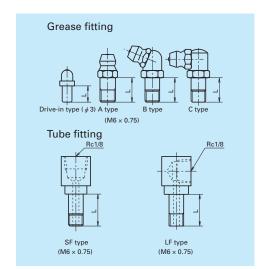


Fig. 11 Grease fitting and tube fitting

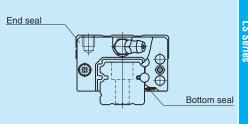
Table 10 Unit: mm				
Model No.	Dust-proof	Grease fitting	Tube fitting	
	specification	Thread body length L	Thread body length L	
	Standard	5	-	
LS15	With NSK K1	10	-	
L3 13	Double seal	*	-	
	Protector	*	-	
	Standard	5	_	
LS20	With NSK K1	10	-	
L320	Double seal	8	-	
	Protector	8	-	
	Standard	5	6	
LS25	With NSK K1	12	11	
L325	Double seal	10	9	
	Protector	10	9	
	Standard	5	6	
LS30	With NSK K1	14	13	
LOSU	Double seal	12	11	
	Protector	12	11	
	Standard	5	6	
LS35	With NSK K1	14	13	
L335	Double seal	12	11	
	Protector	12	11	

*) A connector is required for this model. Please contact NSK for grease fittings.

7. Dust-proof components

(1) Standard specification

The LS Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom.



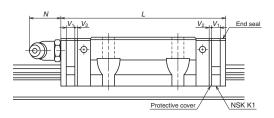

Fig. 13

Table 11 Seal friction per ball slide (maximum value)

					Unit: IN
Series Size	15	20	25	30	35
LS	8	9	9	9	10

(2) NSK K1[™] lubrication unit

Table 12 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

ab	e '	12
----	-----	----

lnit:	
 THE.	11111

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N
LS15	Standard	AL, EM, EL, FL	56.8	66.4	4.0	0.8	(5)
L315	Short	CL, JM, JL, KL	40.4	50	4.0	0.8	(5)
LS20	Standard	AL, EM, EL, FL	65.2	75.8	4.5	0.8	(14)
Short	CL, JM, JL, KL	47.2	57.8	4.5	0.0	(14)	
LS25	Standard	AL, EM, EL, FL	81.6	92.2	4.5	0.8	(1.4)
L525	Short	CL, JM, JL, KL	59.6	70.2	4.5	0.8	(14)
1.020	Standard	AL, EM, EL, FL	96.4	108.4	5.0	1.0	(1.4)
LS30 Sh	Short	CL, JM, JL, KL	67.4	79.4	5.0	1.0	(14)
	Standard	AL, EM, EL, FL	108	121		1.0	(1.4)
L335	Short	CL, JM, JL, KL	77	90	5.5	1.0	(14)

Note: Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V, × Number of NSK K1) + (Thickness of the protective cover, V, × 2)

(3) Double seal

Use a double seal set as showing in **Table 13**, when installing an extra seal to completed standard products. (Fig. 14)

When installing a grease fitting after the installation of double seals, a connector as showing **Fig.14** is required.

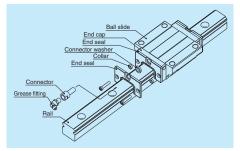


Fig. 14 Double seal

End cap End seal Connector washer Collar Protector Grease fitting

Use a protector set as showing Table 14, when

installing a protector to completed standard

When installing a grease fitting after the

installation of protectors, a connector as

(4) Protector

products. (Fig.15)

showing Fig.15 is required.

Fig. 15 Protector

Table 13 Double-seal set

Model No.	Reference No. Without connector With connector		Increased thickness V ₃ (mm)
			(
LS15	LS15WS-01	*	2.8
LS20	LS20WS-01	LS20WSC-01	2.5
LS25	LS25WS-01	LS25WSC-01	2.8
LS30	LS30WS-01	LS30WSC-01	3.6
LS35	LS35WS-01	LS35WSC-01	3.6

Table 14 Protector set

Model No.	Referer	Increased thickness V ₄	
WIOGOT IVO.	Without connector	With connector	(mm)
LS15	LS15PT-01	*	3
LS20	LS20PT-01	LS20PTC-01	2.7
LS25	LS25PT-01	LS25PTC-01	3.2
LS30	LS30PT-01	LS30PTC-01	4.2
LS35	LS35PT-01	LS35PTC-01	4.2

^{*)} For installation of a connector to a drive-in type grease fitting, contact NSK.

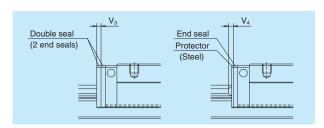


Fig. 16

(5) Cap to plug the rail mounting bolt hole Table 15 Caps to plug rail bolt hole

Model No.	Bolt to	Сар	Quantity
WIOGCI IVO.	secure rail	reference No.	/case
LS15	M3	LG-CAP/M3	20
LS15	M4	LG-CAP/M4	20
LS20	M5	LG-CAP/M5	20
LS25, LS30	M6	LG-CAP/M6	20
LS35	M8	LG-CAP/M8	20

(6) Inner seal

Inner seal is only available for the models shown below.

Table 16

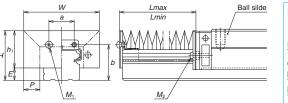
Series	Model No.
LS	LS20, LS25, LS30, LS35

(7) Bellows

Use a bellows fastener kit as showing **Table 17**, when installing bellows to completed standard products. A bellows fastener kit is supplied with one of bellows fastener, two of M1 set screws, two of M2 set screws, and two collars for M2 set screw as showing **Fig.7.7** on page A55.

 When NSK K1, double seals or protectors are used, the set screws of bellows fastener kit are unable to use.

Please contact NSK for details.


 Bellows fastener is available only for the horizontal mounting positions. For other mounting positions, sliding plate is required (see Fig. 7.10 on page A56).

For fixing to the rail, make tap holes to the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes by using a machine screw. NSK processes a tap hole to the rail end face when ordered with a linear guide.

Table 17 Bellows fastner kit reference No.

Model No	. Kit reference No.
LS15	LS15FS-01
LS20	LS20FS-01
LS25	LS25FS-01
LS30	LS30FS-01
LS35	LS35FS-01

Dimension tables of bellows LS Series

 $M4 \times 6$

 $M4 \times 22$

Fig. 17 Dimensions of bellows

Н

23.5

27

32

41

47

36.5

10.5

72

15

22

Model No.

JAS15L

JAS20L

JAS25L

JAS30L

JAS35L

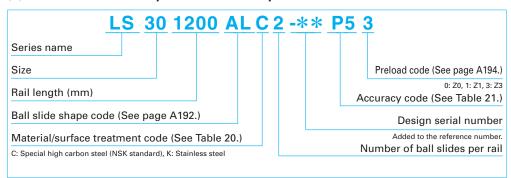
	Table 18 Dimensions of bellows Unit: mm														
h ₁	Ε	W	Р	а	b	BL minimum length	M₁Tap x depth	<i>M</i> ₂Tap x depth							
18.9	4.6	43	10	8	16.5	17	M3 × 5	M3 × 14							
21	6	48	10	13	19.7	17	M3 × 5	M2.5 × 14							
25	7	51	10	15	23.2	17	M3 × 5	M3 × 18							
32	9	66	15	16	29	17	M4×6	M4 × 19							

33.5

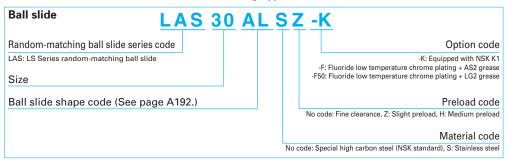
17

	Table 19 Numbers of folds (BL) and lengths of bellows Unit: mm													
Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20			
iviouei ivo.	<u>L</u> min	34	68	102	136	170	204	238	272	306	340			
JAS15L	Stroke	106	212	318	424	530	636	742	848	954	1 060			
JASTOL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400			
14 6301	Stroke	106	212	318	424	530	636	742	848	954	1 060			
JAS20L	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400			
JAS25L	Stroke	106	212	318	424	530	636	742	848	954	1 060			
JASZSL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400			
14 5301	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760			
JAS30L	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100			
IACOEI	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760			
JAS35L -	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100			

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on the both side, then by dividing the sum by 2.


A201 A202

8. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

L1S 30 1200 L C	<u>N -** PC Z</u>
Random-matching rail series code L1S: LS Series random-matching rail Size	Preload code (See page A194.) T: Fine clearance. Z: Slight preload (common rail for slight or medium preload) Accuracy code
Rail length (mm)	PH: High precision grade random-matching type PC: Normal grade random-matching type Design serial number
Rail shape code	Added to the reference number.
L: Standard T: LS15 with mounting holes for M4	*Butting rail specification
Material/surface treatment code (See Table 20.)	N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only preload codes of "fine clearance T" and "slight preload Z" are available (refer to page A194).

Table 20 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

Note: High-precision grade and medium preload of random-matching type are not available in stainless steel.

Table 21 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Ultra precision grade	P3	K3	F3
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
High precision grade (random-matching type)	PH	KH	FH
Normal grade (random-matching type)	PC	KC	FC

Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.

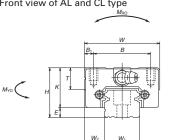
9. Dimensions LS-CL (Medium-load type / Short) LS-AL (High-load type / Standard)

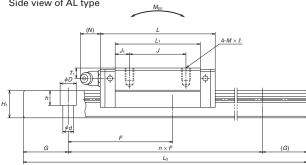
LS 30 1200 AL C 2 -** PC Z

Series name

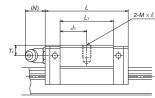
Size

Preload code (See page A194.)


0: 20, 1: 21, 3: 23, 7: 27, 2: 22, H: 2H
Accuracy code (See Table 21.)


Material/surface treatment code (See Table 20.)

C: Special high carbon steel (NSK standard), K: Stainless steel


Front view of AL and CL type

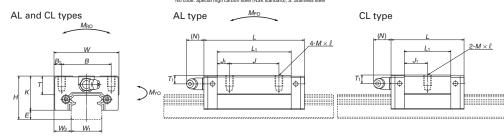
Side view of AL type

Side view of CL type

		As	ssemb	ly		Ball slide											
N A	odel No.	Height			Width	dth Length Mounting hole									Grease	fittin	g
IVI	odel No.																
		Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	B ₁	<u>L</u> 1	J_1	K	T	Hole size	T_1	Ν
	S15CL S15AL	24	4.6	9.5	34	40.4 56.8	26	— 26	M4×0.7×6	4	23.6 40	11.8 7	19.4	10	φ3	6	3
	S20CL S20AL	28	6	11	42	47.2 65.2	32	— 32	M5×0.8×7	5	48	15 8	22	12	M6×0.75	5.5	11
L	S25CL S25AL	33	7	12.5	48	59.6 81.6	35	— 35	M6×1×9	6.5	60	19 12.5	26	12	M6×0.75	7	11
L	.S30CL .S30AL	42	9	16	60	67.4 96.4	40	— 40	M8×1.25×12	10	71	21 15.5	33	13	M6×0.75	8	11
	S35CL S35AL	48	10.5	18	70	77 108	50	— 50	M8×1.25×12	10		24.5 15	37.5	14	M6×0.75	8.5	11

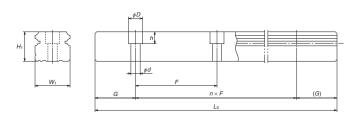
Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type


Ball slide

LAS 30 AL S Z -K

Random-matching ball slide series code
LAS: LS series random-matching ball slide
LAS: LS series random-matching ball slide
Size


Ball slide shape code (See page A192.)

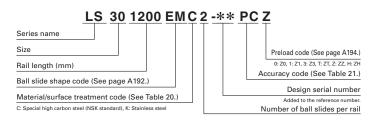
Preload code
No code: Fine clearance, Z: Slight preload, H: Mediarial code
No code: Secial high carbon steel (NKK standard). S: Stainless steel

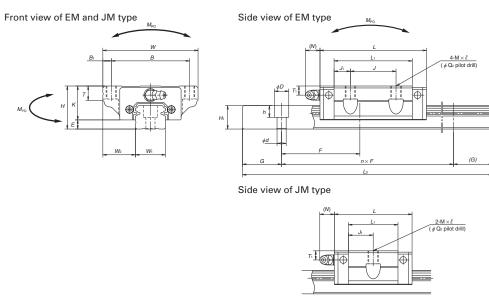
Reference number for rail of random-matching type

L1S301200LCN-** PCZ Random-matching rail series code Preload code (See page A194.) L1S: LS Series random-matching rai T: Fine clearance Z: Slight preload(common rail for medium preload) Accuracy code PH: High-precision grade PC: Normal grade Rail length (mm) Design serial number Rail shape code Added to the reference number. L: Standard T: LS15 with mounting holes for M4 *Butting rail specification Material/surface treatment code (See Table 20.) N: Non-butting. L: Butting specification *Please consult with NSK for butting rail specification

Unit: mm

			Rail					Basic	c load ra	ting			We	ight
Width	Height	Pitch	Mounting	G	Max. length	Dynamic	Static		Static	momen	t (N·m)		Ball	Rail
			bolt hole		L_{omax} .	С	C_{0}	M_{RO}	N	1 _{PO}	\ \	1 _{YO}	slide	
W_1	H_1	F	$d \times D \times h$	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	12.5	60	*3.5×6×4.5 4.5×7.5×5.3	20	2 000 (1 700)	5 400 8 350	9 100 16 900	45.5 84.5	24.5 77	196 470	20.5 64.5	165 395	0.14 0.20	1.4
20	15.5	60	6×9.5×8.5	20	3 960 (3 500)		13 400 23 500	91.5 160	46.5 133	330 755	39 111	279 630	0.19 0.28	2.3
23	18	60	7×11×9	20	3 960 (3 500)	18 800	20 800 36 500	164 286	91 258	655 1 470	76 217	550 1 230	0.34 0.51	3.1
28	23	80	7×11×9	20	4 000 (3 500)	28 800	29 600 55 000	520	139 435	1 080 2 650	116 365	905 2 220	0.58 0.85	4.8
34	27.5	80	9×14×12	20	4 000 (3 500)		40 000 74 500	465 865	220 695	1 670 4 000	185 580	1 400 3 350	0.86 1.3	7.0


²⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.


³⁾ High-precision grade and medium preload of random-matching type are available for special high carbon steel products.

^{*} Standard mounting hole of LS15 rail is for M3 bolts (Hole size: 3.5 × 6 × 4.5).

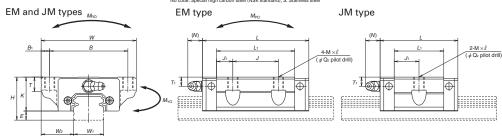
If you require mounting hole for M4 bolts (Hole size: $4.5 \times 7.5 \times 5.3$), please specify when ordering.

LS-JM (Medium-load type / Short) LS-EM (High-load type / Standard)

Ī		As	ssemb	ly						В	all slic	de						
Ν	∕lodel No.	Height			Width	Length			Mounting hole						Grease	fittin	g	
1	nodel No.	Н	Е	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	B₁	L,	J_1	K	T	Hole size	T.	N	
	LS15JM LS15EM	24	4.6	18.5	52	40.4 56.8	41	<u>_</u> 26		<i>Q</i> ₂	5.5	23.6 40	11.8 7	19.4	8		6	3
	LS20JM LS20EM	28	6	19.5	59	47.2 65.2	49	— 32	M6×1×9 (M6×1×9.5)	5.3	5	30 48	15 8	22	10	M6×0.75	5.5	11
	LS25JM LS25EM	33	7	25	73	59.6 81.6	60	— 35	M8×1.25×10 (M8×1.25×11.5)	6.8	6.5	38 60	19 12.5	26	11 (12)	M6×0.75	7	11
	LS30JM LS30EM	42	9	31	90	67.4 96.4	72	-	M10×1.5×12 (M10×1.5×14.5)	8.6	9	42 71	21 15.5	33	11 (15)	M6×0.75	8	11
	LS35JM LS35EM	48	10.5	33	100	77 108	82	— 50	M10×1.5×13 (M10×1.5×14.5)	8.6	9	49 80	24.5 15	37.5	12 (15)	M6×0.75	8.5	11

Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

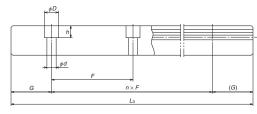
Reference number for ball slide of random-matching type


Ball slide

LAS 30 EM S Z -K

Random-matching ball slide series code
LAS: LS series random-matching ball slide
LAS: LS series random-matching ball slide
Size

Ball slide shape code (See page A192.)


Description of the state of

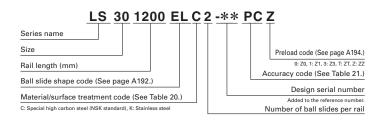
Reference number for rail of random-matching type

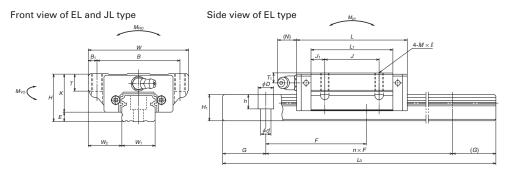
Rail <u>L1S 30 1200 L</u>	<u>CN -** PC Z</u>
Random-matching rail series code L1S: LS Series random-matching rail Size	Preload code (See page A194.) T. Fine clearance. T. Fine clearance. C. Slight preload(common rail for medium preload) Accuracy code
Rail length (mm)	PH: High-precision grade PC: Normal grade Design serial number
Rail shape code	Added to the reference number.
L: Standard T: LS15 with mounting holes for M4	*Butting rail specification
Material/surface treatment code (See Table 20.)	N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail enecification

Unit: mm

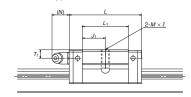
			Rail					Basio	c load ra	ting			We	ight
Width	Height	Pitch	Mounting bolt hole	G	Max. length	Dynamic				momen:	,		Ball	Rail
W_1	H ₁	F	$d \times D \times h$	(reference)	L _{0max} . () for stainless	(N)	(N)	M _{RO}		1 _{PO} Two slides		1 _{yo} Two slides	slide (kg)	(kg/m)
15	12.5	60	*3.5×6×4.5 4.5×7.5×5.3	20	2 000	5 400 8 350	9 100 16 900	45.5 84.5	24.5 77	196 470	20.5 64.5	165 395	0.17	1.4
20	15.5	60	6×9.5×8.5	20	3 960 (3 500)		13 400 23 500	91.5 160	46.5 133	330 755	39 111	279 630	0.24 0.35	2.3
23	18	60	7×11×9	20	3 960 (3 500)		20 800 36 500	164 286	91 258	655 1 470	76 217	550 1 230	0.44	3.1
28	23	80	7×11×9	20	4 000 (3 500)	18 700 28 800	29 600 55 000	282 520	139 435	1 080 2 650	116 365	905 2 220	0.76 1.2	4.8
34	27.5	80	9×14×12	20	4 000 (3 500)		40 000 74 500	465 865	220 695	1 670 4 000	185 580	1 400 3 350	1.2 1.7	7

³⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁∞ for a 100-km rating fatigue life, divide C by 1.26.


²⁾ Parenthesized dimensions are for items made of stainless steel


⁴⁾ High-precision grade and medium preload of random-matching type are available for special high carbon steel products.

^{*} Standard mounting hole of LS15 rail is for M3 bolts (Hole size: $3.5 \times 6 \times 4.5$).


If you require mounting hole for M4 bolts (Hole size: $4.5 \times 7.5 \times 5.3$), please specify when ordering.

LS-JL (Medium-load type / Short) LS-EL (High-load type / Standard)

Side view of JL type

	As	ssemb	oly					В	all slide									
Model No.	Height			Width	Length		Mour	nting hole						Grease	fittin	g		
Model No.																		
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	B ₁	L ₁	J_1	Κ	Τ	Hole size	T_1	Ν		
LS15JL LS15EL	24	4.6	18.5	52	40.4 56.8	41	— 26	M5×0.8×8	5.5	23.6 40	11.8 7	19.4	8	ø 3	6	3		
LS20JL LS20EL	28	6	19.5	59	47.2 65.2	49	 32	M6×1×10	5	30 48	15 8	22	10	M6×0.75	5.5	11		
LS25JL LS25EL	33	7	25	73	59.6 81.6	60	— 35	M8×1.25×12	6.5	38 60	19 12.5	26	11 (12)	M6×0.75	7	11		
LS30JL LS30EL	42	9	31	90	67.4 96.4	72	<u>-</u>	M10×1.5×18 (M10×1.5×15)	9	42 71	21 15.5	33	11 (15)	M6×0.75	8	11		
LS35JL LS35EL	48	10.5	33	100	77 108	82	— 50	M10×1.5×20 (M10×1.5×15)	9	49 80	24.5 15	37.5	12 (15)	M6×0.75	8.5	11		

Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

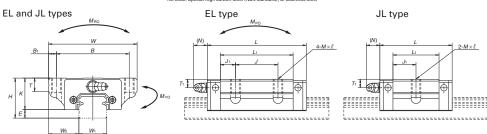
Reference number for ball slide of random-matching type

Ball slide

LAS 30 EL S Z -K

Random-matching ball slide series code

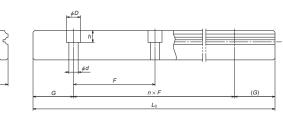
LAS: LS series random-matching ball slide


LAS: LS series random-matching ball slide

Size

Ball slide shape code (See page A192.)

Preload code


No code: Special high carbon steel (NSK standard). SS slabiles steel

Reference number for rail of random-matching type

Rail L1S 30 120	<u> 0 L C N -** PC Z</u>
Random-matching rail series code	Preload code (See page A194.)
L1S: LS Series random-matching rail	T: Fine clearance. Z: Slight preload
Size	Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available. Design serial number
Rail shape code	Added to the reference number.
L: Standard	*Butting rail specification
T: LS15 with mounting holes for M4	N: Non-butting. L: Butting specification
Material/surface treatment code (See Table	20.)

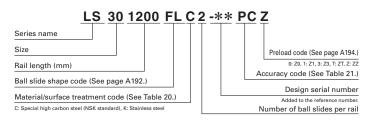
*Please consult with NSK for butting rail specification.

Unit: mm

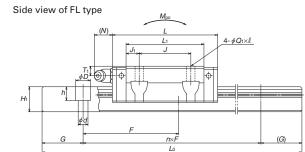
			Rail					Basio	c load ra	ting			We	ight
Width	Height	Pitch	Mounting bolt hole	G	Max. length	Dynamic	Static		Static moment (N·m)			Ball	Rail	
			DOIL HOIE		L_{0max} .	C	C_0	M_{RO}	\sim	1 _{PO}	Λ	1 _{YO}	slide	
W_1	H_1	F	$d \times D \times h$	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	12.5	60	*3.5×6×4.5 4.5×7.5×5.3	20	2 000 (1 700)	5 400 8 350	9 100 16 900	45.5 84.5	24.5 77	196 470	20.5 64.5	165 395	0.17 0.26	1.4
20	15.5	60	6×9.5×8.5	20	3 960 (3 500)		13 400 23 500	91.5 160	46.5 133	330 755	39 111	279 630	0.24 0.35	2.3
23	18	60	7×11×9	20	3 960 (3 500)		20 800 36 500	164 286	91 258	655 1 470	76 217	550 1 230	0.44 0.66	3.1
28	23	80	7×11×9	20	4 000 (3 500)		29 600 55 000	282 520	139 435	1 080 2 650	116 365	905 2 220	0.76 1.2	4.8
34	27.5	80	9×14×12	20	4 000 (3 500)	26 000 40 000	40 000 74 500	465 865	220 695	1 670 4 000	185 580	1 400 3 350	1.2 1.7	7.0

³⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁∞ for a 100-km rating fatigue life, divide C by 1.26.

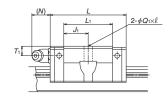
²⁾ Parenthesized dimensions are for items made of stainless steel.


⁴⁾ High-precision grade and medium preload random-matching type are not available for JL and EL models.

^{*} Standard mounting hole of LS15 rail is for M3 bolts (Hole size: 3.5 × 6 × 4.5).

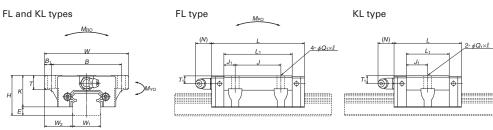

If you require mounting hole for M4 bolts (Hole size: 4.5 × 7.5 × 5.3), please specify when ordering.

_S Series


LS-KL (Medium-load type / Short) LS-FL (High-load type / Standard)

Side view of KL type

Ī		As	ssemb	oly		Ball slide											
Model No. Height				Width	Vidth Length Mounting hole							Grease	fittin	g			
	10001110.	Н	Ε	W_2	W	L	В	J	$Q_1 \!\! imes \!\! \ell$	B ₁	L ₁	J_1	К	T	Hole size	<i>T</i> ₁	N
	.S15KL .S15FL	24	4.6	18.5	52	40.4 56.8	41	— 26	4.5×7	5.5	23.6 40	11.8 7	19.4	8	ø 3	6	3
	S20KL S20FL	28	6	19.5	59	47.2 65.2	49	— 32	5.5×9 (5.5×9.5)	5	30 48	15 8	22	10	M6×0.75	5.5	11
	.S25KL .S25FL	33	7	25	73	59.6 81.6	60	— 35	7×10 (7×11.5)	6.5	38 60	19 12.5	26	11 (12)	M6×0.75	7	11
j	S30KL S30FL	42	9	31	90	67.4 96.4	72	— 40	9×12 (9×14.5)	9	42 71	21 15.5		11 (15)	M6×0.75	8	11
	.S35KL .S35FL	48	10.5	33	100	77 108	82	— 50	9×13 (9×14.5)	9	49 80	24.5 15	37.5	12 (15)	M6×0.75	8.5	11

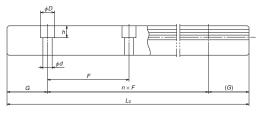

Notes: 1) The external appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type

Ball slide LAS 30 FL S
Random-matching ball slide series code
LAS: LS series random-matching ball slide
LAS: LS series random-matching ball slide
Size
Ball slide shape code (See page A192.)

AS TO Series random-matching ball slide
Size
Ball slide shape code (See page A192.)

AS TO Series random-matching ball slide
AS TO Seri



Reference number for rail of random-matching type

Rail <u>L1S 30 1200 L</u>	CN-** PCZ
Random-matching rail series code L1S: LS Series random-matching rail	Preload code (See page A194.) T: Fine clearance, Z: Slight preload
Size	Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available. Design serial number
Rail shape code	Added to the reference number.
L: Standard T: LS15 with mounting holes for M4	*Butting rail specification N: Non-butting, L: Butting specification
Material/surface treatment code (See Table 20.)	

*Please consult with NSK for butting rail specification.

Unit: mm

			Rail					Basio	c load ra	ting			We	ight
Width	Height	Pitch	Mounting bolt hole	G	Max. length $L_{\tiny Omax}$.	Dynamic <i>C</i>	Static C ₀				Ball slide	Rail		
W_1	H_1	F	$d \times D \times h$	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	12.5	60	*3.5×6×4.5 4.5×7.5×5.3	20	2 000 (1 700)	5 400 8 350	9 100 16 900	45.5 84.5	24.5 77	196 470	20.5 64.5	165 395	0.17 0.26	1.4
20	15.5	60	6×9.5×8.5	20	3 960 (3 500)		13 400 23 500	91.5 160	46.5 133	330 755	39 111	279 630	0.24 0.35	2.3
23	18	60	7×11×9	20	3 960 (3 500)		20 800 36 500	164 286	91 258	655 1 470	76 217	550 1 230	0.44 0.66	3.1
28	23	80	7×11×9	20	4 000 (3 500)		29 600 55 000	282 520	139 435	1 080 2 650	116 365	905 2 220	0.76 1.2	4.8
34	27.5	80	9×14×12	20	4 000 (3 500)		40 000 74 500	465 865	220 695	1 670 4 000	185 580	1 400 3 350	1.2 1.7	7

³⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.

²⁾ Parenthesized dimensions are for items made of stainless steel

⁴⁾ High-precision grade and medium preload random-matching type are not available for KL and FL models.

^{*} Standard mounting hole of LS15 rail is for M3 bolts (Hole size: $3.5 \times 6 \times 4.5$).

If you require mounting hole for M4 bolts (Hole size: $4.5 \times 7.5 \times 5.3$), please specify when ordering.

A-5-1.6 SS Series

1. Features

(1) Lower noise and gentler tone

Incorporating a retaining piece and optimizing the circulation path enables steel ball circulation stability and the prevention of ball collision, and thus resulting in noise reduction.

(2) Smoother motion

Improved steel ball circulation stability, free of interference between the balls improves dynamic friction characteristics, resulting in smooth and stable motion, which is especially effective for low speed motion.

(3) Low dust generation

A resin retaining piece, which prevents steel balls collision, features effective low dust generation characteristics compared to conventional products.

(4) High self-aligning capability (rolling direction)

Same as the DF combination in angular contact bearings, self-aligning capability is high because the cross point of the contact lines of balls and grooves comes inside, reducing moment rigidity. This increases the capacity to absorb errors in installation.

(5) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, increasing load carrying capacity as well as rigidity in vertical direction.

(6) High resistance against impact load

The bottom ball groove is formed in the Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is generally carried by the top rows, at where balls are contacting at two points. Because of this design, the bottom rows will carry load when a large impact load is applied vertically as shown in Fig. 3. This assures high resistance to the impact load.

(7) High accuracy

As showing in **Fig. 4**, fixing the master rollers to the ball groove is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(8) Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

High-precision grade is also available in random matching. (Special high carbon steel products)

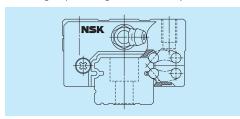


Fig. 1 SS Series

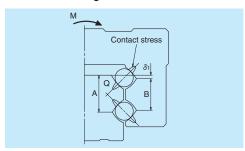


Fig. 2 Enlarged illustration of the offset Gothic arch groove

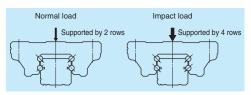


Fig. 3 When load is applied

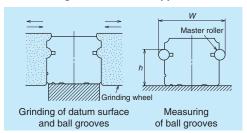


Fig. 4 Rail grinding and measuring

2. Ball slide shape

Ball slide Model	Shape/installation method	Type (Upper row, Rating: L Medium-load type Standard	ower row, Ball slide length) High-load type Long
AL CL		CL L ₁	AL
EM JM		JM L ₁	EM L ₁
EL JL		JL L1	EL L1
FL KL		KL L ₁	FL L ₁

Note: High-precision grade of random-matching type is not applicable to EL, JL, FL and KL models.

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1 Unit: um

	Table 1 Offit. μ												
	Prel	oaded asser	ing)	Random-ma	atching type								
Rail length (mm) over or less	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	High precision PH	Normal grade PC						
– 50	2	2	2	4.5	6	2	6						
50 – 80	2	2	3	5	6	3	6						
80 – 125	2	2	3.5	5.5	6.5	3.5	6.5						
125 – 200	2	2	4	6	7	4	7						
200 – 250	2	2.5	5	7	8	5	8						
250 – 315	2	2.5	5	8	9	5	9						
315 – 400	2	3	6	9	11	6	11						
400 – 500	2	3	6	10	12	6	12						
500 – 630	2	3.5	7	12	14	7	14						
630 – 800	2	4.5	8	14	16	8	16						
800 – 1 000	2.5	5	9	16	18	9	18						
1 000 – 1 250	3	6	10	17	20	10	20						
1 250 – 1 600	4	7	11	19	23	11	23						
1 600 – 2 000	4.5	8	13	21	26	13	26						
2 000 – 2 500	5	10	15	22	29	15	29						
2 500 – 3 150	6	11	17	25	32	17	32						
3 150 – 4 000	9	16	23	30	34	23	34						
2 500 – 3 150	6	11	17	25	32	17	32						

(2) Accuracy standard

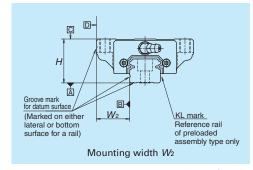
The preloaded assembly has five accuracy grades; Ultra precision P3, Super precision P4, High precision P5, Precision P6 and Normal PN grades, while the random-matching type has High-precision PH and Normal PC grade.

· Tolerance of preloaded assembly

Table 2 Unit: µn										
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6	Normal grade PN					
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15	±80 25					
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20	±100 30					
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Shown in Ta	ble 1, Fig. 5 , a	nd Fig . 6						

· Tolerance of random-matching type

	Table 3	Unit: µm
Model No. Characteristics	High precision grade PH	Normal grade PC
Mounting height H	±20	±20
Variation of mounting height H	15①	15①
	30②	30②
Mounting width W_2 or W_3	±30	±30
Variation of mounting width W_2 or W_3	20	25
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1, Fig. 5 and Fig. 6	See Table 1, Fig. 5 and Fig. 6


Notes: ① Variation on the same rail ② Variation on multiple rails

(3) Combinations of accuracy and preload

Table 4

		Accuracy grade									
		Ultra precision	Super precision	High precision	Precision grade	Normal grade	High precision	Normal grade			
Wit	thout NSK K1 lubrication unit	P3	P4	P5	P6	PN	PH	PC			
Wit	th NSK K1 lubrication unit	K3	K4	K5	K6	KN	KH	KC			
	Fine clearance Z0	0	0	0	0	0	_	_			
oad	Slight preload Z1	0	0	0	0	0	_	_			
Preload	Medium preload Z3	0	0	0	0	_	_	_			
	Random-matching type with slight preload ZZ	_	_	_	_	_	0	0			

(4) Assembled accuracy

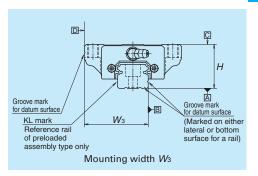
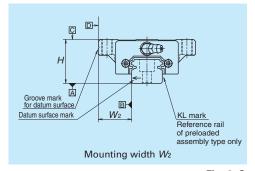



Fig. 5 Special high carbon steel

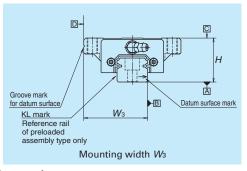


Fig. 6 Stainless steel

(5) Preload and rigidity

We offer four levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with random-matching type of Slight preload ZZ.

Preload and rigidity of preloaded assembly

Table 5

	Table 5											
		Prolo	ad (NI)		Rigidity	(N/µm)						
	Model No.	Preload (N)		Vertical	direction	Lateral direction						
	Model No.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload					
		(Z1)	(Z3)	(Z1)	(Z3)	(Z1)	(Z3)					
type	SS15 AL, EM, EL, FL	69	392	118	216	88	157					
7 ₹	SS20 AL, EM, EL, FL	88	490	147	255	108	186					
loac	SS25 AL, EM, EL, FL	147	833	196	353	137	255					
High-load	SS30 AL, EM, EL, FL	245	1 370	245	441	176	323					
Ξ	SS35 AL, EM, EL, FL	294	1 860	284	539	205	392					
- ed	SS15 CL, JM, JL, KL	39	245	69	127	49	88					
ad ty	SS20 CL, JM, JL, KL	59	343	88	157	59	118					
n-108	SS25 CL, JM, JL, KL	98	588	108	206	78	147					
Medium-load type	SS30 CL, JM, JL, KL	147	882	127	235	98	176					
Me	SS35 CL, JM, JL, KL	196	1 180	166	304	117	225					

Note: Clearance for Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15 μm .

· Clearance and preload of random-matching type

Table 6 unit: um

	unit. µm
Model No.	Slight preload
	ZZ
SS15	-4 - 0
SS20	-4 - 0
SS25	- 5 - 0
SS30	-5 - 0
SS35	-6 - 0

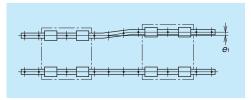
Note: Minus sign denotes that a value is an amount of preload (elastic deformation of balls).

NSK

4. Maximum rail length

Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 7 Length limitation of rails


Unit: mm

Series	Size Material	15	20	25	30	35
SS	Special high carbon steel	2 000	3 960	3 960	4 000	4 000
	Stainless steel	1 700	3 500	3 500	3 500	3 500

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

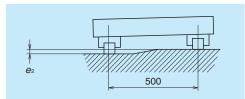
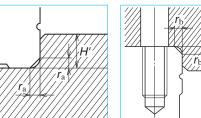



Fig. 7

Fig. 8

Table 8 Unit:									
Value	Preload			Model No.					
value	Freioau	SS15	SS20	SS25	SS30	SS35			
Permissible values of	Z0	20	22	30	35	40			
parallelism in two rails e_1	Z1, ZZ	15	17	20	25	30			
parallelistit ili two talis e ₁	Z3	12	15	15	20	25			
Permissible values of	Z0		375 μm/500 mm						
parallelism (height) in two rails e_2	Z1, ZZ, Z3		3	330 µm/500 mr	n				

(2) Shoulder height of the mounting surface and corner radius r

rail datum surface

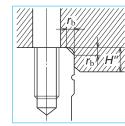


Fig. 9 Shoulder for the Fig. 10 Shoulder for the ball slide datum surface

			Table 9	9 Unit: m				
ı	Model No. Corner radiu		s (maximum)	Shoulder height				
	MOUELING.	$r_{\rm a}$	$r_{\rm b}$	H'	H"			
	SS15	0.5	0.5	4	4			
	SS20	0.5	0.5	4.5	5			
	SS25	0.5	0.5	5	5			
	SS30	0.5	0.5	6	6			
	SS35	0.5	0.5	6	6			

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 11 and Table 10 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

- The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 12) Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.
- · When using a piping unit with thread of M6 x 1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

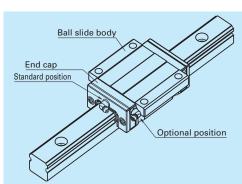


Fig. 12 Mounting position of lubrication accessories

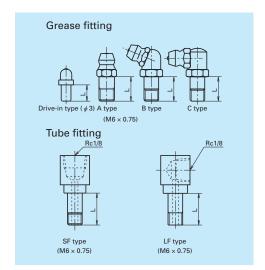


Fig. 11 Grease fitting and tube fitting Table 10

	Standard 5			
Model No.		Grease fitting	Tube fitting	
	specification	Thread body length L	Thread body length L	
	Standard	5	-	
SS15	With NSK K1	10	-	
3313	Double seal	*	-	
	Protector	*	_	
	Standard	5	-	
SS20	With NSK K1	10	-	
3320	Double seal	8	-	
	Protector	8	-	
	Standard	5	6	
SS25	With NSK K1	12	11	
3323	Double seal	10	9	
	Protector	10	9	
	Standard	5	6	
SS30	With NSK K1	14	13	
3330	Double seal	12	11	
	Protector	12	11	
	Standard	5	6	
SS35	With NSK K1	14	13	
3335	Double seal	12	11	
	Protector	12	11	

*) A connector is required for this model. Please contact NSK for the grease fittings

7. Dust-proof components

(1) Standard specification

The SS Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends and a bottom seal at the bottom.

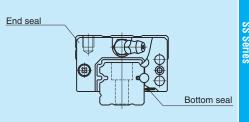


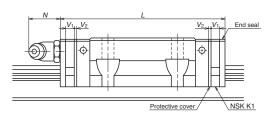
Fig. 13

Table 11 Seal friction per ball slide (maximum value)

					Unit: iv
Series Size	15	20	25	30	35
SS	8	9	9	9	10

(2) NSK K1[™] lubrication unit

Standard


Short

SS35

AL, EM, EL, FL

CL, JM, JL, KL

Table 12 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

Table 12 Un									
Model No.	Ball slide length	Ball slide model	Standard ball slide length installed with two NSK K1 L		Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N		
CC1E	Standard	AL, EM, EL, FL	56.8	66.4	4.0	0.8	/E)		
SS15	Short	CL, JM, JL, KL	40.4	50	4.0	0.8	(5)		
	Standard	AL, EM, EL, FL	65.2	75.8	4.5	0.8	(14)		
SS20	Short	CL, JM, JL, KL	47.2	57.8	4.5	0.6	(14)		
SS25	Standard	AL, EM, EL, FL	81.6	92.2	4.5	0.8	(14)		
3325	Short	CL, JM, JL, KL	59.6	70.2	4.5	0.8	(14)		
SS30	Standard	AL, EM, EL, FL	96.4	108.4	E 0	1.0	(1.4)		
3330	Short	CL, JM, JL, KL	67.4	79.4	5.0	1.0	(14)		

Note: Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V, × Number of NSK K1) + (Thickness of the protective cover, $V_2 \times 2$)

121

90

5.5

1.0

(14)

108

77

A219 A220

(3) Double seal

Use a double seal set as showing in Table 13, when installing an extra seal to completed standard products. (Fig. 14)

When installing a grease fitting after the installation of double seals, a connector as showing Fig.14 is required.

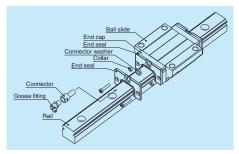


Fig. 14 Double seal

(4) Protector

Use a protector set as showing Table 14, when installing a protector to completed standard products. (Fig.15)

When installing a grease fitting after the installation of protectors, a connector as showing Fig.15 is required.

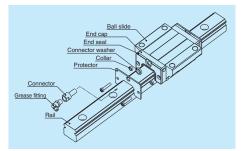


Fig. 15 Protector

Table 13 Double-seal set

Model No.	Referer	Increased thickness V ₃	
	without connector	With connector	(mm)
SS15	LS15WS-01	*	2.8
SS20	LS20WS-01	LS20WSC-01	2.5
SS25	LS25WS-01	LS25WSC-01	2.8
SS30	LS30WS-01	LS30WSC-01	3.6
SS35	LS35WS-01	LS35WSC-01	3.6

Table 14 Protector set

Model No.	Referer	Increased thickness V ₄	
Model No.	Without connector	With connector	(mm)
SS15	LS15PT-01	*	3
SS20	LS20PT-01	LS20PTC-01	2.7
SS25	LS25PT-01	LS25PTC-01	3.2
SS30	LS30PT-01	LS30PTC-01	4.2
SS35	LS35PT-01	LS35PTC-01	4.2

^{*)} For installation of a connector to a drive-in type grease fitting, contact NSK.

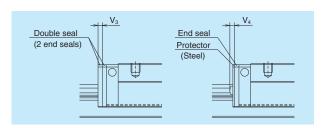


Fig. 16

(5) Cap to plug the rail mounting bolt hole Table 15 Caps to plug rail bolt hole

Model No.	Bolt to	Cap	Quantity
Model No.	secure rail	reference No.	/case
SS15	M3	LG-CAP/M3	20
SS15	M4	LG-CAP/M4	20
SS20	M5	LG-CAP/M5	20
SS25, SS30	M6	LG-CAP/M6	20
SS35	M8	LG-CAP/M8	20

(6) Inner seal

Inner seal is only available for models shown below.

Table 16

Series	Model No.
SS	SS20, SS25, SS30, SS35

(7) Bellows

- · Use a bellows fastener kit as showing Table 17, when installing bellows to completed standard products. A bellows fastener kit is supplied with one of bellows fastener, two of M1 set screws, two of M2 set screws, and two collars for M2 set screw as showing Fig.7.7 on page A55.
- · When NSK K1, double seals or protectors are used, the set screws of bellows fastener kit are unable to use.

Please contact NSK for details.

· Bellows fastener is available only for the horizontal mounting positions. For other mounting positions, sliding plate is required (see Fig. 7.10 on page A56).

For fixing to the rail, make tap holes to the rail end surface. Fix the bellows mounting plate to the rail end surface through these tap holes by using a machine screw. NSK processes a tap hole to the rail end face when ordered with a linear guide.

Table 17 Bellows fastner kit reference No.

odel No.	Kit reference No.
SS15	LS15FS-01
SS20	LS20FS-01
SS25	LS25FS-01
SS30	LS30FS-01
SS35	LS35FS-01

A221 A222

Dimension tables of bellows SS Series

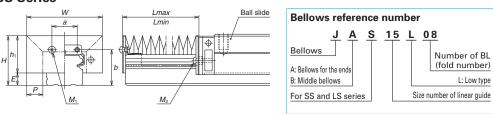


Fig. 17 Dimension of bellows

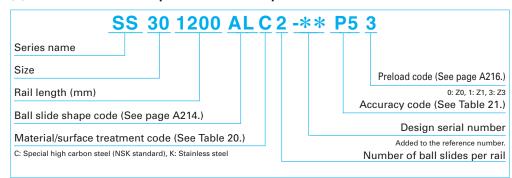
Table 18 Dimensions of bellows Unit										Unit: mm
Model No.	Н	h ₁	Ε	W	P	а	b	BL minimum length	M₁Tap x depth	M₂Tap x depth
JAS15L	23.5	18.9	4.6	43	10	8	16.5	17	M3 × 5	M3 × 14
JAS20L	27	21	6	48	10	13	19.7	17	M3 × 5	M2.5 × 14
JAS25L	32	25	7	51	10	15	23.2 17 N		M3 × 5	M3 × 18
JAS30L	41	32	9	66	15	16	29	17	M4 × 6	M4 × 19
JAS35L	47	36.5	10.5	72	15	22	33.5	17	M4×6	M4 × 22

Table 19 Numbers of folds (BL) and lengths of bellows Unit								Unit: mm			
Madal Na	Number of BL	2	4	6	8	10	12	14	16	18	20
Model No.	<u>L</u> min	34	68	102	136	170	204	238	272	306	340
JAS15L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JASTOL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAS20L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JASZUL	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAS25L	Stroke	106	212	318	424	530	636	742	848	954	1 060
JAS25L	Lmax	140	280	420	560	700	840	980	1 120	1 260	1 400
JAS30L	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JASSUL	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
IVCOET	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAS35L	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on the both sides, then by dividing the sum by 2.

We recommend using SS Series in a clean environment in order to utilize their full range of capabilities.

A223 A224


L: Low type

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

L1S 30 1200 L C N ->	** <u>PC Z</u>
Random-matching rail series code	Preload code (See page A216.)
L1S: SS Series random-matching rail	Z: Slight preload only
Size	Accuracy code
Rail length (mm)	PH: High precision grade random-matching type PC: Normal grade random-matching type Design serial number
Rail shape code	Added to the reference number.
L: Standard T: SS15 with mounting hole for M4	*Butting rail specification
Material/surface treatment code (See Table 20.)	N: Non-butting. L: Butting specification
*Please	consult with NSK for butting rail specification.

The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only preload code of "slight preload Z" is available (refer to page A216).

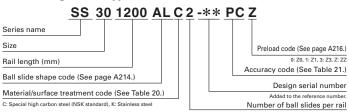
Table 20 Material/surface treatment code

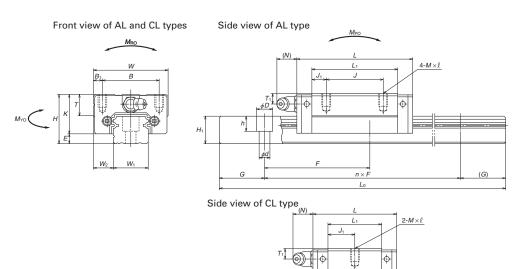
Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

Notes: High-precision grade of random-matching type is not available in stainless steel.

Table 21 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1		
Ultra precision grade	P3	K3		
Super precision grade	P4	K4		
High precision grade	P5	K5		
Precision grade	P6	K6		
Normal grade	PN	KN		
High precision grade (random-matching type)	PH	KH		
Normal grade (random-matching type)	PC	KC		

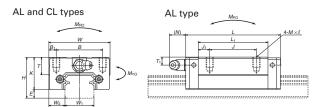

Note: Refer to page A38 for NSK K1 lubrication unit.

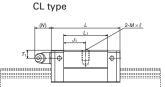

A225 A226

9. Dimensions

SS-CL (Medium-load type / Short)

SS-AL (High-load type / Standard)

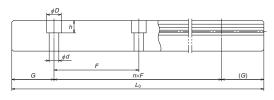

	A	ssem	bly						Ball	slide						
Model No.	Height			Width	Length	Mounting hole								Grease	fittin	g
	Н	Ε	$W_{\scriptscriptstyle 2}$	W	L	B J M×pitch×l E		B ₁	L ₁	J_1	Κ	Т	Hole size	<i>T</i> ₁	N	
SS15CL SS15AL	24	4.6	9.5	34	40.4 56.8	26	- M4×0.7×6 4		4	23.6 40	11.8 7	19.4	10	φ 3	6	3
SS20CL SS20AL	28	6	11	42	47.2 65.2	32	2 - M5×0.8×7		5	30 48	15 8	22	12	M6×0.75	5.5	11
SS25CL SS25AL	33	7	12.5	48	59.6 81.6	35	- 35	M6×1×9	6.5	38 60	19 12.5	26	12	M6×0.75	7	11
SS30CL SS30AL	42	9	16	60	67.4 96.4	40	- 40 M8×1.25×12 10		10	42 71	21 15.5	33	13	M6×0.75	8	11
SS35CL SS35AL	48	10.5	18	70	77 108	50	- 50	M8×1.25×12	10	49 80	24.5 15	37.5	14	M6×0.75	8.5	11


Notes: 1) External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

Reference number for ball slide of random-matching type SAS 30 AL Z -K

Random-matching ball slide series code
SAS: SS Series random-matching ball slide
Size
Ball slide shape code (See page A214.)

Option code
A: Equipped with NSK XI
-F: Fluoride low temperature chrome plating + AS2 grease
Preload code
S: Slight preload



Reference number for rail of random-matching type

L1S301200LCN-** PCZ Rail Random-matching rail series code Preload code (See page A216.) L1S: SS Series random-matching rail Z: Slight preload only Accuracy code PH: High precision grade PC: Normal grade Rail length (mm) Design serial number Rail shape code Added to the reference number *Butting rail specification L: Standard T: SS15 with mounting hole for M4 N: Non-butting. L: Butting specification Material/surface treatment code (See Table 20.)

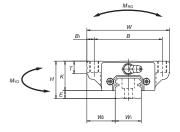
*Please consult with NSK for butting rail specification

Шı	nι	†·	m	n

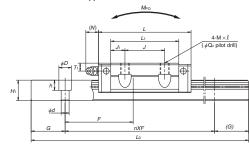
			Rail					Basic	load rat	ing			We	ight
Width	Height	Pitch	Mounting	G Max. length		Dynamic	Static		Static	momer	nt (N·m)		Ball	Rail
			bolt hole		L_{0max}	С	C_{0}	M_{RO}	Λ	1 _{PO}	Λ	1 _{YO}	slide	
W_1	H_1	F	$d \times D \times h$	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	12.5	60	* 3.5×6×4.5	20	2 000	4 900	7 800	39	21.1	171	17.7	143	0.14	1.4
15	12.5		4.5×7.5×5.3	20	(1 700)	7 900	15 600	78	73.5	435	61.5	365	0.2	1.4
20	15.5	60	6×9.5×8.5	20	3 960	7 250	11 800	80	40.5	295	34	247	0.19	2.3
20	15.5	00	0.00.00.0	20	(3 500)	11 100	21 800	149	124	700	104	590	0.28	2.3
23	18	60	7×11×9	20	3 960	12 700	20 800	164	96.5	650	81	545	0.34	3.1
20	10	00	7.711.0	20	(3 500)	17 900	33 500	266	242	1 370	203	1 150	0.51	3.1
28	23	80	7×11×9	20	4 000	18 700	29 600	282	153	1 060	128	890	0.58	4.8
20	23	00	/ / / / / / / / / / / / / / / / / / / /	20	(3 500)	27 300	50 500	480	415	2 450	350	2 050	0.85	4.0
34	27.5	80	9×14×12	20	4 000	26 000	40 000	465	234	1 650	196	1 380	0.86	7
54	27.5	80	3/14/12	20	(3 500)	38 000	68 500	800	620	3 750	520	3 150	1.3	/

Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface.
 To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.

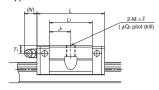
If you require mounting hole for M4 bolts (Hole size: 4.5 × 7.5 × 5.3), please specify when ordering.


³⁾ High-precision grade of random-matching type is available for special-high carbon steel products.

^{*} Standard mounting hole of SS15 rail is for M3 bolts (Hole size: 3.5 × 6 × 4.5).

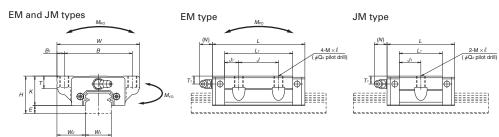

SS-JM (Medium-load type / Short) SS-EM (High-load type / Standard)

SS 30 1200 EMC2 -** PCZ Series name Size Preload code (See page A216.) 0: Z0, 1: Z1, 3: Z3, Z: ZZ Rail length (mm) Accuracy code (See Table 21.) Ball slide shape code (See page A214.) Design serial number Material/surface treatment code (See Table 20.) Added to the reference number. C: Special high carbon steel (NSK standard), K: Stainless steel Number of ball slides per rail


Front view of EM and JM types

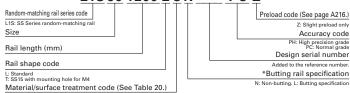
Side view of EM type

Side view of JM type

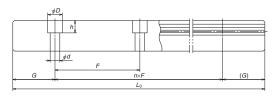


	A	ssem	bly							Ва	all slid	е					
Model No.	Height			Width	Length		М	ounting hole							Grease	e fittir	ng
wioder No.	Н	E	W ₂	W	L	$B \mid J \mid M \times pitch \times \ell = 0$		Q_2	B ₁	L ₁	J_1	K	T	Hole size	T_1	N	
SS15JM SS15EM	24	4.6	18.5	52	40.4 56.8	_		4.4	5.5	23.6 40	11.8 7	19.4	8	ø 3	6	3	
SS20JM SS20EM	28	6	19.5	59	47.2 65.2	49	- 32	M6×1×9 (M6×1×9.5)	5.3	5	30 48	15 8	22	10	M6×0.75	5.5	11
SS25JM SS25EM	33	7	25	73	59.6 81.6	60	- 35	M8×1.25×10 (M8×1.25×11.5)	6.8	6.5	38 60	19 12.5	26	11 (12)	M6×0.75	7	11
SS30JM SS30EM	42	9	31	90	67.4 96.4	72	- 40	M10×1.5×12 (M10×1.5×14.5)	8.6	9	42 71	21 15.5	33	11 (15)	M6×0.75	8	11
SS35JM SS35EM	48	10.5	33	100	77 108	82	- M10×1.5×13 50 (M10×1.5×14.5)		8.6	9	49 80	24.5 15	37.5	12 (15)	M6×0.75	8.5	11

Notes: 1) Parenthesized dimensions are applicable to stainless steel products.


Reference number for ball slide of random-matching type **SAS 30 EM Z-K**

Random-matching ball slide series code
SAS: SS Series random-matching ball slide Option code -K: Equipped with NSK K1 -F: Fluoride low temperature chrome plating + AS2 grease Preload code Ball slide shape code (See page A214.)

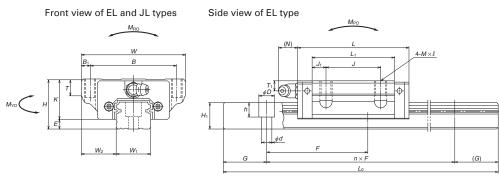

Reference number for rail of random-matching type

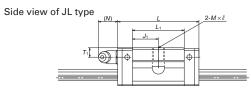
L1S301200LCN-** PCZ

*Please consult with NSK for butting rail specification

Unit: mm

													OH	it. IIIIII
			Rail					Basic	load rat	ing			We	ight
Width	Height	Pitch	Mounting	G	Max. length	Dynamic	Static		Static	momen	it (N·m)		Ball	Rail
			bolt hole		L_{0max}	С	C_{0}	$M_{\scriptscriptstyle{\mathrm{RO}}}$	Λ	1 _{PO}	٨	1 _{YO}	slide	
W_1	H_1	F	$d \times D \times h$	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	12.5	60	* 3.5×6×4.5	20	2 000	4 900	7 800	39	21.1	171	17.7	143	0.17	1.4
15	12.5	60	4.5×7.5×5.3	20	(1 700)	7 900	15 600	78	73.5	435	61.5	365	0.26	1.4
20	15.5	60	6×9.5×8.5	20	3 960	7 250	11 800	80	40.5	295	34	247	0.24	2.3
20	15.5	00	0.0.0.0.0	20	(3 500)	11 100	21 800	149	124	700	104	590	0.35	2.3
23	18	60	7×11×9	20	3 960	12 700	20 800	164	96.5	650	81	545	0.44	3.1
23	10	60	/ / / / / / / / / / / / / / / / / / / /	20	(3 500)	17 900	33 500	266	242	1 370	203	1 150	0.66	3.1
28	23	80	7×11×9	20	4 000	18 700	29 600	282	153	1 060	128	890	0.76	4.8
28	23	80	/ / / / / / / / / / / / / / / / / / / /	20	(3 500)	27 300	50 500	480	415	2 450	350	2 050	1.2	4.8
34	27.5	80	9×14×12	20	4 000	26 000	40 000	465	234	1 650	196	1 380	1.2	7
54	27.5	00	9X14X1Z	20	(3 500)	38 000	68 500	800	620	3 750	520	3 150	1.7	/

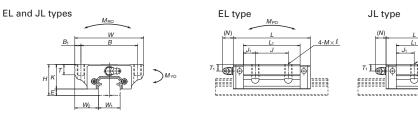

³⁾ Basic dynamic load rating is a load that allows for a 50 km rating fatigue life and is a vertical and constant load to the ball slide mounting surface. To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.


²⁾ External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

 ⁴⁾ High-precision grade of random-matching type is available for special-high carbon steel products.
 * Standard mounting hole of SS15 rail is for M3 bolts (Hole size: 3.5 × 6 × 4.5).
 If you require mounting hole for M4 bolts (Hole size: 4.5 × 7.5 × 5.3), please specify when ordering.

SS-JL (Medium-load type / Short) SS-EL (High-load type / Standard)

SS 30 1200 EL C 2 -** PC Z Series name Size Preload code (See page A216.) Rail length (mm) Ball slide shape code (See page A214.) Material/surface treatment code (See Table 20.) C: Special high carbon steel (NSK standard), K: Stainless steel Number of ball slides per rail

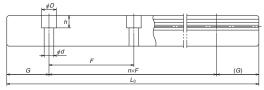

	A	ssem	bly						Ball	slide						
Model No.	Height			Width	Length		Mou	nting hole						Grease	fittin	g
Wiodel No.	Н	Ε	W_2	W	L	B J M×pitch×l E		B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	Ν	
SS15JL SS15EL	24	4.6	18.5	52	40.4 56.8	41	_		5.5	23.6 40	11.8 7	19.4	8	φ 3	6	3
SS20JL SS20EL	28	6	19.5	59	47.2 65.2	49	- 32 M6×1×10		5	30 48	15 8	22	10	M6×0.75	5.5	11
SS25JL SS25EL	33	7	25	73	59.6 81.6	60	- 35	M8×1.25×12	6.5	38 60	19 12.5	26	11 (12)	M6×0.75	7	11
SS30JL SS30EL	42	9	31	90	67.4 96.4	72	- M10×1.5×18 40 (M10×1.5×15)		9	42 71	21 15.5	33	11 (15)	M6×0.75	8	11
SS35JL SS35EL	48	10.5	33	100	77 108	82	- 50	M10×1.5×20 (M10×1.5×15)	9	49 80	24.5 15	37.5	12 (15)	M6×0.75	8.5	11

Notes: 1) Parenthesized dimensions are applicable to stainless steel products.

Reference number for ball slide of random-matching type SAS 30 EL Z -K

Random-matching ball slide series code
SAS: SS Series random-matching ball slide
Size
Ball slide shape code (See page A214.)

Option code
4: Equipped with NSK K1
F: Fluoride low temperature chrome plating + AS2 grease
Preload code
SIZ: Slight preload


Reference number for rail of random-matching type

L1S301200LCN-** PCZ

*Please consult with NSK for butting rail specification

													Un	it: mm
			Rail					Basic	load rat	ing			We	ight
Width	Height	Pitch	Mounting	G	Max. length	Dynamic	Static		Static	momen	nt (N·m)		Ball	Rail
			bolt hole		L_{0max}	С	C _o	M_{RO}	N	1 _{PO}	N	1 _{YO}	slide	
W_1	H_1	F	d×D×h	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	12.5	60	* 3.5×6×4.5	20	2 000	4 900	7 800	39	21.1	171	17.7	143	0.17	1.4
15	12.5	00	4.5×7.5×5.3	20	(1 700)	7 900	15 600	78	73.5	435	61.5	365	0.26	1.4
20	15.5	60	6×9.5×8.5	20	3 960	7 250	11 800	80	40.5	295	34	247	0.24	2.3
20	15.5	00	000.000.0	20	(3 500)	11 100	21 800	149	124	700	104	590	0.35	2.3
23	18	60	7×11×9	20	3 960	12 700	20 800	164	96.5	650	81	545	0.44	3.1
23	10	00	/ / / / / / / / / / / / / / / / / / / /	20	(3 500)	17 900	33 500	266	242	1 370	203	1 150	0.66	3.1
28	23	80	7×11×9	20	4 000	18 700	29 600	282	153	1 060	128	890	0.76	4.8
20	23	00	/ / / / / / / / / / / / / / / / / / / /	20	(3 500)	27 300	50 500	480	415	2 450	350	2 050	1.2	4.0
34	27.5	80	9×14×12	20	4 000	26 000	40 000	465	234	1 650	196	1 380	1.2	7
54	27.5	00	3714712	20	(3 500)	38 000	68 500	800	620	3 750	520	3 150	1.7	/

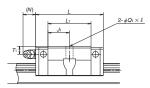
³⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.

²⁾ External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

⁴⁾ High-precision grade of random-matching type is not available for JL and EL models.

^{*} Standard mounting hole of SS15 rail is for M3 bolts (Hole size: 3.5 × 6 × 4.5).

If you require mounting hole for M4 bolts (Hole size: 4.5 × 7.5 × 5.3), please specify when ordering.

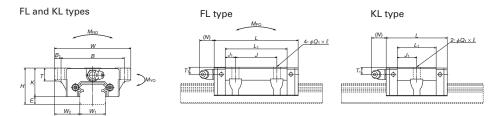

SS-KL (Medium-load type / Short) SS-FL (High-load type / Standard)

SS 30 1200 FL C 2 -** PC Z Series name Size Preload code (See page A216.) 0: Z0, 1: Z1, 3: Z3, Z: ZZ Rail length (mm) Accuracy code (See Table 21.) Ball slide shape code (See page A214.) Design serial number Material/surface treatment code (See Table 20.) Added to the reference number. Number of ball slides per rail C: Special high carbon steel (NSK standard), K: Stainless steel

Front view of FL and KL types

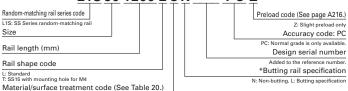
Side view of FL type $4-\phi Q_1 \times \ell$

Side view of KL type

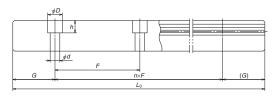

	A:	ssem	bly						Ball	slide						
Model No.	Height			Width	Length	Mounting hole								Grease	fittin	g
Model No.	Н	Е	W_2	W	L	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N	
SS15KL SS15FL	24	4.6	18.5	52	40.4 56.8	_		5.5	23.6 40	11.8 7	19.4	8	φ 3	6	3	
SS20KL SS20FL	28	6	19.5	59	47.2 65.2	49	_		5	30 48	15 8	22	10	M6×0.75	5.5	11
SS25KL SS25FL	33	7	25	73	59.6 81.6	60	_		6.5	38 60	19 12.5	26	11 (12)	M6×0.75	7	11
SS30KL SS30FL	42	9	31	90	67.4 96.4	72	- 40 9×12(9×14.5) 9		9	42 71	21 15.5	33	11 (15)	M6×0.75	8	11
SS35KL SS35FL	48	10.5	33	100	77 108	82 ⁻ 50 9×13(9×14.5) 9		9	49 80	24.5 15	37.5	12 (15)	M6×0.75	8.5	11	

Notes: 1) Parenthesized dimensions are applicable to stainless steel products.

A233


Reference number for ball slide of random-matching type **SAS 30 FL Z-K**

Random-matching ball slide series code
SAS: SS Series random-matching ball slide Option code -K: Equipped with NSK K1 -F: Fluoride low temperature chrome plating + AS2 grease Preload code Ball slide shape code (See page A214.)


Reference number for rail of random-matching type

L1S301200LCN-** PCZ

*Please consult with NSK for butting rail specification

Unit: mm

													011	ic. 1111111
			Rail					Basic	load rat	ing			We	ight
Width	Height	Pitch	Mounting	G	Max. length	Dynamic	Static		Static	momen	it (N·m)		Ball	Rail
			bolt hole		L_{0max}	С	C_{0}	M_{RO}	٨	1 _{PO}	٨	1 _{YO}	slide	
W_1	H_1	F	$d \times D \times h$	(reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
1.5	10.5	60	* 3.5×6×4.5	20	2 000	4 900	7 800	39	21.1	171	17.7	143	0.17	1.4
15	12.5	60	4.5×7.5×5.3	20	(1 700)	7 900	15 600	78	73.5	435	61.5	365	0.26	1.4
20	15.5	60	6×9.5×8.5	20	3 960	7 250	11 800	80	40.5	295	34	247	0.24	2.3
20	15.5	00	0x9.5x6.5	20	(3 500)	11 100	21 800	149	124	700	104	590	0.35	2.3
23	18	60	7×11×9	20	3 960	12 700	20 800	164	96.5	650	81	545	0.44	3.1
23	10	00	7.711.3	20	(3 500)	17 900	33 500	266	242	1 370	203	1 150	0.66	3.1
28	23	80	7×11×9	20	4 000	18 700	29 600	282	153	1 060	128	890	0.76	4.8
	23	00	7.711.73	20	(3 500)	27 300	50 500	480	415	2 450	350	2 050	1.2	4.0
34	27.5	80	9×14×12	20	4 000	26 000	40 000	465	234	1 650	196	1 380	1.2	7
54	27.5	00	JA14X12	20	(3 500)	38 000	68 500	800	620	3 750	520	3 150	1.7	/

³⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.

4) High-precision grade of random-matching type is not available for KL and FL models.

* Standard mounting hole of SS15 rail is for M3 bolts (Hole size: 3.5 × 6 × 4.5).

If you require mounting hole for M4 bolts (Hole size: 4.5 × 7.5 × 5.3), please specify when ordering.

²⁾ External appearance of stainless steel ball slides differs from those of carbon steel ball slides.

A-5-1.7 LW Series

1. Features

(1) Ideal for use of single rail

Thanks to the wide rail, rigidity and load carrying capacity are high against moment load from rolling direction. This makes the LW Series ideal for a single rail, compact linear guideway system.

(2) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, increasing load carrying capacity as well as rigidity in vertical direction.

(3) High resistance against impact load

Same as the LH and LS series, the offset Gothic arch grooves support a large load, such as an impact, by four rows.

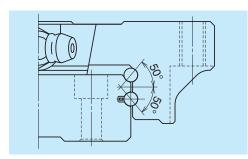


Fig. 1 Balls in contact

(4) High accuracy

Fixing master rollers to ball grooves is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

(5) Easy to handle, and designed with safety in mind.

Balls are retained in the retainer and do not fall out when a ball slide is withdrawn from the rail.

(6) Fast delivery

Lineup of random-matching rails and ball slides supports and facilitates fast delivery.

2. Ball slide shape

Ball slide Model	Shape / installation method	Туре
EL		EL

3. Accuracy and preload

(1) Running parallelism of ball slide

		Unit: µm			
	Preloaded	matching)	Random-matching type		
Rail length (mm) over or less	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC	
– 50	2	4.5	6	6	
50 – 80	3	5	6	6	
80 – 125	3.5	5.5	6.5	6.5	
125 – 200	4	6	7	7	
200 – 250	5	7	8	8	
250 – 315	5	8	9	9	
315 – 400	6	9	11	11	
400 – 500	6	10	12	12	
500 – 630	7	12 14		14	
630 – 800	8	14 16		16	
800 – 1 000	9	16 18		18	
1 000 – 1 250	10	17	20	20	
1 250 – 1 600	11	19	23	23	
1 600 – 2 000	13	21	26	26	
2 000 – 2 500	15	22	29	29	
2 500 – 3 150	17	25	32	32	
3 150 – 4 000	23	30	34	34	

(2) Accuracy standard

The preloaded assembly has three accuracy grades; High precision P5, Precision P6, and Normal PN grades, while the random-matching type has Normal PC grade only.

· Tolerance of preloaded assembly type

Та	Unit: µm		
Accuracy grade Characteristics	High precision P5	Precision grade P6	Normal grade PN
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±20 7	±40 15	±80 25
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±25 10	±50 20	±100 30
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Showr	n in Table 1 and	Fig. 2

• Tolerance of random-matching type: Normal grade PC

Т	able 3 Unit: µm		
Model No. Characteristics	LW17, 21, 27, 35, 50		
Mounting height H	±20		
Variation of mounting height H	15①		
	30②		
Mounting width W_2 or W_3	±30		
Variation of mounting width W_2 or W_3	25		
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1 and Fig. 2		

Note: ① Variation on the same rail

2 Variation on multiple rails

A235 A236

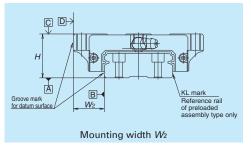

(3) Combination of accuracy and preload

Table 4

		Accuracy grade					
		High precision Precision grade Normal grade		Normal grade	Normal grade		
Without NSK K1 lubrication unit		P5	P6	PN	PC		
Wi	th NSK K1 lubrication unit	K5	K6	KN	KC		
Wit	n NSK K1 for food and medical equipment	F5	F6	FN	FC		
	Fine clearance	0			_		
	Z0						
	Slight preload	\circ		0	_		
-	Z1						
Preload	Medium preload	\cap		_	_		
re	Z3		Ŭ				
ш.	Random-matching type with fine clearance	_	_	_			
	ZT						
	Random-matching type with slight preload	_		_	0		
	ZZ						

Note: Z3 medium preload is only applicable to models of LW35 and LW50.

(4) Assembled accuracy

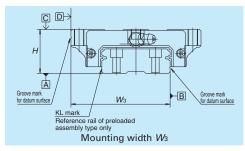


Fig. 2

(5) Preload and rigidity

We offer five levels of preload: Slight preload Z1, Medium preload Z3 and Fine clearance Z0, along with Random-matching type of Fine clearance ZT and Slight preload ZZ. Rigidities are for the median of the preload range.

· Preload and rigidity of preloaded assembly

Table 5

Tubic 0						
	Duolo	Preload (N)		Rigidity	(N/µm)	
Model No.	Preio			Vertical direction		Lateral direction
woder ivo.	Slight preload	Medium preload	Slight preload	Medium preload	Slight preload	Medium preload
	Z1	Z3	Z1	Z3	Z1	Z3
LW17 EL	0 – 245	-	156	-	112	-
LW21 EL	0 – 294	-	181	_	130	_
LW27 EL	0 – 390	-	226	-	167	_
LW35 EL	0 – 490	785	295	440	213	315
LW50 EL	0 – 590	1 470	345	600	246	425

Note: Clearance for Fine clearance Z0 is 0 to 3µm. Therefore, preload is zero. However, Z0 of PN grade is 0 to 15µm.

· Clearance and preload of random-matching type

	Table 6	Unit: µm	
Model No.	Fine clearance	Slight preload	
wiodei ivo.	ZT	ZZ	
LW17	- 3 − 15	-3.5 - 0	
LW21	− 3 − 15	-3.5 - 0	
LW27	-4 - 15	-4 - 0	
LW35	-5 - 15	- 5 - 0	
LW50	<i>–</i> 5 – 15	−7 − 0	

Note: Minus sign denotes elastic deformation of balls representing.

5. Installation

(1) Permissible values of mounting error

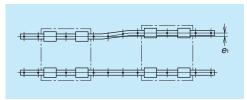


Fig. 3

4. Maximum rail length

· Table 7 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.

Table 7 Length limitations of rails

					Unit	: mm
Series	Size					
001100	Material	17	21	27	35	50
LW	Special high carbon steel	1 000	1 600	2 000	2 000	2 000

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

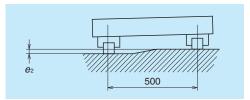


Fig. 4

Table 8

IJn	it:	п	m

						ΟΠΙΙ. μΠΙ
Value	Preload	Model No.				
value	i reioau	LW17	LW21	LW27	LW35	LW50
Permissible values of	Z0, ZT	20	20	25	38	50
parallelism in two rails e_1	Z1, ZZ	9	9	13	23	34
Permissible values of	Z0, ZT	ZT 100 μm/500 mm				
parallelism (height) in two rails e ₂ Z1, ZZ 45 µm/500 mm						

(2) Shoulder height of the mounting surface and corner radius r

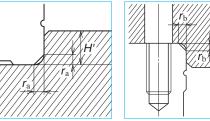


Fig. 5 Shoulder for the rail datum surface

	rb
	F _b V H''
Į	

Fig. 6 Shoulder for the ball slide datum surface

			Unit: mm		
Model No.	Corner radius	s (maximum)	Shoulder height		
Model No.	$r_{\rm a}$	$r_{\rm b}$	H'	H"	
LW17	0.3	0.3	2.2	4	
LW21	0.3	0.3	2.5	5	
LW27	0.5	0.5	3.5	5	
LW35	0.5	0.8	3.5	5	
LW50	0.8	0.8	4	6	

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 7 and Table 10 show grease fittings and tube fittings.

We provide Iubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

Please ask NSK for stainless lubrication accessories.

Table 10 Unit: mm								
Model No.	Dust-proof	Grease fitting	Tube fitting					
	specification	Thread body length L	Thread body length L					
	Standard	5	-					
LW17	With NSK K1	10	-					
LVV I /	Double seal	*	_					
	Protector	*	-					
	Standard	5	-					
LW21	With NSK K1	12	-					
LVVZI	Double seal	10	-					
	Protector	10	_					
	Standard	5	5					
LW27	With NSK K1	12	12					
LVV27	Double seal	10	9					
	Protector	10	9					
	Standard	5	6					
LW35	With NSK K1	14	13					
LVV33	Double seal	10	9					
	Protector	10	9					
	Standard	8	17					
LW50	With NSK K1	18	19					
LVVOU	Double seal	14	17					
	Protector	14	17					

^{*)} A connector is required for the grease fitting. Please contact NSK.

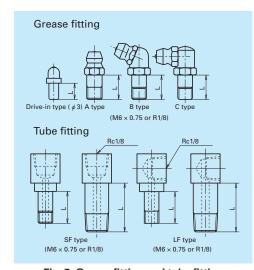


Fig. 7 Grease fitting and tube fitting

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We may mount them on a side of end cap for LW27, 35, and 50 as an option. (Fig. 8)

Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.

When using a piping unit with thread of M6 \times 1, you require a connector for a connection to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

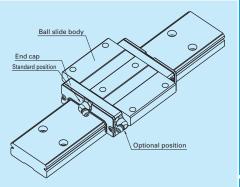


Fig. 8 Mounting position of lubrication accessories

A239 A240

7. Dust-proof components

(1) Standard Specification

The LW Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the series has an end seal on both ends and bottom seals at the bottom.

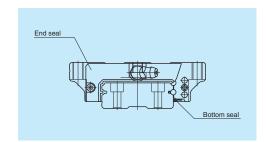


Fig. 9

Table 11 Seal friction per ball slide (maximum value) Unit: N

					01116.14
Series Size	17	21	27	35	50
LW	6	8	12	16	20

(2) NSK K1[™] lubrication unit

Table 12 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

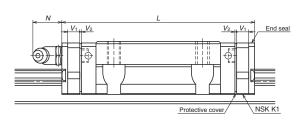


Table 12

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N
LW17	Standard	EL	51.4	61.6	4.5	0.6	(5)
LW21	Standard	EL	58.8	71.4	5.5	0.8	(13)
LW27	Standard	EL	74	86.6	5.5	0.8	(13)
LW35	Standard	EL	108	123	6.5	1.0	(13)
LW50	Standard	EL	140.6	155.6	6.5	1.0	(14)

Note: 1) NSK K1 for food and medical equipments are available for the models of LW17 to LW35.

2) Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V_1 x Number of NSK K1) + (Thickness of the protective cover, V_2 x 2)

(3) Double seal

Use a double seal set as showing in Table 13, when installing an extra seal to completed standard products. (Fig. 10)

When installing a grease fitting after the installation of double seals, a connector as showing Fig.10 is required.

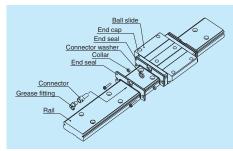


Fig. 10 Double seal

Table 13 Double-seal set

Model No.	Referen	Increased thickness V ₃	
	Without connector	With connector	(mm)
LW17	LW17WS-01	*	2.6
LW21	LW21WS-01	LW21WSC-01	2.8
LW27	LW27WS-01	LW27WSC-01	2.5
LW35	LW35WS-01	LW35WSC-01	3
LW50	LW50WS-01	LW50WSC-01	3.6

^{*)} For installation of a connector to a drive-in type grease fitting, contact NSK.

(4) Protector

Use a protector set as showing Table 14, when installing a protector to completed standard products. (Fig.11)

When installing a grease fitting after the installation of protectors, a connector as showing Fig.11 is required.

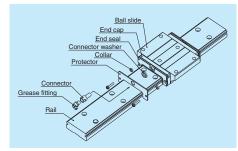


Fig. 11 Protector seal

Table 14 Protector set

Model No.	Referer	Increased thickness V ₄	
	Without connector	With connector	(mm)
LW17	LW17PT-01	*	3.2
LW21	LW21PT-01	LW21PTC-01	3.2
LW27	LW27PT-01	LW27PTC-01	2.9
LW35	LW35PT-01	LW35PTC-01	3.6
LW50	LW50PT-01	LW50PTC-01	4.2

^{*)} For installation of a connector to a drive-in type grease fitting, contact NSK.

(5) Cap to plug the rail mounting bolt hole Table 15 Caps to plug rail bolt hole

io oupo	p.u.g	
Bolt to	Сар	Quantity
secure rail	reference No.	/case
M4	LG-CAP/M4	20
M6	LG-CAP/M6	20
M8	LG-CAP/M8	20
	Bolt to secure rail M4 M6	secure rail reference No. M4 LG-CAP/M4 M6 LG-CAP/M6

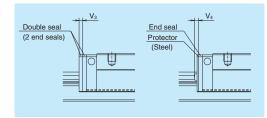
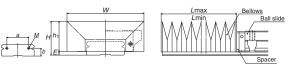



Fig. 12

(6) Bellows

· Make tap holes to the rail end face to fix the bellows mounting plate. NSK processes tap holes to the rail end face when ordered with a linear guide.

Dimension tables of bellows LW series

Bellows reference number

J A W 21 L 08

Bellows

A: Bellows

B: Middle bellows

Bellows for LW series

Size number of linear guide

Fig. 13

Table 16 Dimensions of bellows

- 1	-	:4	m	

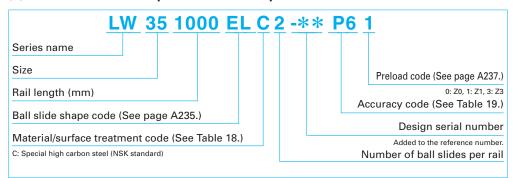
Model No.	Н	h ₁	Ε	W	Р	а	b	BL minimum length	Tap (<i>M</i>) x depth
JAW17N	25.5	23	2.5	68	15	22	6	17	M3×6
JAW21N	29	26	3	75	17	26	7	17	M3 × 6
JAW27N	37	33	4	85	20	28	10	17	M3 × 6
JAW35L	34	30	4	100	14	48	12	17	M4×8
JAW35N	41	37	4	115	20	40	12	17	1014 × 0
JAW50L	46.5	42	4.5	135	20	70	14	17	M4×8
JAW50N	56.5	52	4.5	160	30	,0	14	17	IVI-+ A O

Table 17 Numbers of folds (BL) and length of bellows

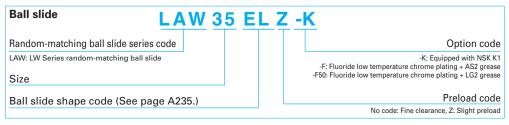
Unit: mm

Model No.	Number of BL	2	4	6	8	10	12	14	16	18	20
Model No.	Lmin	34	68	102	136	170	204	238	272	306	340
JAW17N	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
JAVVI/IV	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
JAW21N	Stroke	204	408	612	816	1 020	1 224	1 428	1 632	1 836	2 040
JAVVZIIV	Lmax	238	476	714	952	1 190	1 428	1 666	1 904	2 142	2 380
JAW27N	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAVVZ/IV	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAW35L	Stroke	162	324	486	648	810	972	1 134	1 296	1 458	1 620
JAVVSSL	Lmax	196	392	588	784	980	1 176	1 372	1 568	1 764	1 960
JAW35N	Stroke	218	436	654	872	1 090	1 308	1 526	1 744	1 962	2 180
JAVVJJIV	Lmax	252	504	756	1 008	1 260	1 512	1 764	2 016	2 268	2 520
JAW50L	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
JAVVOUL	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
JAW50N	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
JAVVOUN	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of even number BL on the both sides, then by dividing the sum by 2.


A243 A244

8. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

Rail L1W35 1	000 L C N -** PC Z
Random-matching rail series code	Preload code (See page A237.)
L1W: LW Series random-matching rail Size	T: Fine clearance. Z: Slight preload Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available. Design serial number
Rail shape code: L	Added to the reference number.
L: Standard	*Butting rail specification
Material/surface treatment code (See	Table 18.) N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

The reference number coding for the assembly of random-matching type is the same as that of preloaded assembly. However, only preload codes of "fine clearance T" and "slight preload Z" are available (refer to page A237).

Table 18 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

Table 19 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (random-matching type)	PC	KC	FC

Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.

A245 A246

(9) Dimensions LW-EL

LW 35 1000 EL C 2 -** PC Z

Series name

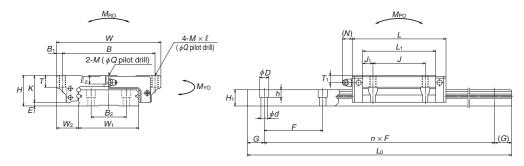
Size

Preload code (See page A237.)

0: 20, 1: 21, 3: 23, 1: 27, 2: 22

Accuracy code (See Table 19.)

Design serial number


Added to the reference number.

Number of ball slides per rail

Number of ball slides per rail

Front view

Side view

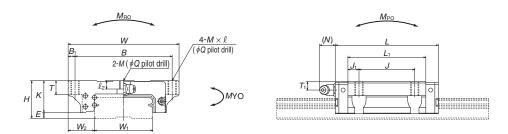
	As	semb	oly		Ball slide													
Model No.	Height			Width	Length		Mounting hole									Grease	fittin	g
Model No.																		
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	ℓ_2	Q	B_1	L ₁	J_1	Κ	T	Hole size	T_1	Ν
LW17EL	17	2.5	13.5	60	51.4	53	26	M4×0.7×6	3.2	3.3	3.5	35	4.5	14.5	6	ø 3	4	3
LW21EL	21	3	15.5	68	58.8	60	29	M5×0.8×8	3.7	4.4	4	41	6	18	8	M6×0.75	4.5	11
LW27EL	27	4	19	80	74	70	40	M6×1×10	6	5.3	5	56	8	23	10	M6×0.75	6	11
LW35EL	35	4	25.5	120	108	107	60	M8×1.25×14	9	6.8	6.5	84	12	31	14	M6×0.75	8	11
LW50EL	50	4.5	36	162	140.6	144	80	M10×1.5×18	14	8.6	9	108	14	45.5	18	Rc1/8	14	14

Reference number for ball slide of random-matching type LAW 35 EL Z -K

Random-matching ball slide series code

LAW: LW Series random-matching ball slide

Size

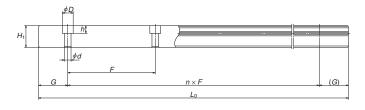

Ball slide shape code (See page A235.)

Size

Preload code

No code: Fine clearance, 2: Slight Poteloa

No code: Fine clearance, 2: Slight Poteloa



Reference number for rail of random-matching type

Rail	L1W35 1	000 L C	<u>N</u> <u>-**</u>	РС	Z
Random-matching	ail series code				Preload code (See page A237.)
L1W: LW Series ran	dom-matching rail				T: Fine clearance. Z: Slight preload
Size					Accuracy code: PC
Rail length (m	m)			_	PC: Normal grade is only available.
naii ieiigiii (ii	111/				Design serial number
Rail shape co	de: L				Added to the reference number.
L: Standard					*Butting rail specification
Material/surfa	ce treatment code (See	Table 18.)			N: Non-butting. L: Butting specification

*Please consult with NSK for butting rail specification.

Unit: mm

	Rail				Basic load rating						We	ight			
Width	Height		Pitch	Mounting	Mounting Maximum D			ynamic Static Static moment (N·m)					Ball	Rail	
				bolt hole	G Reference	length	С	C_{0}	$M_{\scriptscriptstyle{\mathrm{RO}}}$	l M	I _{PO}	N	1 _{YO}	slide	
$W_{\scriptscriptstyle 1}$	H_1	B_2	F	$d \times D \times h$	(Helefelle)	L_{0max}	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
33	8.7	18	40	4.5×7.5×5.3	15	1 000	5 600	11 300	135	44	288	37	242	0.2	2.1
37	10.5	22	50	4.5×7.5×5.3	15	1 600	6 450	13 900	185	65.5	400	55	335	0.3	2.9
42	15	24	60	4.5×7.5×5.3	20	2 000	12 800	26 900	400	171	970	143	815	0.5	4.7
69	19	40	80	7×11×9	20	2 000	33 000	66 500	1 690	645	3 550	545	2 990	1.5	9.6
90	24	60	80	9×14×12	20	2 000	61 500	117 000	3 900	1 530	8 200	1 280	6 900	4.0	15.8

Note: Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface.

To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.

1. PU Series	A251
2. LU Series	A261
3. PE Series	A273
4. LE Series	A283
5. LL Series	A297

A-5-2 Liquid Crystal Display and Semiconductor

A249 A250

A-5-2.1 PU Series (Miniature type)

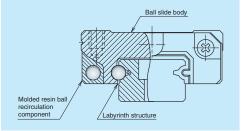


Fig. 1

1. Features

(1) Motion performance

Newly designed recirculation component facilitates smooth circulation of steel balls.

(2) Lightweight

The ball slide is fabricated to be approximately 20% lighter than LU Series by the application of resin to a part of its body.

(3) Reduced noise intensity

Resin components applied in ball circulating circuits reduce collision noise between steel balls and the inner wall of circulating circuits.

(4) Low dust generation

The structure is designed to prevent dust generation.

(5) Excellent dust-proofing

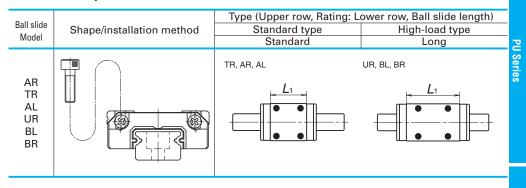
It is designed to minimize the clearance between the side of rails and the inner walls of the slide, and prevent foreign matters from entering the ball slide.

(6) High corrosion resistance

High corrosion-resistant martensite stainless steel is incorporated as a standard feature to provides excellent corrosion resistance.

(7) Easy to handle

Safety design includes a retainer that prevents steel balls from dropping out of the ball slide even when the slide is removed from the rail.


(8) Long-term maintenance-free

Superb features of NSK K1 Lubrication unit realize a long-term, maintenance-free operation.

(9) Fast delivery

Lineup of random-matching rails and ball slides facilitates fast delivery. (PU09 to PU15)

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1

П	Init:	

					σε. μ				
	Preload	Preloaded assembly type (not random matching)							
Rail length (mm)	Super precision P4	High precision Precision grade Normal grad P5 P6 PN		Normal grade PN	Normal grade PC				
– 50	2	2	4.5	6	6				
50 – 80	2	3	5	6	6				
80 – 125	2	3.5	5.5	6.5	6.5				
125 – 200	2	4	6	7	7				
200 – 250	2.5	5	7	8	8				
250 – 315	2.5	5	8	9	9				
315 – 400	3	6	9	11	11				
400 – 500	3	6	10	12	12				
500 - 630	3.5	7	12	14	14				
630 – 800	4.5	8	14	16	16				
800 – 1 000	5	9	16	18	18				
1 000 – 1 250	6	10	17	20	20				

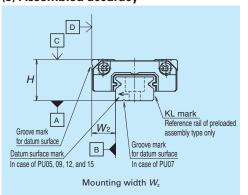
A251 A252

(2) Accuracy standard

The preloaded assembly has four accuracy grades; Super precision P4, High precision P5, Precision grade P6, and normal grade PN, while the random-matching type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the random-matching types.

· Tolerance of preloaded assembly


Table 2								
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN				
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 5	±15 7	±20 15	±40 25				
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 7	±20 10	±30 20	±50 30				
Running parallelism of surface C to surface A Running parallelism of surface D to surface B								

• Tolerance of random-matching type: Normal grade PC

Tabl	e 3 Unit: μm
Model No. Characteristics	PU09, 12 and 15
Mounting height H	±20
Variation of mounting height H	15① 30②
Mounting width W_2 or W_3	±20
Variation of mounting width W_2 or W_3	20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2

Notes: ① Variation on the same rail ② Variation on multiple rails

(3) Assembled accuracy

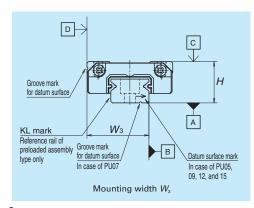


Fig. 2

Note: Please refer to page A67 for marks on the datum surfaces.

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0 for preloaded assembly type, along with Fine clearance ZT for random-matching type. Values for preload and rigidity of the preloaded assembly type are shown in **Table 4**. Rigidities are for the median of the preload range.

Preload and rigidity of preloaded assembly

Table 4								
		Preload	Rigidity					
	Model No.	(N)	(N/µm)					
		Slight preload (Z1)	Slight preload (Z1)					
96	PU05TR	0 – 3	17					
ty	PU07AR	0 – 8	22					
lard	PU09TR	0 – 10	30					
Standard type	PU12TR	0 – 17	33					
St	PU15AL	0 – 33	45					
ad	PU09UR	0 – 14	46					
High-load type	PU12UR	0 – 25	52					
Hig	PU15BL	0 – 51	75					

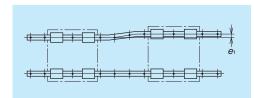
Note: Clearance of Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

· Clearance of random-matching type

	Tab	le 5 Unit: μm
	Model No.	Fine clearance
	Woder No.	ZT
ard	PU09TR	
nda	PU12TR	3 or less
Sta	PU15AL	
bad	PU09UR	
High-load Standard type type	PU12UR	5 or less
Ξ̈́	PU15BL	

4. Maximum rail length

Table 6 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grade.


Table 6 Length limitations of rails

	_				Unit	: mm
Series	Size					
001103	Material	05	07	09	12	15
PU	Stainless steel	210	375	600	800	1 000

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

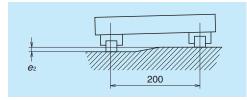
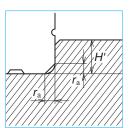



Fig. 3

Fig. 4

lable / Unit:											
Value	Dualaad	Model No.									
Value	Preload	PU05	PU07	PU09	PU12	PU15					
Permissible values of	Z0, ZT	10	12	15	20	25					
parallelism in two rails e_1	Z1	7	10	13	15	21					
Permissible values of	Z0, ZT	150 μm/200 mm									
parallelism (height) in two rails e ₂	Z1	90 um/200 mm									

(2) Shoulder height of the mounting surface and corner radius r

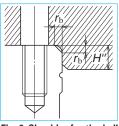


Fig. 5 Shoulder for the rail datum surface Fig. 6 Shoulder for the ball slide datum surface

	Unit: mm					
Model No.	Corner radiu	s (maximum)	Shoulder height			
wiodei No.	ra	r _b	H′	H"*		
PU05	0.2	0.2	0.7	2.3		
PU07	0.2	0.3	1.2	2.5		
PU09	0.3	0.3	1.9	2.6		
PU12	0.3	0.3	2.5	3.4		
PU15	0.3	0.5	3.5	4.4		

Table 8

6. Lubrication accessory

Model of PU15 can select drive-in type grease fitting as an option.

For the models of PU05 to PU12, apply grease directly to the ball grooves of rail using a point nozzle.

Drive-in type

7. Dust-proof components

(1) Standard specification

An end seal provided to both ends of a ball slide as a standard feature. Seal friction per standard ball slide is shown in **Table 9**.

Table 9 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	05	07	09	12	15
PU	0.3	0.3	0.5	0.5	0.5

(2) NSK K1[™] lubrication unit

Table 10 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

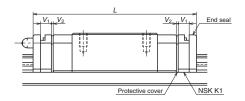


Table 10

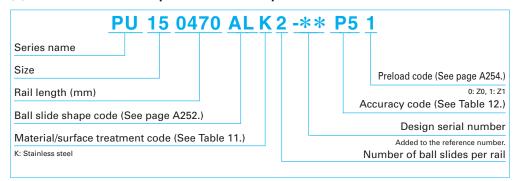
Unit: mm

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length equipped with two NSK K1 <i>L</i>	Thickness of NSK K1, V ₁	Thickness of protective cover, V ₂	
PU05	Standard	TR	19.4	24.4	2	0.5	
PU07	Standard	AR	23.4	29.4	2.5	0.5	
PU09	Standard	TR	30	36.4	2.7	0.5	
P009	Long	UR	41	47.4	2.7	0.5	
PU12	Standard	Standard TR		42	3	0.5	
FU12	Long	UR	48.7	55.7	S	0.5	
PU15	Standard	AL	43	51.2	3.5	0.6	
PU15	Long	BL	61	61 692		0.6	

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

A255 A256


^{*)} H" is the minimum recommended value based on the dimension T in dimension table.

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

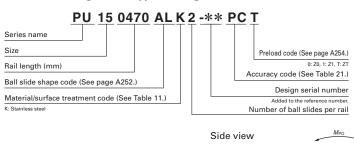
(2) Reference number for random-matching type

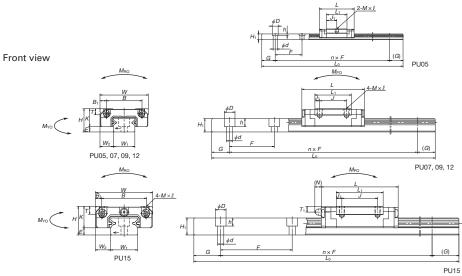
P1U 15 0470 R K	<u>N -** PC T</u>
Random-matching rail series code	Preload code (See page A254.)
P1U: PU Series random-matching rail	T: Fine clearance
Size	Accuracy code: PC
Poil longth (mm)	PC: Normal grade is only available.
Rail length (mm)	Design serial number
Rail shape code	Added to the reference number.
S: PU09, 12. R: PU15	*Butting rail specification
	N: Non-butting. L: Butting specification
Material/surface treatment code (See Table 11.)	*Please consult with NSK for butting rail specification.

The reference number coding for the assembly of random-matching type is the same as that of preloaded assembly. However, only preload code of "fine clearance T" is available (refer to page A254).

Code	Description
K	Stainless steel
Н	Stainless steel with surface treatment
Z	Other, special

Table 12 Accuracy code

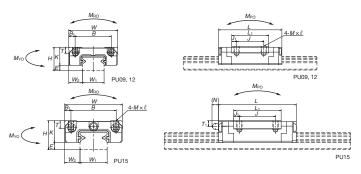

Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (random-matching type)	PC	KC	FC


Note: Refer to pages A38 and A61 for the NSK K1 lubrication unit.

A257 A258

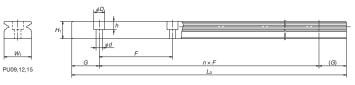
9. Dimensions

PU-TR, AR, AL (Standard type / Standard) PU-UR, BL (High-load type / Long)



	A	ssemb	ly		Ball slide											
Model No.	Height			Width	Length		Mounting hole							Oil	hole	
Wiodel No.	Н	Ε	W_2	W	L	В	J	<i>M</i> ×Pitch×ℓ	B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
PU05TR	6	1	3.5	12	19.4	8	_	M2×0.4×1.5	2	11.4	5.7	5	2.3	\$\dphi 0.9	1.5	_
PU07AR	8	1.5	5	17	23.4	12	8	M2×0.4×2.4	2.5	13.3	2.65	6.5	2.45	\$ 1.5	1.8	_
PU09TR PU09UR	10	2.2	5.5	20	30 41	15	10 16	M3×0.5×3	2.5	19.6 30.6	4.8 7.3	7.8	2.6	_		_
PU12TR PU12UR	13	3	7.5	27	35 48.7	20	15 20	M3×0.5×3.5	3.5	20.4 34.1	2.7 7.05	10	3.4	_	_	_
PU15AL PU15BL	16	4	8.5	32	43 61	25	20 25	M3×0.5×5	3.5	26.2 44.2	3.1 9.6	12	4.4	ø 3	3.2	(3.6)

Notes: 1) The ball slide of PU05TR has only two mounting tap holes in the center.


Reference number for ball slide of random-matching type PAU 15 AL S -K

Reference number for rail of random-matching type

Rail	P1U15 0470 RK	<u>N -** PC T</u>
Random-matching	rail series code	Preload code (See page A254.)
P1U: PU Series rar	ndom-matching rail	T: Fine clearance
Size		Accuracy code: PC
Rail length (n	nm)	PC: Normal grade is only available. Design serial number
Rail shape co	de	Added to the reference number.
S: PU09, 12. R: PU	15	*Butting rail specification
Material/surf	ace treatment code (See Table 11.)	N: Non-butting. L: Butting specification

*Please consult with NSK for butting rail specification.

Unit: mm

Rail					Basic load rating							We	ight	
Width	Height	Pitch	itch Mounting bolt		Maximum	Dynamic	Static		Static	momer	ıt (N·m)		Ball	Rail
			hole		length	С	C _o	$M_{\scriptscriptstyle{\mathrm{RO}}}$	N	1 _{PO}	N	1 _{YO}	slide	
W_1	H ₁	F	d×D×h	(Reference)	$L_{ m 0max}$	(N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
5	3.2	15	2.3×3.3×0.8	5	210	520	775	2.06	1.28	9.90	1.28	9.90	4	11
7	4.7	15	2.4×4.2×2.3	5	375	1 090	1 370	5.20	2.70	21.8	2.70	21.8	8	23
9	5.5	20	3.5×6×4.5	7.5	600	1 490	2 150	9.90	6.10	41.0	6.10	41.0	16	35
3	0.0	20	0.0004.0	7.5	000	2 100	3 500	16.2	15.6	88.0	15.6	88.0	25	00
12	7.5	25	3.5×6×4.5	10	800	2 830	3 500	21.1	11.4	73.5	11.4	73.5	32	65
12	/.5	23	3.37074.3	10	000	4 000	5 700	34.5	28.3	174	28.3	174	53	05
15	9.5	40	3.5×6×4.5	15	1 000	5 550	6 600	49.5	25.6	190	25.6	190	59	105
10	15 9.5 40 3.5×6×4.	3.50004.5	10	1 000	8 100	11 300	84.5	69.5	435	69.5	435	100	100	

- 2) Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁∞ for a 100-km rating fatigue life, divide C by 1.26.
- 3) To fix rail of PU05TR, use M2 x 0.4 cross-recessed pan head machine screw for precision instrument. (JCIS 10-70 No. 0 pan head machine screw No.1.)

(JCIS: Japanese Camera Industrial Standard.)

A-5-2.2 LU Series (Miniature type)

1. Features

(1) Super-small type

This compact guide owes its design to the single ball groove on both right and left sides (Gothic arch) .

(2) Equal load carrying capacity in vertical and lateral directions

The contact angle is set at 45 degrees, thus facilitating the equal load carrying capacity in vertical and lateral directions. This also provides equal rigidity in both directions.

(3) Stainless steel is also standardized

Items made of the martensitic stainless steel are available as standard.

(4) Some series have a ball retainer

Ball slide types AR and TR come with a ball retainer. Balls are retained in the retainer and do not fall out when the ball slide is withdrawn from the rail. (Ball slides of random-matching type as well as LU15 come with ball retainer.)

(5) Fast delivery

Random-matching of rails and ball slides are available. (LU09 to LU15)

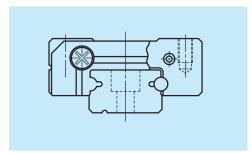


Fig. 1 LU Series

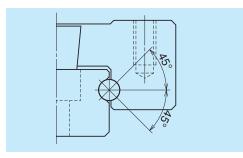


Fig. 2 Balls are in contact.

2. Ball slide shape

Ball slide Model	Shape/installation method	Type (Upper row, Rating: L Standard type Standard	ower row, Ball slide length) High-load type Long	- -
AL TL AR TR BL UL		AL, TL, TR, AR	BL, UL	Series

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1

Unit: µm

	Preload	Preloaded assembly type (not random matching) Random-matching to					
Rail length (mm)	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC		
– 50	2	2	4.5	6	6		
50 – 80	2	3	5	6	6		
80 – 125	2	3.5	5.5	6.5	6.5		
125 – 200	2	4	6	7	7		
200 – 250	2.5	5	7	8	8		
250 – 315	2.5	5	8	9	9		
315 – 400	3	6	9	11	11		
400 – 500	3	6	10	12	12		
500 – 630	3.5	7	12	14	14		
630 – 800	4.5	8	14	16	16		
800 – 1000	5	9	16	18	18		
1000 – 1250	6	10	17	20	20		

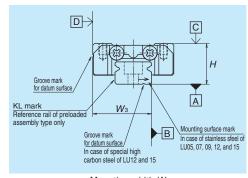
A261 A262

(2) Accuracy standard

The preloaded assembly type has four accuracy grades; Super precision P4, High precision P5, Precision P6, and Normal grade PN, while the random-matching type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type, while Table 3 shows the accuracy standard for the random-matching type.


Tolerance of preloaded assembly


Table 2 Unit: μ					
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 5	±15 7	±20 15	±40 25	
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 7	±20 10	±30 20	±50 30	
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Refer to Table 1 ar	nd Fig. 3		

Tolerance of random-matching type: Normal grade PC

Tabl	e 3 Unit: μm
Accuracy grade Characteristics	LU09, 12, 15
Mounting height H	±20
Variation of mounting height H	40
Mounting width W_2 or W_3	±20
Variation of mounting width W_2 or W_3	40
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Refer to Table 1 and Fig. 3

(3) Assembled accuracy

Mounting width W₃

Fig. 3

Note: Please refer to page A67 for marks on the datum surfaces.

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0, along with random-matching type of Fine clearance ZT. Values for preload and rigidity of the preloaded assembly type are shown in **Table 4**. Rigidities are for the median of the preload range.

· Preload and rigidity of preloaded assembly

Table 4

		Preload	Rigidity
	NA I NI -	(N)	(N/µm)
	Model No.	Slight preload	Slight preload
		(Z1)	(Z1)
	LU05 TL	0 – 3	15
90	LU07 AL	0 – 8	22
Standard type	LU09 AL, TL	0 – 12	26
larc	LU09 AR, TR	0 – 10	30
anc	LU12 AL, TL	0 – 17	33
Ş	LU12 AR, TR	0 – 17	33
	LU15 AL	0 – 33	45
ad	LU09 BL, UL	0 – 17	43
High-load type	LU12 BL, UL	0 – 25	52
Ξij	LU15 BL	0 – 51	75

Note: Clearance of Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

However, the clearance of the Z0 of PN grade is 3 to 10 μ m.

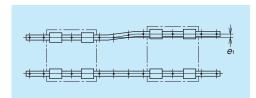
Clearance of random-matching type

Tab	le 5 Unit: μm
Model No.	Fine clearance ZT
LU09	
LU12	0 – 15
LU15	

4. Maximum rail length

Table 6 shows the limitations of rail length.

However, the limitations vary by accuracy grades.


Table 6 Length limitation of rails

	-				Unit	: mm
Series	Size Material	05	07	09	12	15
LU	Special high carbon steel	_	_	1 200	1 800	2 000
	Stainless steel	210	375	600	800	1 000

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

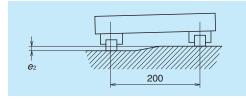


Fig. 4

Fig. 5

Table 8

0.2

0.3

0.3

0.3

0.5

Corner radius (maximum)

0.2

0.2

0.3

0.3

0.3

Unit: mm

3

Shoulder height

0.7

1.2

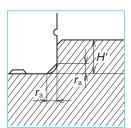
1.9

2.5

3.5

		Та	able 7			Unit: µm
Value	Dualaad			Model No.		
value	Preload	LU05	LU07	LU09	LU12	LU15
Permissible values of	Z0, ZT	10	12	15	20	25
parallelism in two rails e_1	Z1	7	10	13	15	21
Permissible values of	Z0, ZT	150 μm/200 mm				
parallelism (height) in two rails e ₂	Z1	90 μm/200 mm				

Model No LU05


LU07

LU09

LU12

LU15

(2) Shoulder height of the mounting surface and corner radius r

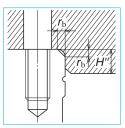


Fig. 6 Shoulder for the rail datum surface

Fig. 7 Shoulder for the ball slide datum surface

6. Lubrication accessories

There is no standard grease fitting for LU05 to LU15.

For the LU Series, apply grease directly to the ball grooves of rail using a point nozzle.

7. Dust-proof components

(1) Standard specification

End seal: Provided to both ends of the ball slide as a standard feature.

LU05TL, LU07AL, LU09AL, and LU09TL can install the side seal as an option.

• Seal friction per standard ball slide is shown in Table 9.

Table 9 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	05	07	09	12	15
LU	0.3	0.3	0.5	0.5	0.5

(2) NSK K1[™] lubrication unit

The installed dimensions of the NSK K1 lubrication unit are shown in Table 10.

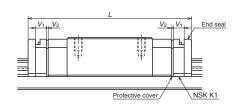


Table 10

Unit: mm

Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V_2
LU05	Standard	TL	18*	24.4	2.0	0.5
LU07	Standard	AL	20.4*	29.4	2.5	0.5
	Standard	AR, TR	30	36.4		
LU09	Standard	AL, TL	26.8*	34.2	2.7	0.5
	Long	BL, UL	41	47.4		
	Standard	AR, TR	35.2	42.2		
LU12	Standard	AL, TL	34	41	3.0	0.5
	Long	BL, UL	47.5	54.5		
LU15	Standard	AL	43.6	51.8	3.5	0.6
LUIS	Long	BL	61	69.2	3.5	0.6

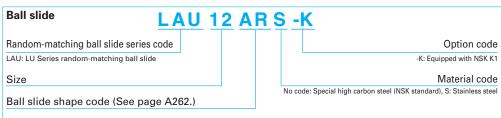
^{*)} Standard ball slide length of LU05TL, LU07AL, LU09AL and LU09TL does not include the thickness of the end seal (1.5 mm). However, it includes the height of the screw head for end cap installation (Included length – LU05, 0.8 mm; LU07, no projection; LU09, 1 mm)

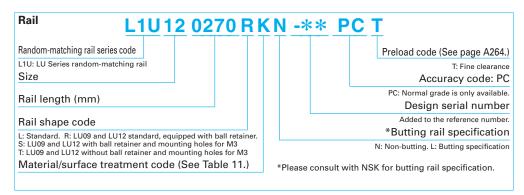
Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, V₁ × Number of NSK K1) +

(Thickness of the protective cover $V_2 \times 2$)

8. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.


Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only the preload code of "Fine clearance T" is available (refer to page A264).

Table 11 Material/surface treatment code

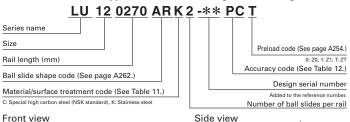
Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

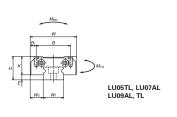
Table 12 Accuracy code

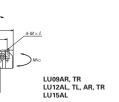
Accuracy	Standard (Without NSK K1)	With NSK K1
Super precision grade	P4	K4
High precision grade	P5	K5
Precision grade	P6	K6
Normal grade	PN	KN
Normal grade (random-matching type)	PC	KC

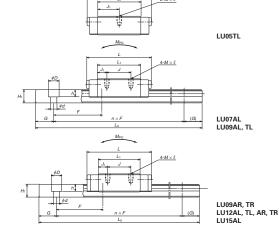
Note: Refer to page A38 for NSK K1 lubrication unit.

A267 A268


9. Dimensions


LU-AL (Standard type / Standard, LU15 is equipped with ball retainer)


LU-TL (Standard type / Standard, Large mounting hole)

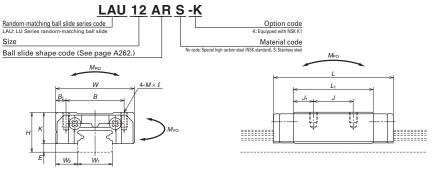

LU-AR (Standard type / Standard, With ball retainer)

LU-TR (Standard type / Standard, Large mounting hole, with ball retainer)

	А	ssemb	у					Ball slide						
Model No.	Height			Width	Length		Mounting hole						Width	Height
wioder No.	Н	Ε	$W_{\scriptscriptstyle 2}$	W	L	В	J	<i>M</i> ×pitch×ℓ	B₁	<i>L</i> ₁	J_1	K	W_1	H ₁
LU05TL	6	1	3.5	12	18	8	_	M2×0.4×1.5	2	12	6	5	5	3.2
LU07AL	8	1.5	5	17	20.4	12	8	M2×0.4×2.4	2.5	13.6	2.8	6.5	7	4.7
LU09AL LU09TL	10	2.2	5.5	20	26.8	15	13 10	M2×0.4×2.5 M3×0.5×3	2.5	18	2.5 4	7.8	9	5.5
LU09AR LU09TR	10	2.2	5.5	20	30	15	13 10	M2×0.4×2.5 M3×0.5×3	2.5	20	3.5 5	7.8	9	5.5
LU12AL LU12TL	13	3	7.5	27	34	20	15	M2.5×0.45×3 M3×0.5×3.5	3.5	21.8	3.4	10	12	7.5
LU12AR LU12TR	13	3	7.5	27	35.2	20	15	M2.5×0.45×3 M3×0.5×3.5	3.5	21.8	3.4	10	12	7.5
LU15AL	16	4	8.5	32	43.6	25	20	M3×0.5×4	3.5	27	3.5	12	15	9.5

Notes 1) LU05TL, LU07AL, LU09TL, LU09AR, LU09TR, LU12AR and LU12TR come in stainless steel only.

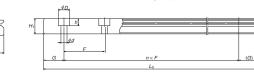
- 2) Ball slide of LU05TL has only two mounting tap holes in the center.
- 3) End seals of LU05TL, LU07AL, LU09AL and LU09TL are available on request.


Reference number for ball slide of random-matching type

Random matching with retainer: LU09 - 12 are AR/TR, LU15 is AL.

LAU-AR (With ball retainer)

LAU-TR (Large mounting hole, with ball retainer)


LAU-AL (LU15 is equipped with ball retainer)

Reference number for rail of random-matching type 1 11112 0270 DKN -** DC T

L10120270 N	N -** FC I
Random-matching rail series code	Preload code (See page A264.)
L1U: LU Series random-matching rail Size	T: Fine clearance Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available.
Rail shape code	Design serial number
L: Standard. R:LU09 and LU12 standard equipped with ball retainer. S: LU09 and LU12 with ball retainer and mounting holes for M3 T: LU09 and LU12 without ball retainer and mounting holes for M3	Added to the reference number. *Butting rail specification
Material/surface treatment code (See Table 11.)	N: Non-butting. L: Butting specification

*Please consult with NSK for butting rail specification

Unit: mm

	Rail					Basi	c load ra	ting			Weight	
Pitch	Mounting bolt	G	G Max. Dy		Static		Static ı	moment	(N·m)		Ball	Rail
	hole		L _{OMAX} .	С	C_{0}	$M_{\scriptscriptstyle{\mathrm{RO}}}$	N	1 _{PO}	M_{YO}		slide	
F	d×D×h	(Reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
15	2.3×3.3×1.5	5	— (210)	545	740	1.93	1.22	8.85	1.22	8.85	4	11
15	2.4×4.2×2.3	5	— (375)	1 090	1 370	4.90	2.66	18.6	2.66	18.6	10	23
20	2.6×4.5×3 3.5×6×4.5	7.5	1 200 (600)	1 760	2 220	10.2	6.10	38.5	6.10	38.5	17	35
20	2.6×4.5×3 3.5×6×4.5	7.5	— (600)	1 490	2 150	9.9	6.10	41.0	6.10	41.0	19	35
25	3×5.5×3.5 3.5×6×4.5	10	1 800 (800)	2 830	3 500	21.1	11.4	78.5	11.4	78.5	38	65
25	3×5.5×3.5 3.5×6×4.5	10	(800)	2 830	3 500	21.1	11.4	81.5	11.4	81.5	38	65
40	3.5×6×4.5	15	2 000 (1 000)	5 550	6 600	49.5	25.6	193	25.6	193	70	105

⁴⁾ To fix rail of LU05TL, use M2 × 0.4 cross-recessed pan head machine screw for precision instrument.

⁽JCIS 10-70 No. 0 pan head machine screw No.1.)

⁽JCIS: Japanese Camera Industrial Standard.)

⁵⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C_{100} for a 100-km rating fatigue life, divide C by 1.26.

LU-BL (High-load type / Long) LU-UL (High-load type / Long, large mounting hole)

LU 12 0270 BL K 2 -** P5 1

Series name

Size

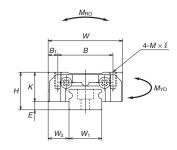
Rail length (mm)

Ball slide shape code (See page A262.)

Material/surface treatment code (See Table 11.)

C: Special high carbon steel (NSK standard), K: Stainless steel

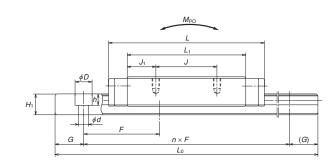
Preload code (See page A254.)


Accuracy code (See Table 12.)

Design serial number

Added to the reference number.

Number of ball slides per rail


Front view

	А	ssemb	ly					Ball slide						
Model No.	Height			Width	Length		Mounting hole						Width	Height
Wiodel No.	Н	Ε	W_2	W	L	В	J	<i>M</i> ×pitch×ℓ	$B_{\scriptscriptstyle 1}$	L ₁	J_1	К	W₁	H ₁
LU09BL	10	0.0		00	4.4	4.5	4.0	M2×0.4×2.5	0.5	04.0	7.0	7.0		
LU09UL	10	2.2	5.5	20	41	15	16	M3×0.5×3	2.5	31.2	7.6	7.8	9	5.5
LU12BL	10	0	7.5	07	47.5	20	00	M2.5×0.45×3	2.5	25.0	7.05	10	10	7.5
LU12UL	13	3	7.5	27	47.5	20	20	M3×0.5×3.5	3.5	35.3	7.65	10	12	7.5
LU15BL	16	4	8.5	32	61	25	25	M3×0.5×4	3.5	44.4	9.7	12	15	9.5

Notes 1) LU09UL is available only in stainless steel. 2) LU15BL is equipped with ball retainer.

Side view

Unit: mm

												5111C. 1111111
	Rail					Basi	c load ra	ting			Weight	
Pitch	Mounting bolt	G	G Max. Dyr		Dynamic Static Static moment (N·m)						Ball	Rail
	hole		L _{omax} .	С	C_{0}	M_{RO}	\ \times_{\chi_{\chi}}	1 _{PO}	M _{YO}		slide	
F	d×D×h	(Reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
20	2.6×4.5×3	7.5	1 200	2 600	3 900	17.9	17.2	98.0	17.2	98.0	29	35
20 3.5×	3.5×6×4.5	7.5	(600)	2 000	3 300	17.5	17.2	30.0	17.2	30.0	29	35
25	3×5.5×3.5	10	1 800	4 000	5 700	34.5	28.3	169	28.3	169	59	65
25	3.5×6×4.5	10	(800)	4 000	5 700	34.5	20.3	109	20.5	109	55	05
40	3.5×6×4.5	15	2 000 (1 000)	8 100	11 300	84.5	69.5	435	69.5	435	107	105

³⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert *C* to the dynamic load rating *C*₁₀₀ for a 100-km rating fatigue life, divide *C* by 1.26.

A271 A272

A-5-2.3 PE Series (Miniature wide type)

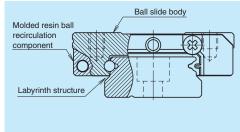


Fig. 1

1. Features

(1) Ideal for use of single rail

The PE Series linear guides are miniature and wide rail type. Thanks to the wide rail, load carrying capacity is high against moment load from rolling direction.

(2) Motion performance

Newly designed recirculation component facilitates smooth circulation of steel balls.

(3) Lightweight

The ball slide is fabricated to be approximately 20% lighter than that of the LE Series by the application of resin to a part of its body.

(4) Reduced noise intensity

Resin components applied in ball circulating circuits reduce collision noise between steel balls and the inner wall of circulating circuits.

(5) Low dust generation

The structure is designed to prevent dust generation.

(6) Excellent dust-proofing

It is designed to minimize the clearance between the side of rails and the inner walls of the slide, and prevent foreign matters from entering the ball slide.

(7) High corrosion resistance

High corrosion-resistant martensite stainless steel incorporated as a standard feature provides excellent resistance to corrosion.

(8) Easy to handle

Safety design includes a retainer that prevents steel balls from dropping out of the ball slide even when the slide is removed from the rail.

(9) Long-term maintenance-free

Equipped with NSK K1 Lubrication Unit realizes long-term, maintenance-free use.

(10) Fast delivery

Lineup of random-matching rails and ball slides in the series supports random matching and facilitates fast delivery. (PE09 to PE15)

2. Ball slide shape

Ball slide Model	Shape/installation method	Type (Upper row, Rating: L Standard type Standard	ower row, Ball slide length) High-load type Long		
AR TR UR BR		AR, TR	UR, BR	PE Series	

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1

Unit: um

					Offic. piri	
	Preload	ed assembly type	e (not random ma	atching)	Random-matching type	
Rail length (mm)	Super precision P4	High precision P5	Precision grade P6	Normal grade PN	Normal grade PC	
– 50	- 50 2		4.5	6	6	
50 – 80	2	3	5	6	6	
80 – 125	80 – 125 2		5.5	6.5	6.5	
125 – 200	125 – 200 2		6	7	7	
200 – 250	200 – 250 2.5		7	8	8	
250 – 315	2.5	5	8	9	9	
315 – 400	3	6	9	11	11	
400 – 500	3	6	10	12	12	
500 - 630	3.5	7	12	14	14	
630 – 800	4.5	8	14	16	16	
800 – 1 000	5	9	16	18	18	
1 000 – 1 250	1 000 – 1 250 6		17	20	20	

A273 A274

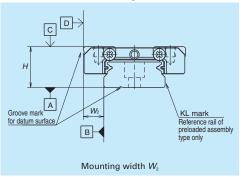
L Delles

(2) Accuracy standard

The preloaded assembly type has four accuracy grades; Super precision P4, High precision P5, Precision P6, and Normal PN grades, while the random-matching type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the random-matching types.

· Tolerance of preloaded assembly


Table 2 Unit: μm									
Accuracy grade Characteristics	Super precision P4	High precision P5	Precision grade P6	Normal grade PN					
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 5	±15 7	±20 15	±40 25					
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 7	±20 10	±30 20	±50 30					
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2								

• Tolerance of random-matching type: Normal grade PC

Tabl	e 3 Unit: μm					
Model No. Characteristics	PE09, 12 and 15					
Mounting height H	±20					
Variation of mounting height H	15① 30②					
Mounting width W_2 or W_3	±20					
Variation of mounting width W_2 or W_3	20					
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 2					

Note: ① Variation on the same rail ② Variation on multiple rails

(3) Assembled accuracy

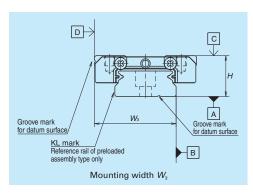


Fig. 2

NSK

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0, along with random-matching type of Fine clearance ZT. Values for preload and rigidity of the preloaded assembly types are shown in **Table 4**. Rigidities are for the median of the preload range.

Preload and rigidity of preloaded assembly

Table 4									
		Preload	Rigidity						
	Model No.	(N)	(N/µm)						
		Slight preload (Z1)	Slight preload (Z1)						
96	PE05AR	0 – 28	45						
typ	PE07TR	0 – 29	46						
ard	PE09TR	0 – 37	61						
Standard type	PE12AR	0 – 40	63						
St	PE15AR	0 – 49	66						
ad	PE09UR	0 – 54	86						
High-load type	PE12BR	0 – 59	97						
Hig	PE15BR	0 – 75	114						

Note: Clearance of Fine clearance Z0 is 0 to 3 µm. Therefore, preload is zero.

· Clearance of random-matching type

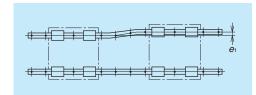
	Tab	le 5 Unit: μm
	Model No.	Fine clearance ZT
ard	PE09TR	
Standard type	PE12AR	3 or less
Sta	PE15AR	
bad	PE09UR	
High-load type	PE12BR	5 or less
Ξ̈́	PE15BR	

4. Maximum rail length

Table 6 shows the limitations of rail length.

However, the limitations vary by accuracy grades.

Table 6 Length limitations of rails


					Unit	: mm
Carios	Size					
Series	Material	05	07	09	12	15
PE	Stainless steel	150	600	800	1 000	1 200

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

A275 A276

5. Installation

(1) Permissible values of mounting error

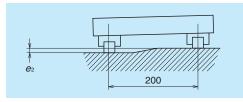
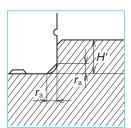



Fig. 3

Fig. 4

Table 7 Unit									
Value	Brolond		Model No.						
value	Preload	PE05	PE07	PE09	PE12	PE15			
Permissible values of	Z0, ZT	10	12	15	18	22			
parallelism in two rails e_1	Z1	5	7	10	13	17			
Permissible values of	Z0, ZT	50 μm/200 mm							
parallelism (height) in two rails e2	Z1	35 μm/200 mm							

(2) Shoulder height of the mounting surface and corner radius r

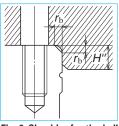


Fig. 5 Shoulder for the rail datum surface

Fig. 6 Shoulder for the ball slide datum surface

	Unit: mm				
Madal Na	Corner radius	s (maximum)	Shoulder height		
Model No.	ra	r _b	H′	H"*	
PE05	0.2	0.2	1.1	2.5	
PE07	0.2	0.3	1.7	3	
PE09	0.3	0.3	3.5	2.8	
PE12	0.3	0.3	3.5	3.2	
PE15	0.3	0.5	3.5	4.1	
	PE07 PE09 PE12	Model No. Comer radius ra PE05 0.2 PE07 0.2 PE09 0.3 PE12 0.3	Model No. ra rb PE05 0.2 0.2 PE07 0.2 0.3 PE09 0.3 0.3 PE12 0.3 0.3	Model No. Corner radius (maximum) Shoulded (maximum) Shoulded (maximum) PE05 0.2 0.2 1.1 PE07 0.2 0.3 1.7 PE09 0.3 0.3 3.5 PE12 0.3 0.3 3.5	

^{*)} H" is the minimum recommended value based on the dimension T in dimension table.

6. Lubrication accessory

Model of PE15 can select drive-in type grease fitting as an option.

For the model of PE05 to PE12, apply grease directly to the ball grooves of rail using a point nozzle.

Drive-in type

NSK

7. Dust-proof components

(1) Standard specification

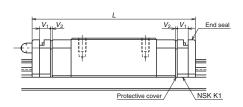

End seal: Provided to both ends of the ball slide as a standard feature. Seal friction per standard ball slide is shown in **Table 9**.

Table 9 Seal friction per ball slide (maximum value)

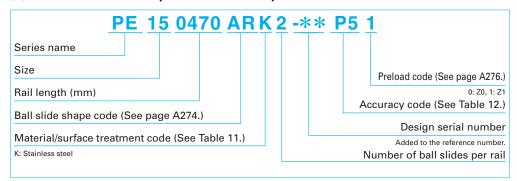
					Unit: N
Series Size	05	07	09	12	15
PE	0.4	0.4	0.8	1	1.2

(2) NSK K1[™] lubrication unit

Table 10 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

			Table 10			Unit: mm	
Model No.	Ball slide length	Ball slide model	Standard ball slide length	Ball slide length equipped with two NSK K1 <i>L</i>	Thickness of NSK K1, V ₁	Thickness of protective cover, V_2	
PE05	Standard	AR	24.1	28.9	2	0.4	
PE07	Standard	TR	31.1	37.1	2.5	0.5	
PE09	Standard	TR	39.8	46.8	3	0.5	
PEU9	Long	UR	51.2	58.2	3	0.5	
PE12	Standard	AR	45	53	2.5	0.5	
PEIZ	Long	BR	60	68	3.5	0.5	
PE15	Standard	AR	56.6	66.2	4	0.0	
	Long	BR	76	85.6	4	0.8	

Note: Ball slide length equipped with NSK K1 =


(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

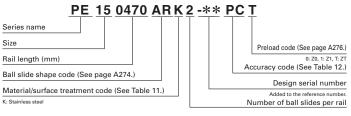
(1) Reference number for preloaded assembly

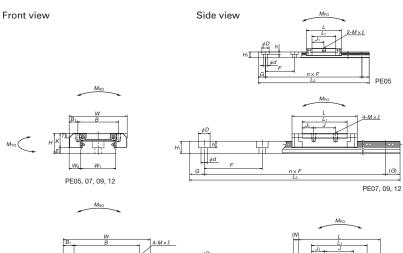
(2) Reference number for random-matching type

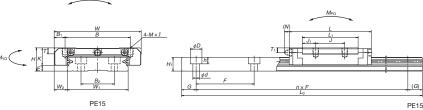
P1E 15 0470 R K N ->	** PC T
Random-matching rail series code	Preload code (See page A276.)
P1E: PE Series random-matching rail	T: Fine clearance
Size	Accuracy code: PC
Rail length (mm)	PC: Normal grade is only available. Design serial number
Rail shape code	Added to the reference number.
R: PE09, 12. P: PE15	*Butting rail specification
Material/surface treatment code (See Table 11.)	N: Non-butting. L: Butting specification
*Please	e consult with NSK for butting rail specification.

Reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only preload code of "Fine clearance T" is available (refer to page A276).

Table 11 Material/surface treatment code

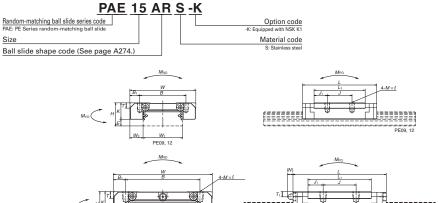

Code	Description
K	Stainless steel
Н	Stainless steel with surface treatment
Z	Other, special


Table 12 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1	With NSK K1 for food and medical equipment
Super precision grade	P4	K4	F4
High precision grade	P5	K5	F5
Precision grade	P6	K6	F6
Normal grade	PN	KN	FN
Normal grade (random-matching type)	PC	KC	FC

Note: Refer to pages A38 and A61 for NSK K1 lubrication unit.

9. Dimensions PE-AR, TR (Standard type / Standard) PE-UR, BR (High-load type / Long)



	А	ssemb	oly		Ball slide											
Model No	Height			Width	Length		Mour	nting hole						Oil	hole	
Woder No). Н	Ε	W ₂	W	L	В	J	<i>M</i> ×Pitch×ℓ	B ₁	L ₁	J_1	K	Т	Hole size	<i>T</i> ₁	N
PE05AR	6.5	1.4	3.5	17	24.1	13	_	M2.5×0.45×1.5	2	16.4	8.2	5.1	2.5	\$ 0.9	1.3	
PE07TR	9	2	5.5	25	31.1	19	10	M3×0.5×2.8	3	20.8	5.4	7	3	\$ 1.9	1.9	_
PE09TR	1 12	4	6	30	39.8 51.2	21 23	12 24	M3×0.5×3	4.5 3.5	26.6 38	7.3 7	8	2.8	φ2	2.3	_
PE12AR PE12BR	1 1/1	4	8	40	45 60	28	15 28	M3×0.5×4	6	31 46	8 9	10	3.2	φ 2.5	2.7	_
PE15AR	1 16	4	9	60	56.6 76	45	20 35	M4×0.7×4.5	7.5	38.4 57.8	9.2 11.4	12	4.1	ø 3	3.2	(3.3)

Notes: 1) Ball slide of PE05AR has only two mounting tap holes in the center.

Reference number for ball slide of random-matching type

Reference number for rail of random-matching type

P1E15 0470 RKN -** PC T Random-matching rail series code Preload code (See page A276.) P1E: PE Series random-matching rai T: Fine clearance Accuracy code: PC PC: Normal grade is only available. Rail length (mm) Design serial number Added to the reference number. Rail shape code *Butting rail specification R: PE09, 12. P: PE15 N: Non-butting. L: Butting specification Material/surface treatment code (See Table 11.) *Please consult with NSK for butting rail specification.

PE09,12 PE15 G AXF (G)

Unit: mm

	Rail					Basic load rating						We	ight		
Width	Height		Pitch	Pitch Mounting bolt G Maximum		Dynamic	Static		Static	momen	it (N·m)		Ball	Rail	
				hole		length	С	C_{0}	$M_{\scriptscriptstyle{\mathrm{RO}}}$	N	1 _{PO}	Λ	1 _{YO}	slide	
W_1	H_1	B_2	F	$d \times D \times h$	(Reference)	L_{0max}	(N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
10	4	_	20	3×5×1.6	7.5	150	690	1 160	6.00	2.75	17.5	2.75	17.5	7	34
14	5.2	_	30	3.5×6×3.2	10	600	1 580	2 350	16.7	7.20	46.0	7.20	46.0	19	55
18	7.5	_	30	3.5×6×4.5	10	800	3 000	4 500	36.5	17.3	113	17.3	113	35	95
10	7.0			0.000001.0	10	000	4 000	6 700	54.5	37.5	210	37.5	210	50	
24	8.5	_	40	4.5×8×4.5	15	1 000	4 350	6 350	70.5	29.3	180	29.3	180	66	140
24	0.5		40	4.57074.5	13	1 000	5 800	9 550	106	63.5	345	63.5	345	98	140
42	9.5	23	40	4.5×8×4.5	15	1 200	7 600	10 400	207	59.0	370	59.0	370	140	275
42	9.5	23	40	4.58684.5	15	1 200	10 300	16 000	320	135	740	135	740	211	275

2) Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface.

To convert C to C_{100} for a 100-km rating fatigue life, divide C by 1.26. 3) To fix rail of PE05AR, use M2.5 \times 0.45 cross-recessed pan head machine screw for precision instrument. (JCIS 10-70 No. 0 pan head machine screw No.3.)

(JCIS: Japanese Camera Industrial Standard.)

A-5-2.4 LE Series (Miniature wide type)

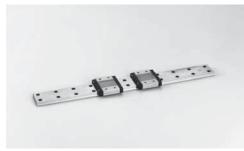


Fig. 1 LE Series

(1) Ideal for use of single rail

The LE Series linear guides are miniature and wide rail type. Thanks to the wide rail, load carrying capacity is high against moment load from rolling direction.

(2) Equal load carrying capacity in vertical and lateral directions

Contact angle is set at 45 degrees, equally dispersing the load from vertical and lateral directions. This also provides equal rigidity in the two directions.

(3) Guides are super-thin.

Super-thin guides owe their design to the single ball groove on right and left sides (Gothic arch).

(4) High accuracy

Fixing the master rollers to the ball grooves is easy thanks to the Groove arch groove. This makes easy and accurate measuring of ball arooves.

(5) Stainless steel is standard.

Rails and ball slides are made of martensitic stainless steel.

(6) Ball retainer is available in some series.

Some series come with a ball retainer (ball slide shape: AR and TR). Balls are retained in the retainer and do not fall out when a ball slide is withdrawn from the rail (randommaching type ball slides come with a ball retainer).

(7) Fast delivery

Random matching of rails and ball slides are available. (LE09 to LE15)

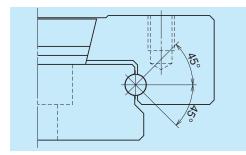


Fig. 2 Balls in contact

2. Ball slide shape

Ball slide			v, Rating: Lower row,	
	Shape/installation method	Medium-load type	Standard type	High-load type
Model	•	Short	Standard	Long
AL TL		CL, SL	AL, TL, AR, TR	BL, UL
AR TR BL UL CL SL			<u>L</u> 1	<u>L</u> 1

Specification	Detail		Туре	
Mounting hole	Normal	CL*	AL, AR	BL*
Mounting hole	Large	SL*	TL, TR	UL*
Dall matein an	Without	CL, SL	AL, TL	BL, UL
Ball retainer	With	_	AR, TR	_

^{*} Only applicable to LE09

3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1								
Preloaded asser	Random-matching type							
High precision P5	Precision grade P6	Normal grade PN	Normal grade PC					
2	4.5	6	6					
3	5	6	6					
	High precision	Preloaded assembly type (not ran High precision Precision grade P5 P6	Preloaded assembly type (not random matching) High precision Precision grade P6 PN					

- 50	2	4.5	6	6
50 – 80	3	5	6	6
80 – 125	3.5	5.5	6.5	6.5
125 – 200	4	6	7	7
200 – 250	5	7	8	8
250 – 315	5	8	9	9
315 – 400	6	9	11	11
400 – 500	6	10	12	12
500 - 630	7	12	14	14
630 – 800	8	14	16	16
800 – 1 000	9	16	18	18
1 000 – 1 250	10	17	20	20

A283 A284

(2) Accuracy standard

The preloaded assembly type has three accuracy grades; High precision P5, Precision P6, and Normal PN grades, while the random-matching type has Normal grade PC only.

Table 2 shows the accuracy standard for the preloaded assembly type while Table 3 shows the accuracy standard for the random-matching type.

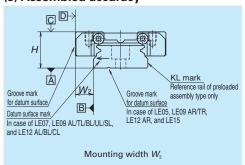

· Tolerance of preloaded assembly

	Table 2		Unit: µm		
Accuracy grade Characteristics	High precision P5	Precision grade P6	Normal grade PN		
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±15 7	±20 15	±40 25		
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±20 10	±30 20	±50 30		
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Refer to Table 1 and Fig. 3				

Tolerance of random-matching type: Normal grade PC

Tabl	e 3 Unit: μm
Accuracy grade Characteristics	LE09, 12, 15
Mounting height <i>H</i>	±20
Variation of mounting height H	40
Mounting width W_2 or W_3	±20
Variation of mounting width W_2 or W_3	40
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Refer to Table 1 and Fig. 3

(3) Assembled accuracy

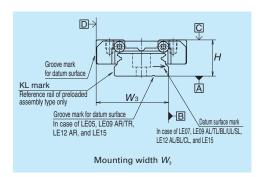


Fig. 3

NSK

(4) Preload and rigidity

We offer three levels of preload: Slight preload Z1 and Fine clearance Z0 for the preloaded assembly type, along with Fine clearance ZT for the random-matching type. Values for preload and rigidity of the preloaded assembly type are shown in **Table 4**. Rigidities are for the median of the preload range.

Preload and rigidity of preloaded assembly

Table 4

		Preload	Rigidity	
	Model No.	(N)	(N/µm)	
	Model No.	Slight preload	Slight preload	
		(Z1)	(Z1)	
be	LE05 AL	0 – 23	36	
Standard type	LE07 TL	0 – 29	46	
larc	LE09 AL, TL, AR, TR	0 – 37	61	
anc	LE12 AL, AR	0 – 40	63	
St	LE15 AL, AR	0 – 49	66	
þ	LE05 CL	0 – 18	29	
-108	LE07 SL	0 – 16	28	
Medium-load type	LE09 CL, SL	0 – 21	33	
edi	LE12 CL	0 – 23	36	
Σ	LE15 CL	0 – 29	44	
р	LE07 UL	0 – 43	71	
-loa	LE09 BL, UL	0 – 54	86	
High-load type	LE12 BL	0 – 59	97	
I	LE15 BL	0 – 75	114	

Note: The clearance of Fine clearance Z0 is 0 to 3 μ m. Therefore, preload is zero. However, the clearance of the Z0 of PN grade is 3 to 10 μ m.

Clearance of random-matching type

 Table 5
 Unit: μm

 Model No.
 Fine clearance

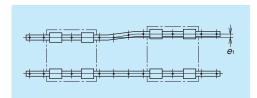
 ZT
 LE09

 LE12
 0 – 15

 LE15
 LE15

4. Maximum rail length

Table 6 shows the limitations of rail length. The limitations vary by accuracy grades.


Table 6 Length limitation of rails

Unit: mm									
Series	Size								
	Material	05	07	09	12	15			
LE	Stainless steel	150	600	800	1 000	1 200			

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

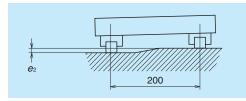


Fig. 4

Fig. 5

Table 8

0.2

0.3

0.3

0.3

0.5

Corner radius (maximum)

0.2

0.2

0.3

0.3

0.3

Unit: mm

3

3

4

Shoulder height

H

1.1

1.7

3.5

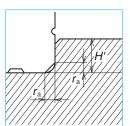
3.5

3.5

Table 7 Unit: μr										
Value	Duolood	Model No.								
value	Preload	LE05	LE07	LE09	LE12	LE15				
Permissible values of	Z0, ZT	10	12	15	18	22				
parallelism in two rails e1	Z1	5	7	10	13	17				
Permissible values of	Z0, ZT	50 μm/200 mm								
parallelism (height) in two rails e2	Z1	35 μm/200 mm								

Model No

LE05


LE07

LE09

LE12

LE15

(2) Shoulder height of the mounting surface and corner radius r

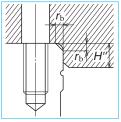


Fig. 6 Shoulder for the rail datum surface

Fig. 7 Shoulder for the ball slide datum surface

6. Lubrication accessories

Model of LE15AR can select drive-in type grease fitting as option.

There is no standard grease fitting for LE05 to LE12.

For the models of LE05 to LE15 except for LE15AR, apply grease directly to the ball grooves of rail, using a point nozzle.

Drive-in type

NSK

7. Dust-proof components

(1) Standard specification

End seal: Provided to both ends of the ball slide as a standard feature.

• Seal friction per standard ball slide is shown in Table 9.

Table 9 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	05	07	09	12	15
LE	0.4	0.4	0.8	1.0	1.2

(2) NSK K1[™] lubrication unit

The installed dimensions of NSK K1 lubrication unit are shown in Table 10.

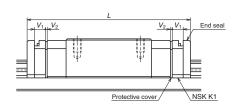
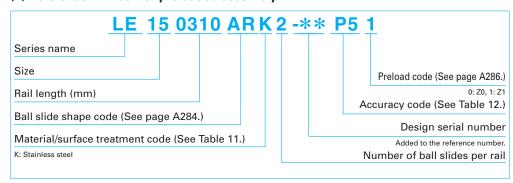


Table 10

Unit: mm

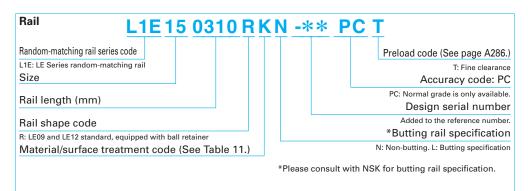
Model No.	Ball slide length	Ball slide model	de model Standard ball Ball slide length installed with two NSK K1 L		Per NSK K1 thickness V ₁	Protective cover thickness V_2
	Standard	TL	31	37		
LE07	Long	UL	42	48	2.5	0.5
	Short	SL	22.4	28.4		
	Standard	AL, TL	39	46		
1 500	Standard	AR, TR	39.8	46.8	2.0	0.5
LE09	Long	BL, UL	50.4	57.4	3.0	0.5
	Short	CL, SL	26.4	33.4		
	Standard	AL	44	52		
LE12	Standard	AR	45	53	3.5	0.5
LEIZ	Long	BL	59	67	3.5	0.5
	Short	CL	30.5	38.5		
	Standard	AL	55.0	64.6		
1.515	Standard	AR	56.6	66.2	1.0	
LE15	Long	BL	74.4	84	4.0	0.8
	Short	CL	41.4	51		

Note: Ball slide length equipped with NSK K1 =


(Standard ball slide length) + (Thickness of NSK K1, V₁ × Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.


Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, only the preload code of "Fine clearance T" is available (refer to page A286).

Table 11 Material/surface treatment code

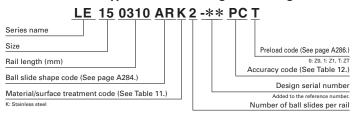
Code	Description					
Κ	Stainless steel					
Н	Stainless steel with surface treatment					
Z	Other, special					

Table 12 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1
High precision grade	P5	K5
Precision grade	P6	K6
Normal grade	PN	KN
Normal grade (random-matching type)	PC	KC

Note: Refer to page A38 for NSK K1 lubrication unit.

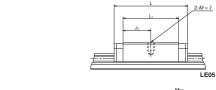
A289 A290

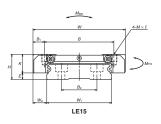

9. Dimensions

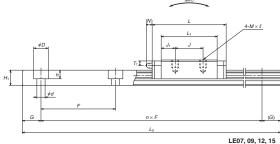
LE-AL (Standard type / Standard)

LE-TL (Standard type / Standard, large mounting hole)

LE-AR (Standard type / Standard, with ball retainer)


LE-TR (Standard type / Standard, large mounting hole, with ball retainer)

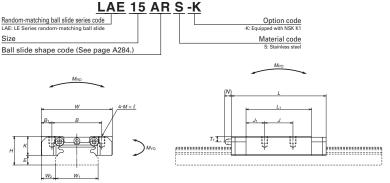



Front view

LE05, 07, 09, 12

Side view

	А	ssemb	ly	Ball slide									Grease fitting				
Model No.	Height			Width	Length		Mounting hole									Width	Height
iviouei ivo.													Hole				
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	B ₁	L ₁	J_1	Κ	size	T_1	Ν	W_1	H_1
LE05AL	6.5	1.4	3.5	17	24	13	_	M2.5×0.45×2	2	17	8.5	5.1	_	_	_	10	4
LE07TL	9	2	5.5	25	31	19	10	M3×0.5×3	3	21.2	5.6	7	_	_	_	14	5.2
LE09AL LE09TL	12	4	6	30	39	21	12	M2.6×0.45×3 M3×0.5×3	4.5	27.6	7.8	8	_		_	18	7.5
LE09AR LE09TR	12	4	6	30	39.8	21	12	M2.6×0.45×3 M3×0.5×3	4.5	27.6	7.8	8	_	_	_	18	7.5
LE12AL LE12AR	14	4	8	40	44 45	28	15	M3×0.5×4	6	31	8	10	_		_	24	8.5
LE15AL LE15AR	16	4	9	60	55 56.6	45	20	M4×0.7×4.5	7.5	38.4	9.2	12	_ φ3	— 3.2	— 3	42	9.5

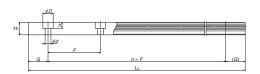

Notes: 1) Ball slide of LE05 has only two mounting tap holes.

Reference number for ball slide of random-matching type

Random matching with retainer: LAE09AR/TR, LAE12AR, LAE15AR

LAE-AR (With ball retainer)

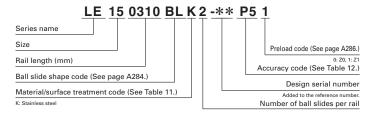
LAE-TR (Large mounting hole with ball retainer)



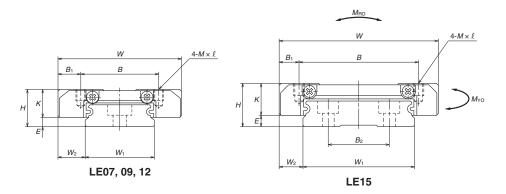
Reference number for rail of random-matching type

			0
Rail	L1E 15 0310	<u> </u>	* <u>PC T</u>
Random-matching	ail series code		Preload code (See page A286.)
L1E: LE Series rand	om-matching rail		T: Fine clearance
Size			Accuracy code: PC
Rail length (m	m)		PC: Normal grade is only available. Design serial number
Rail shape coo	de		Added to the reference number.
	andard equipped with ball retainer	_	*Butting rail specification
	ce treatment code (See Table	11.)	N: Non-butting. L: Butting specification
		*Please o	onsult with NSK for butting rail specification.

Unit: mm

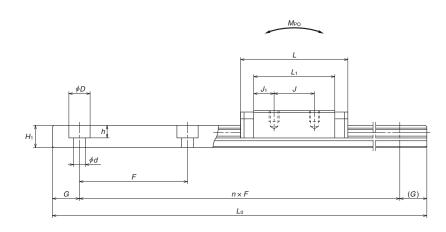

		Rail					Basi	c load ra	iting			We	ight
	Pitch		G	Max.	Dynamic	Static		Static	moment	(N·m)		Ball	Rail
		hole		length	С	C_{0}	M_{RO}	\ \nabla	1 _{PO}	\sim	1 _{YO}	slide	
B_2	F	$d \times D \times h$	(Reference)	$L_{\scriptscriptstyle m 0max}$	(N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
_	20	3×5×1.6	7.5	150	725	1 110	5.65	2.58	16.9	2.58	16.9	11	34
_	30	3.5×6×3.2	10	600	1 580	2 350	16.7	7.20	46.0	7.20	46.0	25	55
_	30	3.5×6×4.5	10	800	3 000	4 500	36.5	17.3	110	17.3	110	40	95
_	30	3.5×6×4.5	10	800	3 000	4 500	36.5	17.3	113	17.3	113	40	95
_	40	4.5×8×4.5	15	1 000	4 350	6 350	70.5	29.3	175 180	29.3	175 180	75	140
23	40	4.5×8×4.5	15	1 200	7 600	10 400	207	59.0	360 370	59.0	360 370	150	275

²⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.


3) For fixing a rail of LE05AL, use M2.5 × 0.45 cross-recessed pan head machine screw for precision instruments.

⁽JCIS 10-70: No.0 pan head machine screw No.3) (JCIS: Japanese Camera Industrial Standard)

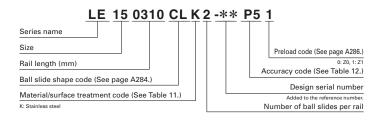
LE-BL (High-load type / Long) LE-UL (High-load type / Long, large mounting hole)

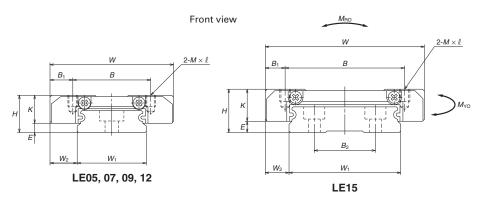


Front view

		Assembly Ball slide													
1	∕lodel No.	Height			Width	Length	Mounting hole							Width	Height
		Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	B₁	L ₁	J_1	К	W_1	H ₁
	LE07UL	9	2	5.5	25	42	19	19	M3×0.5×3	3	32.2	6.6	7	14	5.2
	LE09BL LE09UL	12	4	6	30	50.4	23	24	M2.6×0.45×3 M3×0.5×3	3.5	39	7.5	8	18	7.5
	LE12BL	14	4	8	40	59	28	28	M3×0.5×4	6	46	9	10	24	8.5
	LE15BL	16	4	9	60	74.4	45	35	M4×0.7×4.5	7.5	57.8	11.4	12	42	9.5

Side view

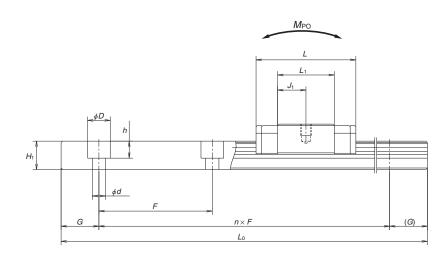

Unit: mm


		Rail					Basi	c load ra	iting			We	ight
	Pitch		G		Dynamic	Static		Static	moment	(N·m)		Ball	Rail
		hole		length	С	C_{0}	M_{RO}	\sim	1 _{PO}	N	1 _{YO}	slide	
B_2	F	$d \times D \times h$	(Reference)	L_{0max}	(N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
_	30	3.5×6×3.2	10	600	2 180	3 700	26.4	17.3	94.5	17.3	94.5	39	55
_	30	3.5×6×4.5	10	800	4 000	6 700	54.5	37.5	206	37.5	206	58	95
_	40	4.5×8×4.5	15	1 000	5 800	9 550	106	63.5	340	63.5	340	115	140
23	40	4.5×8×4.5	15	1 200	10 300	16 000	320	135	725	135	725	235	275

Note: Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface.

To convert C to C_{100} for a 100-km rating fatigue life, divide C by 1.26.

LE-CL (Medium-load type / Short) LE-SL (Medium-load type / Short, large mounting hole)



	А	ssemb	ly					Ball slide						
Model No.	Height			Width	Length		Mou	nting hole					Width	Height
wiodei No.	H E W ₂		W	L	B J		$M \times \text{pitch} \times \ell$	<i>B</i> ₁	L ₁	J_1	К	W_1	H_1	
LE05CL	6.5	1.4	3.5	17	20	13	_	M2.5×0.45×2	2	13	6.5	5.1	10	4
LE07SL	9	2	5.5	25	22.4	19	_	M3×0.5×3	3	12.6	6.3	7	14	5.2
LE09CL LE09SL	12	4	6	30	26.4	21	-	M2.6×0.45×3 M3×0.5×3	4.5	15	7.5	8	18	7.5
LE12CL	14	4	8	40	30.5	28	_	M3×0.5×4	6	17.5	8.75	10	24	8.5
LE15CL	16	4	9	60	41.4	45	_	M4×0.7×4.5	7.5	24.8	12.4	12	42	9.5

Notes: 1) Ball slide of CL and SL types have only two mounting tap holes in the center.

Unit: mm

		Rail					Basi	c load ra	ting			We	ight
	Pitch		G		Dynamic	Static		Static	moment	(N·m)		Ball	Rail
		hole		length	С	C_0	M_{RO}	<i>N</i>	1 _{PO}	N	l _{vo}	slide	
B_2	F	$d \times D \times h$	(Reference)	$L_{\scriptscriptstyle 0max}$	(N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(g/100 mm)
_	20	3×5×1.6	7.5	150	595	835	4.25	1.51	10.0	1.51	10.0	8	34
_	30	3.5×6×3.2	10	600	980	1 170	8.35	2.01	18.5	2.01	18.5	17	55
_	30	3.5×6×4.5	10	800	1 860	2 240	18.2	4.85	41.0	4.85	41.0	25	95
_	40	4.5×8×4.5	15	1 000	2 700	3 150	35.0	8.15	67.0	8.15	67.0	50	140
23	40	4.5×8×4.5	15	1 200	5 000	5 650	113	19.4	162	19.4	162	110	275

²⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load to the ball slide mounting surface. To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26

A295 A296

³⁾ For fixing a rail of LE05CL, use cross-recessed pan head machine screw for precision instruments M2.5 x 0.45 (JCIS 10-70: Japan Camera Industry Association, No.0, class 3).

A-3-2.5 LL Series

1. Features

(1) Super light-weight

This compact guide has a single ball groove on both right and left sides (Gothic arch). Rails and ball slides are made of stainless steel plate, therefore they are lightweight.

(2) Compact

The ball groove is made outside the ball slide to reduce overall size and to obtain high speed.

(3) High corrosion resistance

High corrosion resistant martensitic stainless steel is used as standard material.

Ball slide plate Circulator

Fig. 1 LL Series structure

2. Ball slide model

Ball slide model	Shape/installation method						
PL							

3. Accuracy and preload

(1) Accuracy standard

The LL Series has a Normal grade PN as the accuracy grade.

Table 1 shows the tolerance.

Table 1 Tolerance of Normal grade (PN)

	Unit: µm
Model No. Characteristic	LL15
Mounting height	±20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	20 (See Fig. 2 .)

C G D H A G G G B B

Fig. 2 Standard LL

(2) Preload

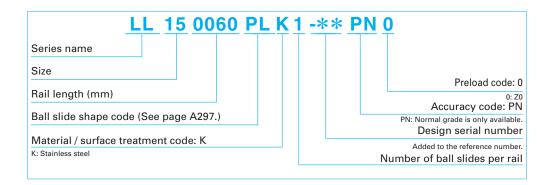
We offer clearance for the LL Series.

Table 2 shows the specification of clearance.

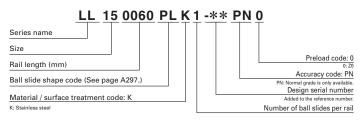
Table 2 Radial clearance

	Οπι. μπ
Model No.	Clearance
LL15	0 – 10

4. Maximum rail length


Table 3 Length limitation of rails

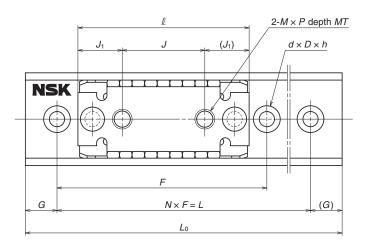
Series	Size Material			15		
LL	Stainless steel	40	60	75	90	120


5. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

6. Dimensions



	Assembly Ball slide											
Model No.	Height		Width	Length		Mounting hole			Height	Pitch		
Wiodel IVo.	.,	147		l	,			,		l ,, l	_	.,
	Н	W_1	W	¥.	J	$M \times pitch$	MT	J_1	K	H_1	F	Ν
											30	1
											40	1
LL15	6.5	15	10.6	27	13	M3×0.5	1.2	7	1.5	5	30	2
											40	2
											50	2

Notes:

- 1) The LL Series does not have a ball retainer. Be aware that the balls fall out when the ball slide is withdrawn from the rail.
- 2) Seals are not available. Please provide the dust-prevention measures on the equipment.
- 3) Do not use an installation screw on the ball slide which exceeds the dimension MT (maximum screw-in depth) in the dimension table
- 4) To fix the rail, use M2 \times 0.4 cross recessed machine screw for precision instrument. (JCIS10-70 No.0 pan head machine screw No.1)

(JCIS: Japanese Camera Industrial Standard)

Unit: mm

Rail	Rail						ic load ra		Ball dia.	We	ight	
Mounting bolt				Length	Dynamic	Static	Sta	tic mom	ent		Ball	Rail
hole					C	C_{0}	M_{RO}	M_{PO}	$M_{\scriptscriptstyle YO}$	D_{w}	slide	
$d \times D \times h$	NH	Вз	G	L_{o}	(N)	(N)	(N·m)	(N·m)	(N·m)		(g)	(g)
2.4×5×0.4	1.2	7.5	5 10 7.5 5 10	40 60 75 90 120	880	785	7	3	3	2	6	9 11 13 16 21

⁵⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface.

To convert C to C_{100} for a 100-km rating fatigue life, divide C by 1.26.

A299 A300

1. RA Series

A303

2. LA Series

A321

A-5-3 Machine Tools

A301 A302

A-5-3.1 RA Series

1. Features

(1) Super-high load capacity

By installing rollers that are the largest possible diameter and length within the existing standard cross-section dimension in a rational layout based on our advanced analysis technology, we have realized the world's highest load capacity,* far superior to conventional roller guides. Superlong life is achieved and impact load can be sufficiently handled.

* As of September 1, 2003; NSK's reserch and comparison on the existing products of the same sizes.

(2) Super-high rigidity

Using NSK's advanced analysis technology, we pursued a complete, optimal design, down to the detailed shape of roller slides and rails, thereby realizing super-high rigidity superior to that of competitor's roller guides.

(3) Super-high motion accuracy

NSK has developed its own unique method of simulating rolling element passage vibration and method of designing optimal roller slide specifications for damping roller passage vibration. These developments have dramatically enhanced roller slide motion accuracy for the RA series.

(4) Smooth motion

Installation of a retaining piece between rollers restrains the roller skew peculiar to roller slides, thereby achieving smooth motion.

(5) Low friction

Using rollers for rolling elements helps minimize dynamic friction.

(6) Random matching

Random-matching of rails and roller slides are available. (RA25 to RA65)

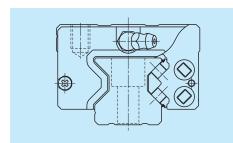
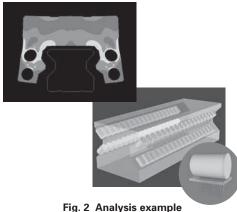



Fig. 1 RA Series

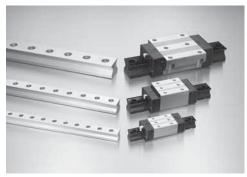


Fig. 3 Random-matching type

2. Roller slide shape

Roller slide	Shape/installation	Type (Upper row, Rating: L High-load type	ower row, Ball slide length) Super-high-load type
model	method	Standard	Long
AN BN		AN	BN
AL BL		AL	BL
EM GM		EM	GM

3. Accuracy and preload

(1) Running parallelism of roller slide

Table 1

Unit: um

Cina pin										
	Preloaded assembly Random-matching									
Rail length (mm) over or less	Ultra precision P3	Super precision P4	Super precision P4 High precision P5 F							
- 50	2	2	2	4.5						
50 – 80	2	2	3	5						
80 – 125	2	2	3.5	5.5						
125 – 200	2	2	4	6						
200 – 250	2	2.5	5	7						
250 – 315	2	2.5	5	8						
315 – 400	2	3	6	9						
400 – 500	2	3 6		10						
500 – 630	2	3.5	7	12						
630 – 800	2	4	8	14						
800 – 1 000	2.5	4.5	9	16						
1 000 – 1 250	- 1 250		10	17						
1 250 – 1 600	4	6	11	19						
1 600 – 2 000	4.5	7	13	21						
2 000 – 2 500	5	8	15	22						
2 500 – 3 150	6	9.5	17	25						
3 150 – 3 500	9	16	23	30						

A303 A304

Roller Guide RA Series

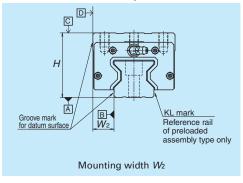
(2) Accuracy standard

The preloaded assembly has four accuracy grades; Ultra precision P3, Super precision P4, High precision P5, and Precision P6 grades, while the random-matching type has Precision P6 grade only.

Tolerance of preloaded assembly

Table 2 Unit: μr										
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6						
Mounting height H	±8	±10	±20	±40						
Variation of <i>H</i>	3	5	7	15						
(All roller slides on a set of rails)										
Mounting width W_2 or W_3	±10	±15	±25	±50						
Variation of W_2 or W_3	3	7	10	20						
(All roller slides on reference rail)										
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	Shown in Table 1 and Fig. 4									

· Tolerance of random-matching type


Table 3
Idble 3

Unit: µm

Accuracy grade Characteristics	Random-matching with precision grade P6
Mounting height H	±20
Variation of mounting height H	15①
	30②
Mounting width W_2 or W_3	±25
Variation of mounting width W_2 or W_3	20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B	See Table 1 and Fig. 4

Note: 1 Variation on the same rail 2 Variation on multiple rails

(3) Assembled accuracy

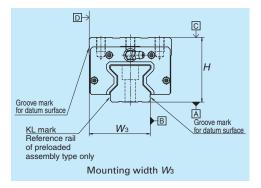


Fig. 4

NSK

(4) Preload and rigidity

Four types of preload are available: Medium preload Z3 and Slight preload Z1 for preloaded assembly, and Medium preload ZZ for Random-matching type.

• Preload of preloaded assembly Table 4

	Model No.	Preloa	ad (N)	
		Slight preload (Z1)	Medium preload (Z3)	
	RA15 AN, AL, EM	_	1 030	
Ф	RA20 AN, EM	_	1 920	
High-load type	RA25 AN, AL, EM	880	2 920	
pe	RA30 AN, AL, EM	1 170	3 890	
9	RA35 AN, AL, EM	1 600	5 330	
ig	RA45 AN, AL, EM	2 780	9 280	
I	RA55 AN, AL, EM	3 870	12 900	
	RA65 AN, EM	6 300	21 000	
Ф	RA15 BN, BL, GM	_	1 300	
τyp	RA20 BN, GM	_	2 400	
aq	RA25 BN, BL, GM	1 060	3 540	
9-	RA30 BN, BL, GM	1 430	4 760	
igh	RA35 BN, BL, GM	2 020	6 740	
<u>r</u> -	RA45 BN, BL, GM	3 480	11 600	
Super-high-load type	RA55 BN, BL, GM	5 040	16 800	
S	RA65 BN, GM	8 640	28 800	

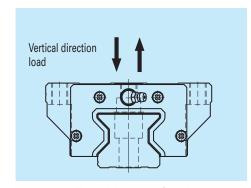
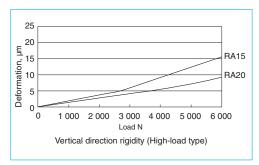
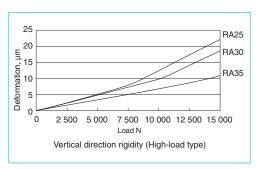




Fig. 5 Direction of load

· Rigidity of medium preload

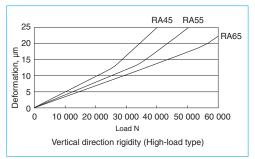
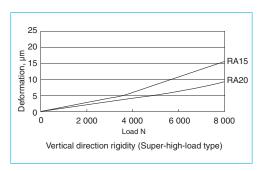
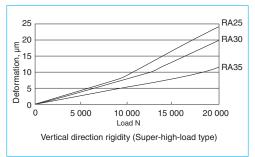
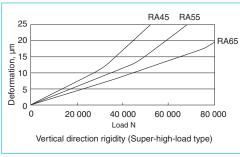
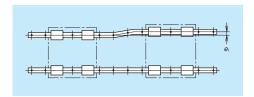





Fig. 6 Vertical direction theoretical rigidity line: High-load type (Roller slide shape: AN, AL, EM)

A307

Fig. 7 Vertical direction theoretical rigidity line: Super-high-load type (Roller slide shape: BN, BL, GM)

4. Maximum rail length


Table 5 shows the limitations of rail length (maximum length). However, the limitations vary by accuracy grades.

Unit: mn											
Series Size	15	20	25	30	35	45	55	65			
RA	2 000	3 000	3 000	3 500	3 500	3 500	3 500	3 500			

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

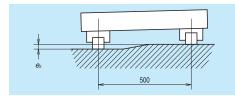


Fig. 8

Fig. 9

Table 6 Unit: μm											
Value	Preload				Mc	del No.					
value	Freioau	RA15	RA20	RA25	RA30	RA35	RA45	RA55	RA65		
Permissible values of	Z1	_	_	14	18	21	27	31	49		
parallelism in two rails e ₁	Z3 · ZZ	5	7	9	11	13	17	19	30		
Permissible values of	Z1	— 290 μm / 500 mm									
parallelism (height) in two rails $e_{\scriptscriptstyle 2}$	Z3 · ZZ		150 μm / 500 mm								

(2) Shoulder height of the mounting surface and corner radius r

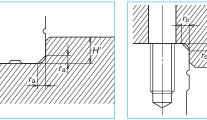


Fig. 10 Shoulder for the Fig. 11 Shoulder for the roller rail datum surface slide datum surface

		Table 7		Unit: mm
Madal Na	Corner radiu	s (maximum)	Shoulde	r height
Model No.	$r_{\rm a}$	$r_{\rm b}$	H'	H"
RA15	0.5	0.5	3	4
RA20	0.5	0.5	4	5
RA25	0.5	1	4	5
RA30	1	1	5	6
RA35	1	1	5	6
RA45	1.5	1	6	8
RA55	1.5	1.5	7	10
RA65	1.5	1.5	11	11

A308

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 14 and Table 10 show grease fittings and tube fittings.

(2) Mounting position of lubrication accessories

- The standard position of grease fittings and tube fittings is the end face of roller slide.
 We can mount them on a side of end cap for an option. (Fig. 12) Please consult NSK for installation of grease or tube fittings to the roller slide body or the side of end cap.
- A lubrication hole can also be provided on the top of the end cap. Fig.13, Table 8 and Table 9 show the mounting position. A spacer is required for AN and BN shape roller slides. The spacers are available from NSK.
- When using a piping unit with thread of M6 x 1, you require a connector to connect it to a grease fitting mounting hole with M6 x 0.75. The connectors are available from NSK.

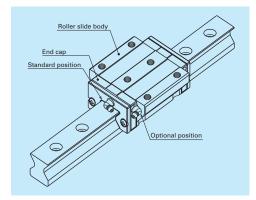


Fig. 12 Mounting position of lubrication accessories

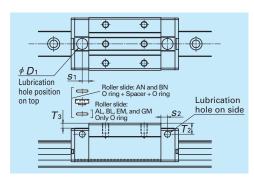


Fig.13 Top and side lubrication hole positions

Unit: mm

Unit: mm

Table 8	Top and	side lub	rication h	ole p	ositions

Offic II											
Model No.	Roller slide model	Grease fitting size	S_2	T_2	O ring (JIS)	Spacer	D_1	S_1	T ₃		
RA15		\$ 3	4	7	P5	Necessary	8.2	4.4	4.2		
RA20		φ 3	4	4	P6	_	9.2	5.4	0.2		
RA25		M6×0.75	6	10	P7	Necessary	10.2	6	4.5		
RA30	AN, BN	M6×0.75	5	10	P7	Necessary	10.2	6	3.5		
RA35		M6×0.75	5.5	15	P7	Necessary	10.2	7	7.4		
RA45		Rc 1/8	7.2	20	P7	Necessary	10.2	7.2	10.4		
RA55		Rc 1/8	7.2	21	P7	Necessary	10.2	7.2	10.4		
RA65		Rc 1/8	7.2	19	P7	_	10.2	7.2	0.4		

Table 9 T	op and	side	lubrication	hole	positions
-----------	--------	------	-------------	------	-----------

Model No.	Roller slide model	Grease fitting size	S_2	<i>T</i> ₂	O ring (JIS)	<i>D</i> ₁	S_1	T ₃
RA15	AL, BL, EM, GM	φ 3	4	3	P5	8.2	4.4	0.2
RA20	EM, GM	φ3	4	4	P6	9.2	5.4	0.2
RA25		M6×0.75	6	6	P7	10.2	6	0.4
RA30		M6×0.75	5	7	P7	10.2	6	0.4
RA35	AL, BL, EM, GM	M6×0.75	5.5	8	P7	10.2	7	0.4
RA45		Rc 1/8	7.2	10	P7	10.2	7.2	0.4
RA55		Rc 1/8	7.2	11	P7	10.2	7.2	0.4
RA65	EM, GM	Rc 1/8	7.2	19	P7	10.2	7.2	0.4

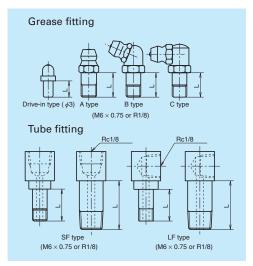


Fig. 14 Grease fitting and tube fitting

7. Dust-proof components

(1) Standard specification

The RA series is equipped with end, inner* and bottom seals to prevent foreign matter from entering the inside of the roller slide. Under normal applications, the RA series can be used without modification.

For severe usage conditions, optional rail covers** are available. Contact NSK for information on how to mount the cover.

- *) Inner seals for the models of RA15 and RA20 are available as options.
- **) The rail cover is available to the models of RA25 to RA65.

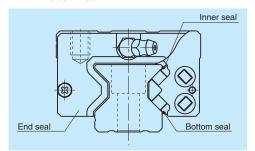


Fig. 15

	T	able 10	Unit: mm		
Model No.	Dust-proof	Grease fitting Drive-in fitting	Tube fitting		
	specification	Thread body length L	Thread body length L		
	Standard	5	-		
RA15	With NSK K1	10	_		
nA IS	Double seal	8	_		
	Protector	8	_		
	Standard	5	_		
RA20	With NSK K1	10	_		
NAZU	Double seal	8	_		
	Protector	10	_		
	Standard	5	5		
RA25	With NSK K1	12	12		
nA25	Double seal	10	9		
	Protector	10	9		
	Standard	5	6		
RA30	With NSK K1	14	15		
nA30	Double seal	12	11		
	Protector	12	11		
	Standard	5	6		
RA35	With NSK K1	14	15		
NASS	Double seal	12	11		
	Protector	12	11		
	Standard	8	17		
RA45	With NSK K1	18	21.5		
NA45	Double seal	14	17		
	Protector	14	17		
	Standard	8	17		
RA55	With NSK K1	18	21.5		
NASS	Double seal	14	17		
	Protector	14	17		
	Standard	8	17		
RA65	With NSK K1	20	20		
COAN	Double seal	14	17		
	Protector	14	17		

Fig. 16 Rail cover

Table 11 Seal friction per roller slide (maximum value)

· · · · · · · · · · · · · · · · · · ·												
Series Size	15	20	25	30	35	45	55	65				
RA 4		5.5	5	5	6	8	8	14				

A309 A310

(2) NSK K1[™] lubrication unit

Table 12 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

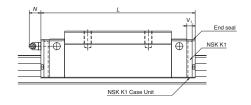


Table 12

Unit: mm

Model No.	Roller slide length	Roller slide model	Standard roller slide length	With two NSK K1	Thickness of NSK K1 V ₁	Protruding area of the grease fitting N	
RA15	Standard	AN, AL, EM	70	79	4.5	(3)	
nA15	Long	BN, BL, GM	85.4	94.4	4.5	(3)	
RA20	Standard	AN, EM	86.5	95.5	4.5	(3)	
nazu	Long	BN, GM	106.3	115.3	4.5	(3)	
RA25	Standard	AN, AL, EM	97.5	107.5	5	(11)	
nA25	Long	BN, BL, GM	115.5	125.5	5	(11)	
RA30	Standard	AN, AL, EM	110.8	122.8	6	(11)	
nA30	Long	BN, BL, GM	135.4	147.4	0	(11)	
RA35	Standard	AN, AL, EM	123.8	136.8	6.5	(11)	
nA35	Long	BN, BL, GM	152	165	0.5	(11)	
RA45	Standard	AN, AL, EM	154	168	7	(1.4)	
nA45	Long	BN, BL, GM	190	204	/	(14)	
RA55	Standard	AN, AL, EM	184	198	7	(1.4)	
nAbb	Long	BN, BL, GM	234	248	/	(14)	
DAGE	Standard	AN, EM 228.4		243.4			
RA65	Long	BN, GM	302.5	317.5	7.5	(14)	

Note: Roller slide length equipped with NSK K1 = (Standard roller slide length) + (Thickness of NSK K1 Case Unit × Number of NSK K1 Case Unit)

(3) Double seal and protector

For RA Series, double seal and protector can be installed only before shipping from the factory. **Table 13** shows the increased thickness when end seal and protector are installed.

	Table 13	Unit: mm
Model No.	Thickness of end seal	Thickness of protector
wiodei ivo.	V_3	V_4
RA15	3	2.7
RA20	3	3.3
RA25	3.2	3.3
RA30	3.4	3.6
RA35	3.4	3.6
RA45	4	4.2
RA55	4	4.2
RA65	5	5.5

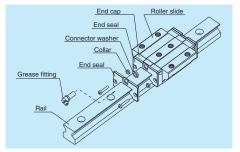


Fig. 17 Double seal

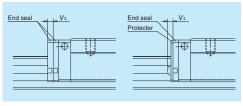


Fig. 19

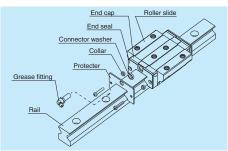


Fig. 18 Protector

(4) Rail cover

When the rail cover is used, use the cover bracket to secure the rail cover. **Fig.20** shows the dimensions for the cover bracket. The required room at the end of the rail is:

- Inside: 10.5 mm or less
- Outside: 4 mm or less (Common to the models of RA25 to RA65)
- Please confirm the interference with your machine at the stroke end.
- Machine stroke
- · Room for the end of the rail

The height of the rail with the rail cover is shown in **Table 14**.

Table 14 Height of rails equipped with rail cover

		Unit: mm
Model No.	Standard height H ₁	Cover installation
RA25	24	24.25
RA30	28	28.25
RA35	31	31.25
RA45	38	38.3
RA55	43.5	43.8
RA65	55	55.3

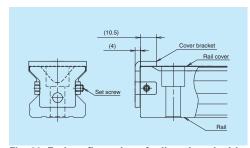
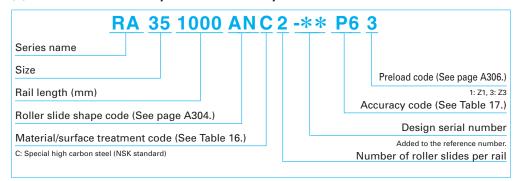


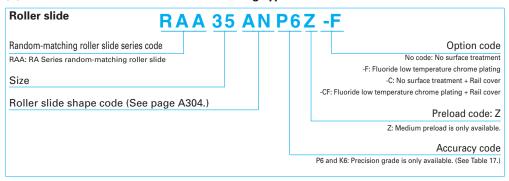
Fig. 20 End configuration of rail equipped with the rail cover

(5) Cap to plug the rail mounting bolt hole

Table 15 Caps to plug rail bolt hole


Model No.	Bolt to	Сар	Quantity
woder no.	secure rail	reference No.	/case
RA15	M4	LG-CAP/M4	20
RA20	M5	LG-CAP/M5	20
RA25	M6	LG-CAP/M6	20
RA30, RA35	M8	LG-CAP/M8	20
RA45	M12	LG-CAP/M12	20
RA55	M14	LG-CAP/M14	20
RA65	M16	LG-CAP/M16	20

8. Reference number


Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

(1) Reference number for preloaded assembly

(2) Reference number for random-matching type

R1A35 1000 L C I	<u> </u>
Random-matching rail series code	Preload code: Z
R1A: RA Series random-matching rail	Z: Medium preload is only available.
Size	Accuracy code (See Table 17.)
Poil longth (mm)	P6: Precision grade is only available.
Rail length (mm)	Design serial number
Rail shape code: L	Added to the reference number.
L: Standard	*Butting rail specification
Material/surface treatment code (See Table 16.)	N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.

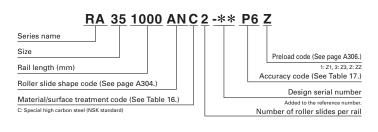
The reference number coding for the assembly of random-matching type is the same as that of the preloaded assembly. However, the applicable preload code is "medium preload Z" only.

Table 16 Material/surface treatment code

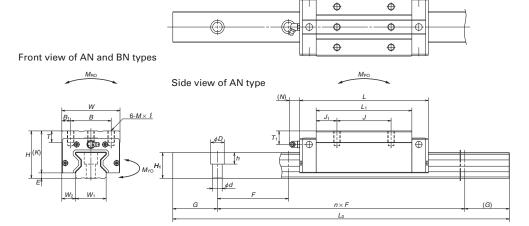
Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

Table 17 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1				
Ultra precision grade	P3	K3				
Super precision grade	P4	K4				
High precision grade	P5	K5				
Precision grade	P6	K6				


Note: Refer to pages A38 for NSK K1 lubrication unit.

A313 A314


9. Dimensions

RA-AN (High-load type / Standard)

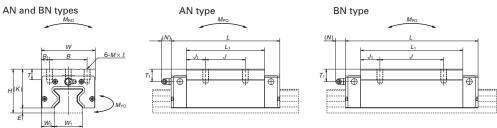
RA-BN (Super-high-load type / Long)

Top view of AN and BN

	As	ssemb		Roller slide												
Model No.	Height			Width Length Mounting hole								Grease	fittin	g		
Wiodel No.																
	Н	Ε	W_2	W	L	В	J	$M \times \text{pitch} \times \ell$	B_1	L_1	J_1	K	T	Hole size	T_1	N
RA15AN RA15BN	28	4	9.5	34	70 85.4	26	26	M4×0.7×6	4	44.8 60.2	9.4 17.1	24	8	ф3	8	3
RA20AN RA20BN	30	5	12	44	86.5 106.3	32	36 50	M5×0.8×6	6	57.5 77.3	10.75 13.65	25	12	ф3	4	3
RA25AN RA25BN	40	5	12.5	48	97.5 115.5	35	35 50	M6×1×9	6.5	65.5 83.5	15.25 16.75	35	12	M6×0.75	10	11
RA30AN RA30BN	45	6.5	16	60	110.8 135.4	40	40 60	M8×1.25×11	10	74 98.6	17 19.3	38.5	14	M6×0.75	10	11
RA35AN RA35BN	55	6.5	18	70	123.8 152	50	50 72	M8×1.25×12	10	83.2 111.4	16.6 19.7	48.5	15	M6×0.75	15	11
RA45AN RA45BN	70	00	20.5	86	154 190	60	60 80	M10×1.5×17	13	105.4 141.4	22.7 30.7	62	17	Rc1/8	20	14
RA55AN RA55BN	80	9	23.5	100	184 234	75	75 95	M12×1.75×18	12.5	128 178	26.5 41.5	71	18	Rc1/8	21	14
RA65AN RA65BN	90	13	31.5	126	228.4 302.5	76	70 120	M16×2×20	25	155.4 229.5	42.7 54.75	77	22	Rc1/8	19	14

Notes: 1) Select either one of two F dimensions, the standard or the parenthesized semi-standard dimension, for the pitch of rail fixing bolt holes. If not specified, the standard dimension of F is applied.

Reference number for roller slide of random-matching type


Ball slide
RAA 35 AN P6 Z -F

Random-matching roller slide series code
RAA: RA Series random-matching roller slide
Size
Roller slide shape code (See page A304.)

Option code
No surface treatment - Rail cover
CP: Fluoride low temperature chrome plating
-C: No surface treatment - Rail cover
-CP: Fluoride low temperature chrome plating - Rail cover
-CP: Fluoride low temperature chrome plating - Rail cover
-CP: Rouler slide shape code (See page A304.)

Rouler Side shape code (See page A304.)

P6 and K6: Precision grade is only available. (See Table) 17.)

Reference number for rail of random-matching type Rail R1A35 1000 L C N -** P6 Z

Random-matching rail series code
RTA: RA Series random-matching rail
Size

Rail length (mm)

Rail shape code: L

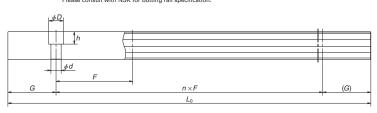
L: Standard

Material/surface treatment code (See Table 16.)

Real series random-matching rail

Preload code: Z

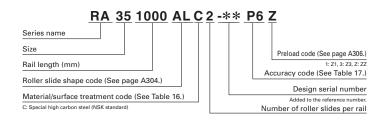
Z: Medium preload is only available.
Accuracy code (See Table 17.)

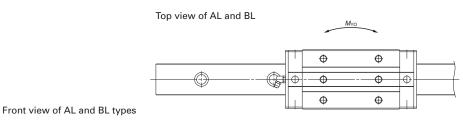

Pe and KS: Precision grade is only available.
Design serial number:

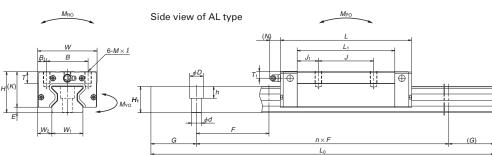
*Butting rail specification
N: Non-butting. L: Butting specification

Please consult with NSK for butting rail specification

*Please consult with NSK for butting rail specification



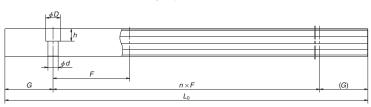

			Rail				Basic load rating							
Widtl	Height	Pitch	Mounting	G	Maximum	Dynamic	Static	Static moment (N·m)			Roller	Rail		
			bolt hole		length	С	C_{0}	$M_{\scriptscriptstyle{RO}}$	Λ	1 _{PO}	N	1 _{YO}	slide	
W_1	H ₁	F	$d \times D \times h$	(Reference)	L_{0max}	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	16.3	60 (30)	4.5×7.5×5.3	20	2 000	10 300 13 000	27 500 37 000	260 350	210 375	1 320 2 130	210 375	1 320 2 130	0.21 0.30	
20	20.8	60 (30)	6×9.5×8.5	20	3 000	19 200 24 000	52 500 70 000	665 890	505 900	3 100 5 000	505 900	3 100 5 000	0.38 0.50	
23	24	30 (60)	7×11×9	20	3 000	29 200 35 400	72 700 92 900	970 1 240	760 1 240	4 850 7 200	760 1 240	4 850 7 200	0.60 0.91	3.4
28	28	40 (80)	9×14×12	20	3 500	38 900 47 600	93 500 121 000	1 670 2 170	1 140 1 950	7 100 11 500	1 140 1 950	7 100 11 500	1.0 1.3	4.9
34	31	40 (80)	9×14×12	20	3 500	53 300 67 400	129 000 175 000	2 810 3 810	1 800 3 250	11 000 17 800	1 800 3 250	11 000 17 800	1.6 2.1	6.8
45	38	52.5 (105)	14×20×17	22.5	3 500		229 000 305 000	6 180 8 240	4 080 7 150	24 000 39 000	4 080 7 150	24 000 39 000	3.0 4.1	10.9
53	43.5	60 (120)	16×23×20	30	3 500		330 000 462 000	10 200 14 300	7 060 13 600	41 000 72 000	7 060 13 600	41 000 72 000	4.9 6.7	14.6
63	55	75 (150)	18×26×22	35	3 500		504 000 756 000	19 200 28 700	12 700 28 600	78 500 153 000	12 700 28 600	78 500 153 000	9.3 12.2	22.0


- 2) The random-matching type is available for the models of RA25 to RA65.
- 3) Basic load rating complies with ISO standards (ISO14728-1, ISO14728-2).

If above basic dynamic load rating (100-km rating) is converted into 50-km rating, use the following formula: $C_{\text{50 km}} = 1.23 \times C_{\text{100 km}}$

RA-AL (High-load type / Standard) RA-BL (Super-high-load type / Long)

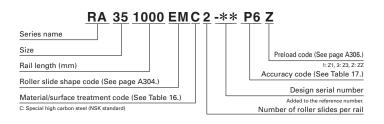
	As	ssemb		Roller slide												
Model No	Height Width Length Mounting hole									Grease	fittin	g				
Wiodel No	H	Е	W ₂	W	L	В	J	$M \times \text{pitch} \times \ell$	B ₁	L,	J_1	К	Т	Hole size	<i>T</i> ₁	N
RA15AL RA15BL	24	4	9.5	34	70 85.4	26	26	M4×0.7×5.5	4	44.8 60.2	9.4 17.1	20	8	ф3	4	3
RA25AL RA25BL	36	5	12.5	48	97.5 115.5	35	35 50	M6×1×8	6.5	65.5 83.5	15.25 16.75	31	12	M6×0.75	6	11
RA30AL RA30BL	42	6.5	16	60	110.8 135.4	40	40 60	M8×1.25×11	10	74 98.6	17 19.3	35.5	14	M6×0.75	7	11
RA35AL RA35BL	48	6.5	18	70	123.8 152	50	50 72	M8×1.25×12	10	83.2 111.4	16.6 19.7	41.5	15	M6×0.75	8	11
RA45AL RA45BL	60	8	20.5	86	154 190	60	60 80	M10×1.5×16	13	105.4 141.4	22.7 30.7	52	17	Rc1/8	10	14
RA55AL RA55BL	70	9	23.5	100	184 234	75	75 95	M12×1.75×18	12.5	128 178	26.5 41.5	61	18	Rc1/8	11	14

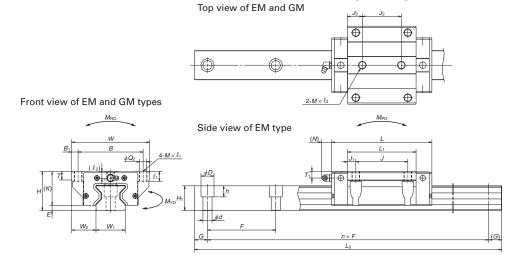

Notes: 1) Select either one of two F dimensions, the standard or the parenthesized semi-standard dimension, for the pitch of rail fixing bolt holes. If not specified, the standard dimension of F is applied.

Reference number for roller slide of random-matching type

Reference number for rail of random-matching type
Rail R1A35 1000 L C N -** P6 Z

	T — T T
Random-matching rail series code	Preload code: Z
R1A: RA Series random-matching rail	Z: Medium preload is only available.
Size	Accuracy code (See Table 17.)
Rail length (mm)	P6 and K6: Precision grade is only available. Design serial number
Rail shape code: L	Added to the reference number.
L: Standard	*Butting rail specification
Material/surface treatment code (See Table 16.)	N: Non-butting. L: Butting specification
	*Please consult with NSK for butting rail specification.


	Rail						Basic load rating						We	ight
Width	Height	Pitch	Mounting	G	Maximum	Dynamic	Static		Static moment (N·m)				Roller	Rail
			bolt hole		length	С	C_{\circ}	M_{RO}	Λ	1 _{PO}	Λ	1 _{YO}	slide	
W_1	H ₁	F	$d \times D \times h$	(Reference)	L_{0max}	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	16.3	60 (30)	4.5×7.5×5.3	20	2 000	10 300 13 000	27 500 37 000	260 350	210 375	1 320 2 130	210 375	1 320 2 130	0.17 0.25	
23	24	30 (60)	7×11×9	20	3 000	29 200 35 400	72 700 92 900	970 1 240	760 1 240	4 850 7 200	760 1 240	4 850 7 200	0.45 0.80	
28	28	40 (80)	9×14×12	20	3 500	38 900 47 600		1 670 2 170	1 140 1 950	7 100 11 500	1 140 1 950	7 100 11 500	0.85 1.1	4.9
34	31	40 (80)	9×14×12	20	3 500	67 400	129 000 175 000	2 810 3 810	1 800 3 250	11 000 17 800	1 800 3 250	11 000 17 800	1.2 1.7	6.8
45	38	52.5 (105)	14×20×17	22.5	3 500	116 000		6 180 8 240	4 080 7 150	24 000 39 000	4 080 7 150	24 000 39 000	2.5 3.4	10.9
53	43.5	60 (120)	16×23×20	30	3 500		330 000 462 000		7 060 13 600	41 000 72 000	7 060 13 600	41 000 72 000	4.1 5.7	14.6


²⁾ The random-matching type is available for the models of RA25 to RA55.

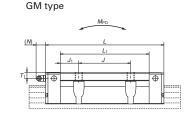
³⁾ Basic load rating complies with ISO standards (ISO14728-1, ISO14728-2).

If above basic dynamic load rating (100-km rating) is converted into 50-km rating, use the following formula: $C_{\text{50 km}} = 1.23 \times C_{\text{100 km}}$

RA-EM (High-load type / Standard) RA-GM (Super-high-load type / Long)

	As	ssem	bly		Roller slide											
Model No.	Height			Width	Length			Мс	ounting hole							
iviodei ivo.																
	Н	Ε	W_2	W	L	В	J	J_2	$M \times \text{pitch} \times \ell_1(\ell_2)$	Q_2	B ₁	L_1	J_1	J_3	Κ	T
RA15EM RA15GM	24	4	16	47	70 85.4	38	30	26	M5×0.8×8.5 (6.5)	4.4	4.5	44.8 60.2	7.4 15.1	9.4 17.1	20	8
RA20EM RA20GM	30	5	21.5	63	86.5 106.3	53	40	35	M6×1×9.5 (8)	5.3	5	57.5 77.3	8.75 18.65	11.25 21.15	25	10
RA25EM RA25GM	36	5	23.5	70	97.5 115.5	57	45	40	M8×1.25×10 (11)	6.8	6.5	65.5 83.5	10.25 19.25	12.75 21.75	31	11
RA30EM RA30GM	42	6.5	31	90	110.8 135.4	72	52	44	M10×1.5×12 (12.5)	8.6	9	74 98.6	11 23.3	15 27.3	35.5	11
RA35EM RA35GM	48	6.5	33	100	123.8 152	82	62	52	M10×1.5×13 (7)	8.6	9	83.2 111.4	10.6 24.7	15.6 29.7	41.5	12
RA45EM RA45GM	60	8	37.5	120	154 190	100	80	60	M12×1.75×15 (10.5)	10.5	10	105.4 141.4	12.7 30.7	22.7 40.7	52	13
RA55EM RA55GM	70	9	43.5	140	184 234	116	95	70	M14×2×18 (13)	12.5	12	128 178	16.5 41.5	29 54	61	15
RA65EM RA65GM	90	13	53.5	170	228.4 302.5	142	110	82	M16×2×24 (18.5)	14.6	14	155.4 229.5	22.7 59.75	36.7 73.75	77	22

Notes: 1) Select either one of two F dimensions, the standard or the parenthesized semi-standard dimension, for the pitch of rail fixing bolt holes. If not specified, the standard dimension of F is applied.


Reference number for roller slide of random-matching type

Ball slide
RAA 35 EM P6 Z -F

Random-matching roller slide series code
RAA: RA Series random-matching roller slide
Size
Roller slide shape code (See page A304.)

Preload code: Z
Z: Medium preload is only available.
Accuracy code
P6 and K6: Precision grade is only available. [See Table 17]

EM type

Reference number for rail of random-matching type Rail R1A35 1000 L C N -** P6 Z

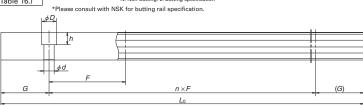
Random-matching rail series code
R1A: RA Series random-matching rail
Size

Rail length (mm)

Rail shape code: L
L: Standard
Material/surface treatment code (See Table 16.)

Readom-matching rail

Preload code: Z


Z: Medium preload is only available.
Accuracy code (See Table 17.)

P6 and K6: Precision grade is only available.
Design serial number

*Butting rail specification
N: Non-butting. L: Butting specification
*Please consult with NSK for hutting rails specification
*Please consult with NSK for hutting rails specification

EM and GM types



						Rail			Basic load rating							We	ight
Grease	fitti	ng	Width	Height	Pitch	Mounting	G	Maximum	Dynamic	Static	S	Static moment (N·m)		٦)	Roller	Rail	
Hole						bolt hole		length	С	C_{0}	M_{RO}	N	I _{PO}	\ \nabla	1 _{YO}	slide	
size	T_1	Ν	W_1	H_1	F	$d \times D \times h$	(Reference)	$L_{ m 0max}$	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
ф3	4	3	15	16.3	60 (30)	4.5×7.5×5.3	20	2 000	10 300 13 000	27 500 37 000	260 350						1.6
ф3	4	3	20	20.8	60 (30)	6×9.5×8.5	20	3 000	19 200 24 000	52 500 70 000	665 890						2.6
M6×0.75	6	11	23	24	30 (60)	7×11×9	20	3 000	29 200 35 400	72 700 92 900	970 1 240						3.4
M6×0.75	7	11	28	28	40 (80)	9×14×12	20	3 500	38 900 47 600	93 500 121 000	1 670 2 170		7 100 11 500	1 140 1 950	,	1.3 1.7	4.9
M6×0.75	8	11	34	31	40 (80)	9×14×12	20	3 500	53 300 67 400	129 000 175 000	2 810 3 810		11 000 17 800		11 000 17 800	1.7 2.3	6.8
Rc1/8	10	14	45	38	52.5 (105)	14×20×17	22.5	3 500		229 000 305 000	6 180 8 240		24 000 39 000		24 000 39 000		10.9
Rc1/8	11	14	53	43.5	60 (120)	16×23×20	30	3 500	129 000 168 000	330 000 462 000			41 000 72 000		41 000 72 000		14.6
Rc1/8	19	14	63	55	75 (150)	18×26×22	35	3 500		504 000 756 000							22.0

²⁾ The random-matching type is available for the models of RA25 to RA65.

³⁾ Basic load rating complies with ISO standards (ISO14728-1, ISO14728-2). If above basic dynamic load rating (100-km rating) is converted into 50-km rating, use the following formula: $C_{\text{50 km}} = 1.23 \times C_{\text{100 km}}$

A-5-3.2 LA Series

1. Features

(1) High rigidity and high load carrying capacity

A set of three ball grooves is made on both sides of ball slide and a rail. This contributes to the increased rigidity and load carrying capacity. The top and bottom groove are formed in the circular arc with a closer radius of ball, which ensures great rigidity and load carrying capacity. With the Gothic arch center groove, rigidity and load carrying capacity are further increased.

(2) Moderate friction

A well-balanced combination of 2-point contacts at the top and bottom grooves and 4 points contact at the center groove provides moderate friction while ensuring rigidity by appropriate preload.

(3) Four-way equal load distribution

The contact angle of balls is set at 45 degrees in all grooves, thereby dispersing the load equally to four rows irrespective of load direction. This realizes equal rigidity and load carrying capacity in vertical and lateral directions and provides well-balanced design.

(4) Strong against shock load

Load from any direction, vertical and lateral, is received by four ball rows at all times. The number of the ball rows which receive the load is larger than in other linear guides, making this series stronger against shock load.

(5) High accuracy

As showing in Fig. 4, fixing the measuring rollers is easy thanks to the Gothic arch groove of the central ball groove. This benefits an accurate and measuring of ball groove for a highly precise and stable manufacturing.

(6) The dust protection design

The rail's cross section is designed as simple as possible, thereby improving the sealing efficiency combined with the enhanced sealing function. In addition, optional inner seals are available.

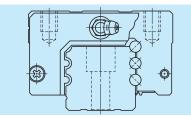


Fig. 1 LA Series

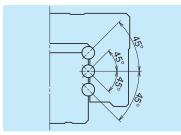


Fig. 2 Super rigidity design

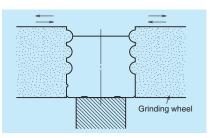


Fig. 3 Rail grinding

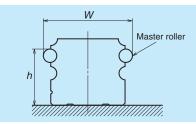


Fig. 4 Measuring groove accuracy

2. Ball slide shape

Ball slide Model	Shape/installation method		High-load type	ower row, Ball slide length) Super-high-load type		
ouo.			Standard	Long		
AN BN		AN	L ₁	BN L ₁		
AL BL		AL	L ₁	BL <u>L1</u>		
EL GL		EL	Li	GL L1		
FL HL		FL	Lı	HL L1		

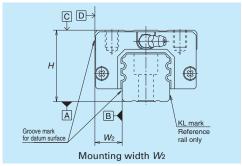
3. Accuracy and preload

(1) Running parallelism of ball slide

Table 1

Unit: um

		Tuble 1		Unit: µm					
		Preloaded assembly (not random matching)							
Rail length (mm) over or less	Ultra precision P	3 Super precision P	4 High precision P5	Precision grade P6					
- 50	2	2	2	4.5					
50 – 80	2	2	3	5					
80 – 125	2	2	3.5	5.5					
125 – 200	2	2	4	6					
200 – 250	2	2.5	5	7					
250 – 315	2	2.5	5	8					
315 – 400	315 – 400 2		6	9					
400 – 500	2	3	6	10					
500 - 630	2	3.5	7	12					
630 – 800	2	4.5	8	14					
800 – 1 000	2.5	5	9	16					
1 000 – 1 250	3	6	10	17					
1 250 – 1 600	4	7	11	19					
1 600 – 2 000	4.5	8	13	21					
2 000 – 2 500	5	10	15	22					
2 500 – 3 150	6	11	17	25					
3 150 – 4 000	9	16	23	30					


A321 A322

(2) Accuracy standard

The LA Series has four accuracy grades: Ultra precision P3, Super precision P4, High precision P5, and Precision grade P6.

	Table	2		Unit: µm
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5	Precision grade P6
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7	±40 15
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10	±50 20
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Shown in Tabl	e 1 and Fig. 5	

(3) Assembled accuracy

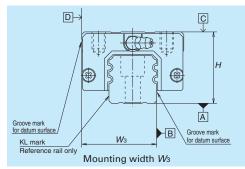


Fig. 5

4. Preload and rigidity

Table 3 shows preload and rigidity of LA Series.

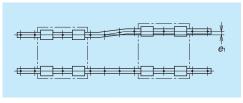
The LA Series has two types of preload specification: Medium preload Z3 and Heavy preload Z4.

Table 3

		Prelo	ad (N)	Rigidity	(N/µm)
	Model No.		Heavy preload Z4	Medium preload Z3	
	LA25 AL, AN, EL, FL	1 670	2 110	475	550
/pe	LA30 AL, AN, EL, FL	2 450	3 140	705	835
ad ty	LA35 AL, AN, EL, FL	3 450	4 300	825	970
High-load type	LA45 AL, AN, EL, FL	5 050	6 350	1 100	1 240
Hig	LA55 AL, AN, EL, FL	8 100	10 200	1 400	1 540
	LA65 AN, EL, FL	13 800	18 800	1 730	2 030
be	LA25 BL, BN, GL, HL	2 260	2 840	700	820
d ty	LA30 BL, BN, GL, HL	3 250	4 050	1 000	1 180
-loa	LA35 BL, BN, GL, HL	4 450	5 650	1 200	1 400
high	LA45 BL, BN, GL, HL	6 150	7 750	1 450	1 640
uper-high-load type	LA55 BL, BN, GL, HL	9 550	12 100	1 840	2 020
Su	LA65 BN, GL, HL	18 000	24 400	2 450	2 840

NSK

4. Maximum rail length


Table 4 shows the limitations of rail length. However, the limitations vary by accuracy grades.

Unit: mn									
Series Size	25	30	35	45	55	65			
LA	3 960	4 000	4 000	3 990	3 960	3 900			

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

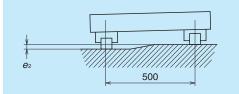


Fig. 6

Fig. 7

			Table 5				Unit: µm
Value	Preload			Mode	el No.		
value	Freibau	LA25	LA30	LA35	LA45	LA55	LA65
Permissible values of	Z3	15	17	20	25	30	40
parallelism in two rails e_1	Z4	13	15	17	20	25	30
Permissible values of	Z3. Z4			10E um	/E00 mm		
parallelism (height) in two rails e_2	23, 24			100 μπη	′500 mm		

(2) Shoulder height of the mounting surface and corner radius r

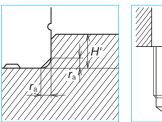
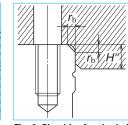



Fig. 8 Shoulder for the Fig. 9 Shoulder for the ball rail datum surface

slide datum surface

		Table 6		Unit: mm		
Model No.	Corner radiu	s (maximum)	Shoulder height			
Model No.	r _a	$r_{\rm b}$	H'	H"		
LA25	0.5	0.5	5	5		
LA30	0.5	0.5	6	6		
LA35	0.5	0.5	6	6		
LA45	0.7	0.7	8	8		
LA55	0.7	0.7	10	10		
LA65	1	1	11	11		

6. Lubrication components

Refer to pages A38 and D13 for the lubrication of linear guides.

(1) Types of lubrication accessories

Fig. 10 and Table 7 show grease fittings and tube fittings.

(2) Mounting position of lubrication accessories

- The standard position of grease fittings is the end face of ball slide. We mount them on a side of end cap for an option. (Fig. 11).
- Please consult NSK for installation of grease or tube fittings to the ball slide body or side of end cap.
- When using a piping unit with thread of M6 x 1, you require a connector to connect to a grease fitting mounting hole with M6 x 0.75.
 The connector is available from NSK.

Table 7 Unit: mr									
Model No.	Dust proof	Grease fitting	Tube fitting						
	specification	Thread body length L	Thread body length L						
	Standard	5	5						
LA25	With NSK K1	14	12						
LAZS	Double seal	10	9						
	Protector	10	9						
	Standard	5	6						
LA30	With NSK K1	14	13						
LA30	Double seal	12	11						
	Protector	12	11						
	Standard	5	6						
LA35	With NSK K1	14	13						
LA35	Double seal	12	11						
	Protector	12	11						
	Standard	8	17						
LA45	With NSK K1	18	21.5						
LA45	Double seal	14	17						
	Protector	14	17						
	Standard	8	17						
LA55	With NSK K1	18	21.5						
LASS	Double seal	14	17						
	Protector	14	17						
	Standard	8	17						
LA65	With NSK K1	22	25.5						
LA65	Double seal	16	19						
	Protector	16	17						

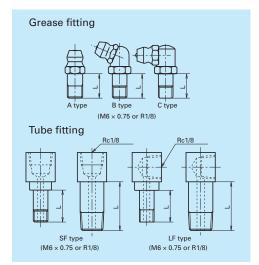


Fig. 10 Grease fitting and tube fitting

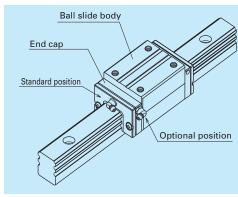


Fig. 11 Mounting position of lubrication accessories

NSK

7. Dust-proof components

(1) Standard Specification

The LA Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, and bottom seals at the bottom.

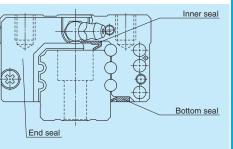
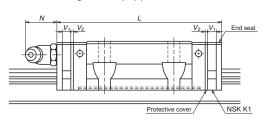



Fig. 12

Table 8 Seal friction per ball slide (maximum value)												
Series Size	25	30	35	45	55	65						
LA	11	11	12	17	17	23						

(2) NSK K1™ lubrication unit

Table 9 shows the dimension of linear guides equipped with the NSK K1 lubrication unit.

Table 9

Unit: mm

Model No.	Ball slide length	Ball slide model	slide length NSK K1 L		Per NSK K1 thickness V ₁	Protective cover thickness V ₂	Protruding area of the grease fitting N	
LA25	Standard	AL, AN, EL, FL	79.8	91.8	5.0	1.0	(14)	
LAZS	Long	BL, BN, GL, HL	107.8	119.8	5.0	1.0	(14)	
1 420	Standard	AL, AN, EL, FL	100.2	113.2	5.5	1.0	(14)	
LA30	Long	BL, BN, GL, HL	126.2	139.2	5.5	1.0	(14)	
LA35	Standard	AL, AN, EL, FL	110.6	123.6	5.5	1.0	(14)	
LASS	Long	BL, BN, GL, HL	144.6	157.6	5.5	1.0	(14)	
LA45	Standard	AL, AN, EL, FL	141.4	156.4	6.5	1.0	(15)	
LA45	Long	BL, BN, GL, HL	173.4	188.4	0.5	1.0	(15)	
LA55	Standard	AL, AN, EL, FL	165.4	180.4	6.5	1.0	/1E)	
LASS	Long	BL, BN, GL, HL	203.4	218.4	0.5	1.0	(15)	
LA65	Standard	AN, EL, FL	196.2	214.2	8.0	1.0	(1.6)	
LA65	Long	BN, GL, HL	256.2	274.2	8.0	1.0	(16)	

Note: Ball slide length equipped with NSK K1 = (Standard ball slide length) + (Thickness of NSK K1, V_1 × Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

(3) Double seal and protector

For the LA Series, a double seal and a protector can be installed only before shipping from the factory. Please consult with NSK when the double seal and the protectors are required.

Table 10 shows the increased thickness of V_3 and V_4 when end seals and protectors are installed (Fig. 15).

Table 10

Unit: mm

	Thickness	Thickness				
Model No.	of end seal: V ₃	of protector: V ₄				
LA25	3.2	3.6				
LA30	4.4	4.2				
LA35	4.4	4.2				
LA45	5.5	4.9				
LA55	5.5	4.9				
LA65	6.5	5.5				

(4) Cap to plug the rail mounting bolt hole Table 11 Caps to plug rail bolt hole

		_				
Model No.	Bolt to	Сар	Quantity			
woder no.	secure rail	reference No.	/case			
LA25	M6	LG-CAP/M6	20			
LA30, LA35	M8	LG-CAP/M8	20			
LA45	M12	LG-CAP/M12	20			
LA55	M14	LG-CAP/M14	20			
LA65	M16	LG-CAP/M16	20			

Ball slide End cap End seal Connector washer Collar End seal Grease fitting

Fig. 13 Double seal

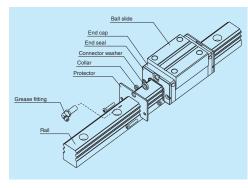


Fig. 14 Protector

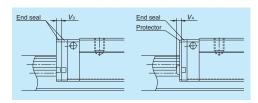


Fig. 15

(5) Bellows

Make tap holes to the rail end face to fix the bellows mounting plate.

NSK processes tap holes to the rail end face when ordered with a linear guide.

Dimension tables of bellows LA Series

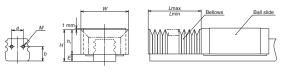


Fig. 16 Dimensions of bellows

Bellows reference number J A A 30 L 08 Bellows A: Bellows for the ends B: Middle bellows Bellows for LA series Bellows for LA series

Table 12 Dimensions of bellows

Unit: mm

Model No.	Н	h ₁	Ε	W	Р	а	b	Length of BL	Tap (M) × depth
JAA25L	35	29.5	5.5	55	12	12	13.8	17	M3 × 5
JAA25N	39	33.5	5.5	61	15	12	13.8	17	M3 × 5
JAA30L	41	33.5	7.5	60	12	14	17.5	17	$M4 \times 6$
JAA30N	44	36.5	7.5	66	15	14	17.5	17	$M4 \times 6$
JAA35L	47	39.5	7.5	72	15	15	18.8	17	$M4 \times 6$
JAA35N	54	46.5	7.5	82	20	15	18.8	17	$M4 \times 6$
JAA45L	59	49	10	93	20	25	22.5	17	M5 × 8
JAA45N	69	59	10	113	30	25	22.5	17	M5 × 8
JAA55L	69	57	12	101	20	35	27.1	17	M5 × 8
JAA55N	79	67	12	121	30	35	27.1	17	M5 × 8
JAA65N	89	75	14	131	30	40	33.3	17	M6 × 12

Table 13 Numbers of folds (BL) and length of bellows

Unit: mm

Time	Model No.	Length of BL	2	4	6	8	10	12	14	16	18	20
Type	iviouei ivo.	Lmin	34	68	102	136	170	204	238	272	306	340
	14 4 0 5 1	Stroke	134	268	402	536	670	804	938	1 072	1 206	1 340
Low type	JAA25L	Lmax	168	336	504	672	840	1 008	1 176	1 344	1 512	1 680
11: 1 .	14.4051	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
High type	JAA25N	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
1	14 4 2 0 1	Stroke	134	268	402	536	670	804	938	1 072	1 206	1 340
Low type	JAA30L	Lmax	168	336	504	672	840	1 008	1 176	1 344	1 512	1 680
I Carla Access	140041	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
High type	JAA30N	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
1	14 4051	Stroke	176	352	528	704	880	1 056	1 232	1 408	1 584	1 760
Low type	JAA35L	Lmax	210	420	630	840	1 050	1 260	1 470	1 680	1 890	2 100
I Carla Access	14 4051	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
High type	JAA35N	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
1	100451	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
Low type	JAA45L	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
I Carla Acces	1004501	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
High type	JAA45N	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200
1	14 4 5 5 1	Stroke	246	492	738	984	1 230	1 476	1 722	1 968	2 214	2 460
Low type	JAA55L	Lmax	280	560	840	1 120	1 400	1 680	1 960	2 240	2 520	2 800
Llieb tues	IVVEEN	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
High type	JAA55N	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200
Low/high	JAA65N*	Stroke	386	772	1 158	1 544	1 930	2 316	2 702	3 088	3 474	3 860
type	JAAOSIN	Lmax	420	840	1 260	1 680	2 100	2 520	2 940	3 360	3 780	4 200

^{*} Bellows for LA65 is for both low and high types.

Note: The values of an odd number BL quantity (3, 5, 7, ...) can be obtained by adding two values of the even number BL on the both sides, then by dividing the sum by 2.

A327 A328

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

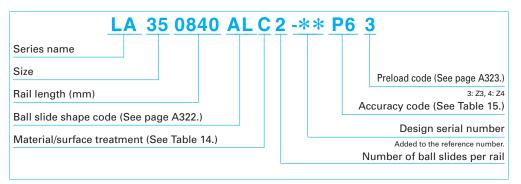


Table 14 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special

Table 15 Accuracy code

Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	K3
Super precision grade	P4	K4
High precision grade	P5	K5
Precision grade	P6	K6

Note: Refer to pages A38 for NSK K1 lubrication unit.

A329 A330

9. Dimensions

Rail length (mm)

Ball slide shape code (See page A322.)

Material/surface treatment (See Table 14.)

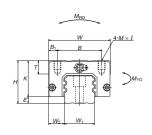
LA-AL (High-load type / Standard) LA-BL (Super-high-load type / Long)

LA 35 0840 AL C 2 -** P6 3

Series name

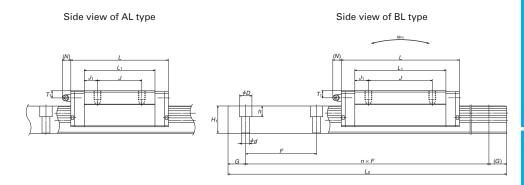
Size

Preload code (See page A323.)


Design serial number

Added to the reference number.

Number of ball slides per rail


Accuracy code (See Table 15.)

Front view of AL and BL types

	A:	ssemb	ly					В	all slid	le						
Model No.	Height			Width	Length		Mour	nting hole						Grease	fittin	g
	Н	Ε	$W_{\scriptscriptstyle 2}$	W	L	В	J	<i>M</i> ×pitch×ℓ	B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
LA25AL					79.8		35			58	11.5					
LA25BL	36	5.5	12.5	48	107.8	35	50	M6×1×7	6.5	86	18	30.5	8	M6×0.75	6	11
LA30AL					100.2		40			72	16					
LA30BL	42	7.5	16	60	126.2	40	60	M8×1.25×10	10	98	19	34.5	11	M6×0.75	6.5	11
LA35AL					110.6		50			80	15					
LA35BL	48	7.5	18	70	144.6	50	72	M8×1.25×10	10	114	21	40.5	15	M6×0.75	8	11
LA45AL					141.4		60			105	22.5					
LA45BL	60	10	20.5	86	173.4	60	80	M10×1.5×16	13	137	28.5	50	17	Rc1/8	10	13
LA55AL					165.4		75			126	25.5					
LA55BL	70	12	23.5	100	203.4	75	95	M12×1.75×16	12.5	164	34.5	58	18	Rc1/8	11	13

Notes: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

Unit: mm

											Un	iit: mm		
			Rail			Basic load rating							Weight	
Width	Height	Pitch		G	Max.	Dynamic	Static		Static	momer	nt (N·m)	Ball	Rail
			bolt hole		length	С	C_{0}	$M_{\scriptscriptstyle{RO}}$	N	I _{PO}	Λ	1 _{YO}	slide	
W_1	H ₁	F	d×D×h	(Reference)	$L_{ m 0max}$	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
23	22	60	7×11×9	20	3 960	30 000	50 000	290	410	2 490	410	2 490	0.5	3.7
	22	00 /21129 20	20	0 000	40 500	77 000	445	935	5 000	935	5 000	8.0	0.7	
28	28	80	9×14×12	20	4 000	47 000	77 500	535	820	4 800	820	4 800	8.0	5.8
			30 3714712 2			58 000	105 000	725	1 470	8 050	1 470	8 050	1.2	
34	30.8	80	9×14×12	20	4 000	61 500	98 000	845	1 130	6 750	1 130	6 750	1.3	7.7
	00.0		0711 17112	20	1 000	80 500	143 000	1 240	2 330	12 500	2 330	12 500	1.6	7.7
45	36	105	14×20×17	22.5	3 990	91 000	148 000	1 840	2 210	12 900	2 210	12 900	2.5	12.0
	45 36 105 14×20×17 22	22.0	0 000	111 000	197 000	2 460	3 850	20 600	3 850	20 600	3.2	12.0		
53	43.2	120	16×23×20	30	3 960	139 000	215 000	3 150	3 800	22 000	3 800	22 000	3.9	17.2
33	70.2	120	13/23/20	50		172 000	292 000	4 250	6 800	36 000	6 800	36 000	5.1	17.2

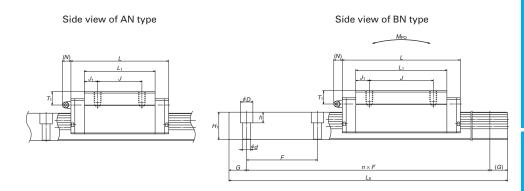
²⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface.

A331 A332

To convert C to C_{100} for a 100 km-rating fatigue life, divide C by 1.26.

LA-AN (High-load type / Standard) LA-BN (Super-high-load type / Long)

LA 35 0840 ANC 2 -** P6 3 Series name Size Rail length (mm) Ball slide shape code (See page A322.) Material/surface treatment (See Table 14.) Preload code (See page A323.) Accuracy code (See Table 15.) Design serial number Added to the reference number.


Mno W 4-M×L

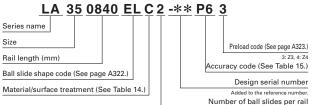
Front view of AN and BN types

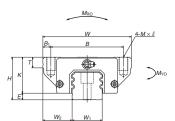
	As	ssemb	ly			Ball slide										
Model No.	Height			Width	Length		Mour	nting hole						Grease	fittin	g
	Н	Ε	$W_{\scriptscriptstyle 2}$	W	L	В	J	<i>M</i> ×pitch×ℓ	B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	Ν
LA25AN	40	5.5	12.5	48	79.8	35	35	M6×1×10	6.5	58	11.5	34.5	12	M6×0.75	10	11
LA25BN					107.8		50			86	18					
LA30AN	45	7.5	16	60	100.2	40	40	M8×1.25×11	10	72	16	37.5	14	M6×0.75	9.5	11
LA30BN					126.2		60			98	19					
LA35AN	55	7.5	18	70	110.6	50	50	M8×1.25×12	10	80	15	47.5	15	M6×0.75	15	11
LA35BN	33	7.5	10	/0	144.6	50	72	1010/1.25/12	10	114	21	47.5	13	10000.75	13	''
LA45AN	70	10	20.5	86	141.4	60	60	M10×1.5×16	13	105	22.5	60	17	Rc1/8	20	13
LA45BN	, 0	10	20.0		173.4	00	80	WITOXT.OXTO		137	28.5		.,	1101/0	20	10
LA55AN	80	12	23.5	100	165.4	75	75	M12×1.75×18	12.5	126	25.5	68	18	Rc1/8	21	13
LA55BN	00	12	23.5	100	203.4	75	95	WI12X1./5X16	12.5	164	34.5	00	10	nci/o	21	13
LA65AN			04.5	105	196.2	7.0	70	140045	0.5	147	38.5			D 1/6		10
LA65BN	90	14	31.5	126	256.2	76	120	M16×2×19	25	207	43.5	76	22	Rc1/8	19	13

Number of ball slides per rail

Notes: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

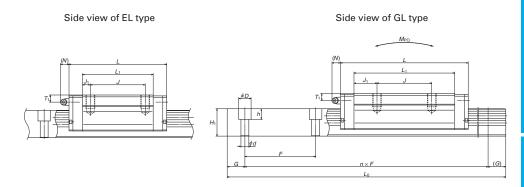
Unit: mm


	Rail Width Height Pitch Mounting G Max.							Basic I	oad rati	ng			We	ight
Width	Height	Pitch	Mounting bolt hole	G	Max. length	Dynamic C	Static	Λ.4		momer			Ball slide	Rail
W_1	H ₁	F	d×D×h	(Reference)	L_{0max}	(N)	(N)	M _{RO}	One slide	Two slides		Two slides	(kg)	(kg/m)
23	22	60	7×11×9	20	3 960	30 000 40 500	50 000 77 000	290 445	410 935	2 490 5 000		2 490 5 000	0.6	3.7
28	28	80	9×14×12	20	4 000	47 000 58 000	77 500 105 000	535 725	820 1 470	4 800 8 050	820 1 470	4 800 8 050	0.9	5.8
34	30.8	80	9×14×12	20	4 000	61 500 80 500	98 000 143 000	845 1 240	1 130 2 330			6 750 12 500	1.5	7.7
45	36	105	14×20×17	22.5	3 990	91 000 111 000	148 000 197 000							12.0
53	43.2	120	16×23×20	30	3 960		215 000 292 000							17.2
63	55	150	18×26×22	35	3 900		420 000 615 000							25.9


²⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface.

To convert C to C_{100} for a 100-km rating fatigue life, divide C by 1.26.

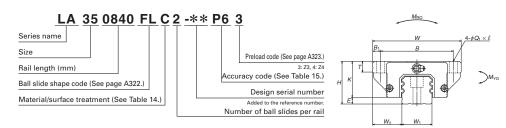
LA-EL (High-load type / Standard) LA-GL (Super-high-load type / Long)


Front view of EL and GL types

	As	ssemb	oly					В	all slid	le						
Model No.	Height			Width	Length		Mour	iting hole						Grease	fittin	g
1410001140.	Н	Ε	W ₂	W	L	В	J	<i>M</i> ×pitch×ℓ	B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
LA25EL					79.8					58	6.5					
LA25GL	36	5.5	23.5	70	107.8	57	45	M8×1.25×12	6.5	86	20.5	30.5	11	M6×0.75	6	11
LA30EL	42	7.5	31	90	100.2	72	52	M10×1.5×16	9	72	10	34.5	11	M6×0.75	6.5	11
LA30GL	42	7.5	31	90	126.2	72	52	WITUX1.5X16	9	98	23	34.5		IVI0XU.75	0.5	-
LA35EL	48	7.5	33	100	110.6	82	62	M404 F4F	9	80	9	40.5	10	MC0. 7E	8	11
LA35GL	48	7.5	33	100	144.6		62	M10×1.5×15	9	114	26	40.5	12	M6×0.75	ð	11
LA45EL	60	10	37.5	120	141.4	100	80	M12×1.75×18	10	105	12.5	50	13	Rc1/8	10	13
LA45GL	60	10	37.5	120	173.4	100	80	W112X1.75X18	10	137	28.5	50	13	NCI/8	10	13
LA55EL	70	10	43.5		165.4	116	٥٢	N41 4 O O.1	10	126	15.5	-0	1.5	D-1/0	11	10
LA55GL	70	12	43.5	140	203.4	116	95	M14×2×21	12	164	34.5	58	15	Rc1/8	11	13
LA65EL	00	4.4	50.5		196.2	4.40	440	N440 0 04	4.4	147	18.5	70	00	D 4/0	4.0	40
LA65GL	90	14	53.5	170	256.2	142	110	M16×2×24	14	207	48.5	76	22	Rc1/8	19	13

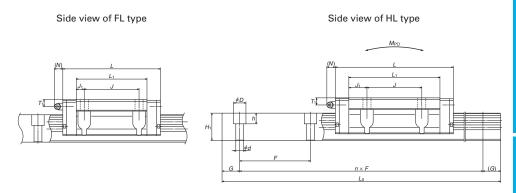
Notes: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

Unit: mm


														IL. IIIIII
			Rail					Basic	oad rati	ng			We	ight
Width	Height	Pitch	Mounting	G	Max. length	Dynamic	Static		Static	momen	t (N·m)		Ball	Rail
			bolt hole		length	С	C_0	$M_{\scriptscriptstyle{\mathrm{RO}}}$	Λ	1 _{PO}	Λ	1 _{YO}	slide	
VV_1	H_1	F	$d \times D \times h$	(Reference)	$L_{\scriptscriptstyle 0max}$	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
23	22	60	7×11×9	20	3 960	30 000 40 500	50 000 77 000	290 445	410 935	2 490 5 000	410 935	2 490 5 000	0.8	3.7
28	28	80	9×14×12	20	4 000	47 000 58 000	77 500 105 000	535 725	820 1 470	4 800 8 050	820 1 470	4 800 8 050	1.3	5.8
34	30.8	80	9×14×12	20	4 000	61 500 80 500	98 000 143 000	845 1 240		6 750 12 500		6 750 12 500	1.9	7.7
45	36	105	14×20×17	22.5	3 990	91 000 111 000	148 000 197 000							12.0
53	43.2	120	16×23×20	30	3 960		215 000 292 000							17.2
63	55	150	18×26×22	35	3 900		420 000 615 000							25.9

²⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface.

To convert C to C_{100} for a 100-km rating fatigue life, divide C by 1.26.


LA-FL (High-load type / Standard) LA-HL (Super-high-load type / Long)

Front view of FL and HL types

	A	ssemb	olv		Ball slide											
Model No.	Haiaht			Width	Length		Mour	nting hole						Grease	fittin	g
Wiodel No.	Н	Ε	W_2	W	L	В	J	$Q_1\!\! imes\!\ell$	B ₁	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
LA25FL LA25HL	36	5.5	23.5	70	79.8 107.8	57	45	7×10	6.5	58 86	6.5 20.5	30.5	11	M6×0.75	6	11
LA30FL LA30HL	42	7.5	31	90	100.2 126.2	72	52	9×12	9	72 98	10 23	34.5	11	M6×0.75	6.5	11
LA35FL LA35HL	48	7.5	33	100	110.6 144.6	82	62	9×13	9	80 114	9 26	40.5	12	M6×0.75	8	11
LA45FL LA45HL	60	10	37.5	120	141.4 173.4	100	80	11×15	10	105 137	12.5 28.5	50	13	Rc1/8	10	13
LA55FL LA55HL	70	12	43.5	140	165.4 203.4	116	95	14×18	12		15.5 34.5	58	15	Rc1/8	11	13
LA65FL LA65HL	90	14	53.5	170	196.2 256.2	142	110	16×23	14	147 207	18.5 48.5	76	22	Rc1/8	19	13

Notes: 1) LA Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

Unit: mm

	Rail							Basic I	oad rati	ng			We	ight
Width	Height	Pitch	Mounting bolt hole	G	Max. length	Dynamic	Static			momer			Ball	Rail
147		_		(D ()		C	C_0	M_{RO}		1 _{PO}		1 _{YO}	slide	(1 ()
W_1	H ₁	F	d×D×h	(Reference)	L_{0max}	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
23	22	60	7×11×9	20	3 960	30 000	50 000	290	410	2 490	410	2 490	0.8	3.7
	22	00	721120	20		40 500	77 000	445	935	5 000	935	5 000	11	0.7
28	28	80	9×14×12	20	4 000	47 000	77 500	535	820	4 800	820	4 800	1.3	5.8
	20		0/11/12	20		58 000	105 000	725	1 470	8 050	1 470	8 050	1.8	0.0
34	30.8	80	9×14×12	20	4 000	61 500	98 000	845	1 130	6 750	1 130	6 750	1.9	7.7
04	30.0	00	JA14A12	20	4 000	80 500	143 000	1 240	2 330	12 500	2 330	12 500	2.6	7.7
45	36	105	14×20×17	22.5	3 990	91 000	148 000	1 840	2 210	12 900	2 210	12 900	3.3	12.0
45	30	105	14x2Ux17	22.5	3 990	111 000	197 000	2 460	3 850	20 600	3 850	20 600	4.3	12.0
EO	40.0	120	16,22,20	20	2.060	139 000	215 000	3 150	3 800	22 000	3 800	22 000	5.5	17.2
53	43.2	120	16×23×20	30	3 960	172 000	292 000	4 250	6 800	36 000	6 800	36 000	7.2	17.2
63	55	150	18×26×22	35	3 900	260 000	420 000	7 300	9 050	51 000	9 050	51 000	11.0	25.9
03	55	150	10XZ0XZZ	35	3 900	340 000	615 000	10 700	18 700	95 000	18 700	95 000	15.5	25.9

²⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface.

To convert C to C_{100} for a 100-km rating fatigue life, divide C by 1.26.

1. HA Series

A341

2. HS Series

A355

A-5-4 High-Precision Machine and High-Precision Measuring Equipment

A339 A340

A-5-4.1 HA Series

1. Features

(1) High motion accuracy

High motion accuracy is achieved in both narrow and wide ranges by the adoption of ultra-long ball slides and the optimum design of the ball recirculation component.

(2) Ball passage vibration reduced to one-third of our conventional models

Our extensive performance tests show ball passage vibration has been reduced to one-third of our conventional models, dramatically improving straightness in table unit.

(3) Installation of rail with greater accuracy

Increased counterbore depth of the rail mounting hole reduces rail deflection, which is caused by bolt tightening when fixing the rail to the mounting base to 50% or less. This feature restrains the pitching motion of ball slide whose frequency matches to the mounting hole pitch.

In addition, the length of mounting hole pitch has been reduced by one-half of the conventional models, so the rail can be more accurately installed in position.

(4) High rigidity and load capacity with lower friction

High rigidity, high load capacity and low friction are achieved by increasing the number of balls.

(5) Compact design

Reduced body size enables more compact machinery.

(6) Four-way equal load distribution

Contact angle is set at 45 degrees in all grooves, dispersing the load to four ball rows irrespective of load direction. This realizes equal rigidity and load carrying capacity in vertical and lateral directions and provides well-balanced design.

(7) Strong against shock load

Load from any direction, vertical and lateral,

is received by four ball rows at all times. The number of the ball row which receives the load is larger than in other linear guides, making this series stronger against shock load.

(8) High accuracy at manufacturing

Fixing the measuring rollers to the ball grooves is easy thanks to the Gothic arch groove. Ball-groove measuring is accurate and simple. This benefits a highly precise and stable manufacturing.

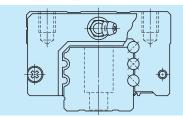


Fig. 1 HA Series

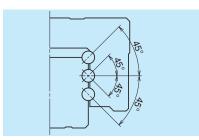


Fig. 2 Super rigidity design

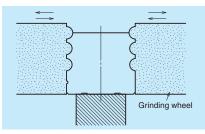


Fig. 3 Rail grinding

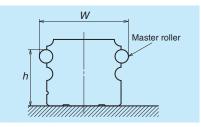


Fig. 4 Measuring groove accuracy

Measurement results of ball passage vibration

Ball passage vibration can translate into posture changes in the ball slide which result from ball passage (circulation). In the HA Series, this vibration has been substantially reduced to one-third of conventional models.

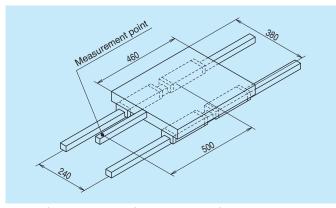


Fig. 5 Schematic view of measurement of ball passage vibration

HA Series

HA Series

Model No.: HA30 Preload: Z3 Table dimensions: $460 \text{ mm} \times 380 \text{ mm}$

Conventional Series

Model No.: LA30 Preload: Z3 Table dimensions: $460 \text{ mm} \times 380 \text{ mm}$ The same table is used.

Conventional Series eight ball slides

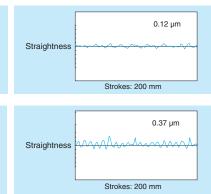
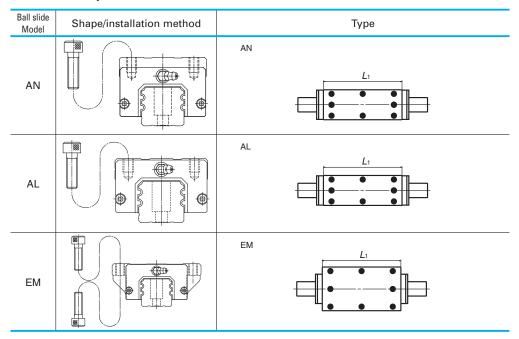
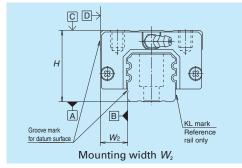



Fig. 6 Measurement results of HA Series and conventional Series

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide


Table 1 Unit: μm									
		Pre	loaded ass	em	bly				
Rail length (mm) over or less	Ultra precision	P3	Super precision	P4	High precision	P5			
- 200	2		2		4				
200 – 250	2		2.5		5				
250 – 315	2		2.5		5				
315 – 400	2		3		6				
400 – 500	2		3		6				
500 - 630	2		3.5		7				
630 – 800	2	4.5			8				
800 – 1 000	2.5		5		9				
1 000 – 1 250	3		6		10				
1 250 – 1 600	4		7		11				
1 600 – 2 000	4.5		8		13				
2 000 – 2 500	5		10		15				
2 500 – 3 150	6		11		17				
3 150 – 4 000	9		16		23				

(2) Accuracy standard

Three accuracy grades are available: Ultra precision P3, Super precision P4 and High precision P5.

	lable 2		Unit: µm
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Refer to Table 1 and Fig . 7	7

(3) Assembled accuracy

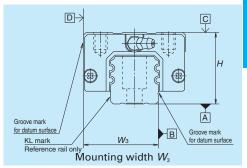


Fig. 7

(4) Preload and rigidity

Slight preload Z1 and Medium preload Z3 are available for preload, which can be selected for specific applications.

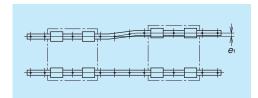
Table 3

Model No.	Preloa	ad (N)	Rigidity (N/μm)			
Model No.	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)		
HA25	735	2 990	635	1 030		
HA30	1 030	4 400	880	1 270		
HA35	1 470	6 100	1 030	1 620		
HA45	1 960	8 150	1 230	2 060		
HA55	3 150	13 100	1 520	2 450		

4. Maximum rail length

Table 4 shows the limitations of rail length.

However, the limitations vary by accuracy grades.

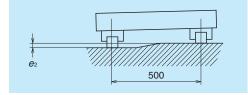

Table 4 Length limitations of rails Unit: mn												
Series Size	25	30	35	45	55							
НА	3 960	4 000	4 000	3 990	3 960							

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

NSK

5. Installation

(1) Permissible values of mounting error



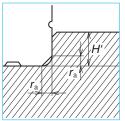

Fig. 8

Fig. 9

ıa	D	œ	IJ

						Unit: µm			
Value	Preload			Model No.					
value	Freibau	HA25	HA30	HA35	HA45	HA55			
Permissible values of	Z1	20	20	23	26	34			
parallelism in two rails e1	Z3	15	14	17	19	25			
Permissible values of	74 70)F0 /F00					
parallelism (height) in two rails e2	Z1,Z3	250 μm/500 mm							

(2) Shoulder height of the mounting surface and corner radius r

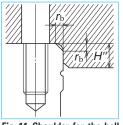


Fig. 10 Shoulder for the rail datum surface

Fig. 11 Shoulder for the ball slide datum surface

			Unit: mm	
Model No.	Corner radiu	s (maximum)	Shoulde	er height
wiodei ivo.	r _a	$r_{\rm b}$	H'	H"
HA25	0.5	0.5	5	5
HA30	0.5	0.5	6	6
HA35	0.5	0.5	6	6
HA45	0.7	0.7	8	8
HA55	0.7	0.7	10	10

6. Lubrication components

Refer to pages A38 and D13 for linear guide lubrication.

(1) Types of lubrication accessories

Fig. 12 and Table 7 show grease fittings and

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on the side of end cap for an option. (Fig. 13)

Please consult NSK for installation of grease or tube fittings to the ball slide body or the side of end cap.

When using a piping unit with thread of M6 \times 1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

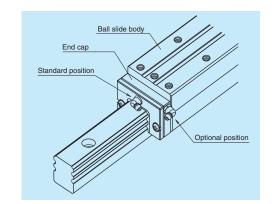


Fig. 13 Mounting position of lubrication accessories

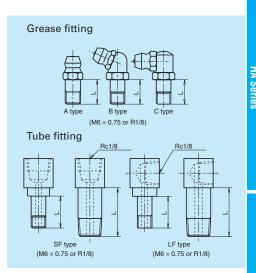


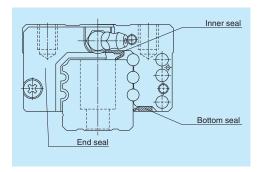
Fig. 12 Grease fitting and tube fitting

Table 7 Unit: mn							
Model No.	Dust-proof	Grease fitting	Tube fitting				
	specification	Thread body length L	Thread body length L				
	Standard	5	5				
HA25	With NSK K1	14	12				
пА25	Double seal	10	9				
	Protector	10	9				
	Standard	5	6				
HA30	With NSK K1	14	13				
пАЗО	Double seal	12	11				
	Protector	12	11				
	Standard	5	6				
HA35	With NSK K1	14	13				
HASS	Double seal	12	11				
	Protector	12	11				
	Standard	8	17				
HA45	With NSK K1	18	21.5				
IIA45	Double seal	14	17				
	Protector	14	17				
HA55	Standard	8	17				
	With NSK K1	18	21.5				
11/33	Double seal	14	17				
	Protector	14	17				

7. Dust-proof components

(1) Standard Specification

The HA Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends, bottom seals at the bottom, and an inner seal in inside.



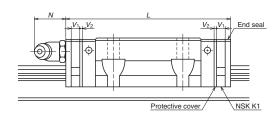

Fig. 14

Table 8 Seal friction per ball slide (maximum value)

					Unit: N
Series Size	25	30	35	45	55
HA	17	17	19	21	22

(2) NSK K1[™] lubrication unit

Table 9 shows the dimensions of linear guides equipped with the NSK K1 lubrication unit.

	it:	

Model No.	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 <i>L</i>	Per NSK K1 thickness V ₁	Protective cover thickness V_2	Protruding area of the grease fitting N
HA25	AN, EM	147.8	159.8	5.0	1.0	(14)
HA30	AN, EM	177.2	190.2	5.5	1.0	(14)
HA35	AN, AL, EM	203.6	216.6	5.5	1.0	(14)
HA45	AN, AL, EM	233.4	248.4	6.5	1.0	(15)
HA55	AN,AL, EM	284.4	299.4	6.5	1.0	(15)

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

(3) Double seal and protector

For the HA Series, double seal and protectors can be installed only before shipping from the factory. Please consult with NSK when you require dust tight protection.

Table 10 shows the increased thickness of V_3 , and V_4 when the end seal and the protector are installed.

	lable 10	Unit: mm
Model No.	Thickness	Thickness
woder No.	of end seal: V ₃	of protector: V ₄
HA25	3.2	3.6
HA30	4.4	4.2
HA35	4.4	4.2
HA45	5.5	4.9
HA55	5.5	4.9

(4) Caps to plug the rail mounting bolt hole

Table 11 Caps to plug rail bolt hole

Model No	Bolt to	Сар	Quantity	
	secure rail	reference No.	/case	
HA25	M6	LG-CAP/M6	20	
HA30, HA35	M8	LG-CAP/M8	20	
HA45	M12	LG-CAP/M12	20	
HA55	M14	LG-CAP/M14	20	
	HA25 HA30, HA35 HA45	Model No. secure rail HA25 M6 HA30, HA35 M8 HA45 M12	Model No. secure rail reference No. HA25 M6 LG-CAP/M6 HA30, HA35 M8 LG-CAP/M8 HA45 M12 LG-CAP/M12	

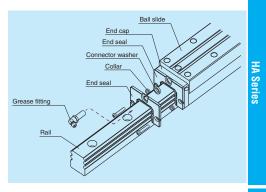


Fig. 15 Double seal

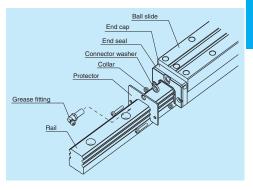


Fig. 16 Protector

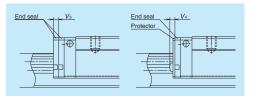


Fig. 17

A347 A348

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

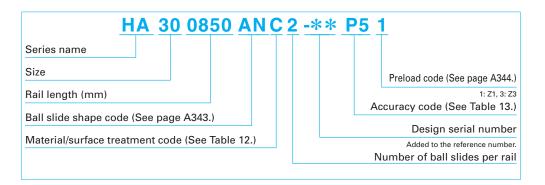
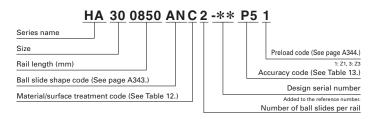
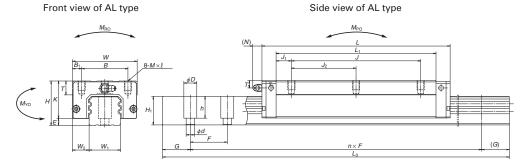


Table 12 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
D	Special high carbon steel with surface treatment
Z	Other, special


Table 13 Accuracy code


Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	K3
Super precision grade	P4	K4
High precision grade	P5	K5

Note: Refer to page A38 for NSK K1 lubrication unit.

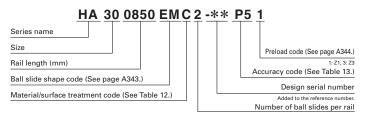
A349 A350

9. Dimensions HA-AN HA-AL

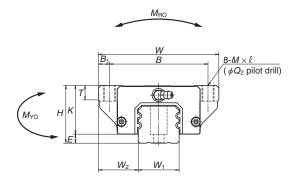
	A:	ssemb	ly						В	all sli	de						
Model No.	Height			Width	Length		М	ounti	ng hole						Grease	fittin	g
Model No.	Н	Ε	$W_{\scriptscriptstyle 2}$	W	L	В	J	J_2	$M \times \text{pitch} \times \ell$	<i>B</i> ₁	L ₁	J_1	К	Т	Hole size	T_1	N
HA25AN	40	5.5	12.5	48	147.8	35	100	50	M6×1.0×10	6.5	126	13	34.5	12	M6×0.75	10	11
HA30AN	45	7.5	16	60	177.2	40	120	60	M8×1.25×11	10	149	14.5	37.5	14	M6×0.75	9.5	11
HA35AN	55	7.5	18	70	203.6	50	140	70	M8×1.25×12	10	173	16.5	47.5	15	M6×0.75	15	11
HA35AL	48	7.5	10	70	203.0	50	140	70	M8×1.25×10	10	173	10.5	40.5	15	1010×0.75	8	11
HA45AN	70	10	20.5	86	233.4	60	160	80	M10×1.5×16	13	197	18.5	60	17	Rc1/8	20	13
HA45AL	60	10	20.5	00	233.4	00	100	00	WITUX 1.5X 16	13	197	10.5	50	17	nc1/o	10	13
HA55AN	80	12	23.5	100	284.4	75	206	102	M12×1.75×18	12 5	245	19.5	68	18	Rc1/8	21	13
HA55AL	70	12	23.5	100	204.4	75	200	103	IVI IZX 1./5X I 8	12.5	245	19.5	58	18	nc1/8	11	13

Notes: 1) The HA Series does not have a ball retainer. Be aware that the balls fall out when a ball slide is withdrawn from the rail.

Front	view of AN type	Side view of AN type
	M _{RO}	Mpo
M _{ro}	H K B 8-M× L H, W2 W.	

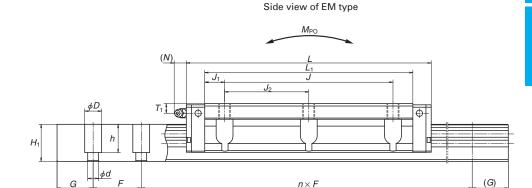

Unit: mm

			Rail					Basic I	oad rati	ng			We	ight
Width	Height	Pitch	Mounting	G	Maximum	Dynamic	Static		Static moment (N·m)				Ball	Rail
			bolt hole		length	С	C_0	$M_{\scriptscriptstyle{\mathrm{RO}}}$	N	1 _{PO}	Λ	1 _{YO}	slide	
W_1	H ₁	F	$d \times D \times h$	(Reference)	$L_{\scriptscriptstyle Omax}$	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
23	22	30	7×11×16.5	20	3 960	54 000	115 000	670	2 060	10 100	2 060	10 100	1.2	3.7
28	28	40	9×14×21	20	4 000	79 500	166 000	1 140	3 550	17 400	3 550	17 400	1.8	5.8
34	30.8	40	9×14×23.5	20	4 000	111 000	226 000	1 950	5 650	27 100	5 650	27 100	3.0 2.6	7.7
45	36	52.5	14×20×27	22.5	3 990	147 000	295 000	3 700	8 450	40 500	8 450	40 500	6.0 5.0	12.0
53	43.2	60	16×23×32.5	30	3 960	232 000	445 000	6 500	15 400	75 000	15 400	75 000	9.4 7.8	17.2


²⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.

A351 A352

HA-EM



Front view of EM type

	А	ssem	bly		Ball slide													
Model No.	Height			Width	Length			M	ounting hole							Grease	fittin	g
Model No.	Н	Ε	W_2	W	W L		J	J_2	$M \times \text{pitch} \times \ell$	Q_2	B_1	L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
HA25EM	36	5.5	23.5	70	147.8	57	100	50	M8×1.25×10	6.8	6.5	126	13	30.5	11	M6×0.75	6	11
HA30EM	42	7.5	31	90	177.2	72	120	60	M10×1.5×12	8.6	9	149	14.5	34.5	11	M6×0.75	6.5	11
HA35EM	48	7.5	33	100	203.6	82	140	70	M10×1.5×13	8.6	9	173	16.5	40.5	12	M6×0.75	8	11
HA45EM	60	10	37.5	120	233.4	100	160	80	M12×1.75×15	10.5	10	197	18.5	50	13	Rc1/8	10	13
HA55EM	70	12	43.5	140	284.4	116	206	103	M14×2×18	12.5	12	245	19.5	58	15	Rc1/8	11	13

Notes: 1) HA Series does not have a ball retainer. Be aware that the balls fall out when a ball slide is withdrawn from the rail.

Unit: mm

			Rail					Basic I	oad rati	ng			We	eight
Width	Height	Pitch	Mounting	G	Maximum	Dynamic	Static	Static moment (N·m)				Ball	Rail	
			bolt hole		length		C_{\circ}	$M_{\scriptscriptstyle{RO}}$	M_{PO}		M _{YO}		slide	
VV_1	H_1	F	$d \times D \times h$	(Reference)	L_{0max}	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
23	22	30	7×11×16.5	20	3 960	54 000	115 000	670	2 060	10 100	2 060	10 100	1.6	3.7
28	28	40	9×14×21	20	4 000	79 500	166 000	1 140	3 550	17 400	3 550	17 400	2.6	5.8
34	30.8	40	9×14×23.5	20	4 000	111 000	226 000	1 950	5 650	27 100	5 650	27 100	3.8	7.7
45	36	52.5	14×20×27	22.5	3 990	147 000	295 000	3 700	8 450	40 500	8 450	40 500	6.6	12.0
53	43.2	60	16×23×32.5	30	3 960	232 000	445 000	6 500	15 400	75 000	15 400	75 000	11	17.2

²⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.

A353 A354

A-5-4.2 HS Series

1. Features

(1) High motion accuracy

High motion accuracy is achieved in both narrow and wide ranges by adopting ultralong ball slides and optimum design features for the ball recirculation component.

(2) Ball passage vibration reduced to one-third of our conventional models

Tests show ball passage vibration has been reduced to one-third of our conventional models, dramatically improving straightness in table unit.

(3) Installation of rail with greater accuracy

Increased counterbore depth of the rail mounting hole reduces rail deflection, which is caused by bolt tightening when fixing the rail to the mounting base, to 50% or less. This feature restrains the pitching motion of ball slide whose frequency matches to the mounting hole pitch.

In addition, the mounting hole pitch has been reduced by one-half of the conventional models, so the rail can be more accurately installed in position.

(4) High rigidity and load capacity with lower friction

High rigidity, high load capacity and low friction are achieved by increasing the number of balls.

(5) Compact design

Reduced body size enables more compact machinery.

(6) High load carrying capacity to vertical direction

The contact angle is set at 50 degrees, increasing load carrying capacity as well as rigidity against the load in vertical direction.

(7) High resistance against impact load

The bottom ball groove is formed in Gothic arch and the center of the top and bottom grooves are offset as shown in Fig. 2. The vertical load is usually carried by top two ball rows at where balls are contacting at two points. Because of this design, the bottom ball rows will carry the load when a large impact load is applied as shown in Fig. 3. This

assures high resistance to the impact load.

(8) High accuracy at manufacturing

As showing in **Fig. 4**, fixing the measuring rollers to the ball groove is easy thanks to the Gothic arch groove. This makes easy and accurate measuring of ball grooves.

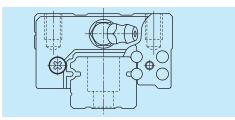


Fig. 1 HS Series

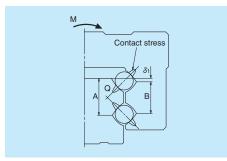


Fig. 2 Enlarged illustration: Offset Gothic arch

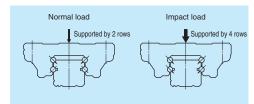


Fig. 3 When load is applied

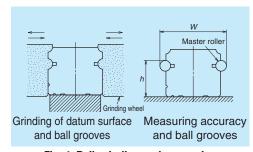


Fig. 4 Rail-grinding and measuring

Measurement results of ball passage vibration

HS Series

Model No.: HS30

Model No.: LS30

Preload: Z1

Table dimensions: 460 mm × 380 mm

Table dimensions: 460 mm × 380 mm

Conventional Series

Preload: Z1

Ball passage vibration can translate into posture changes in the ball slide which result from ball passage (circulation). In the HS Series, this vibration has been substantially reduced to one-third of conventional models.

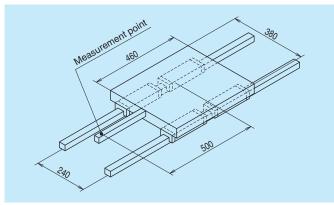
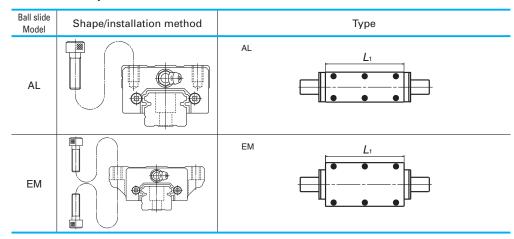



Fig. 5 Schematic view of measurement of ball passage vibration

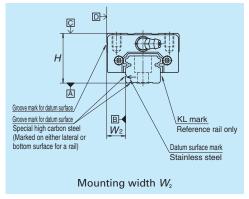
HS Series four ball slides 0.12 μm Straightness Strokes: 200 mm The same table is used. Conventional Series eight ball slides Strokes: 200 mm

Fig. 6 Measurement results of HS Series and conventional Series

2. Ball slide shape

3. Accuracy and preload

(1) Running parallelism of ball slide


Preloaded assembly Rail length (mm) Ultra precision Super precision P4 precision P5 -200 2 2 4 200 - 250 2 2.5 5 250 - 315 2 2.5 5 315 - 400 2 3 6 400 - 500 2 3 6 500 - 630 2 3.5 7 630 - 800 2 4.5 8 800 - 1 000 2.5 5 9 1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15				٦	Γabl	e 1		Unit:	μm																				
(mm) Ottra or less P3 Super precision P4 High precision P5 -200 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 2 4 2 2 2 4 2 2 2 2 3 5 5 3 6 4 4 4 4 4 4 4 4 4 4 4 5 8 8 8 4 <td< td=""><td>Ī</td><td></td><td></td><td></td><td>Pre</td><td>loaded ass</td><td>em</td><td>bly</td><td></td></td<>	Ī				Pre	loaded ass	em	bly																					
200 - 250 2 2.5 5 250 - 315 2 2.5 5 315 - 400 2 3 6 400 - 500 2 3 6 500 - 630 2 3.5 7 630 - 800 2 4.5 8 800 - 1 000 2.5 5 9 1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15	_	(n	nm)		P3		P4		P5																				
250 - 315 2 2.5 5 315 - 400 2 3 6 400 - 500 2 3 6 500 - 630 2 3.5 7 630 - 800 2 4.5 8 800 - 1 000 2.5 5 9 1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15		-	200	2		_		4																					
315 - 400 2 3 6 400 - 500 2 3 6 500 - 630 2 3.5 7 630 - 800 2 4.5 8 800 - 1 000 2.5 5 9 1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15		200	- 250	2		2.5		5																					
400 - 500 2 3 6 500 - 630 2 3.5 7 630 - 800 2 4.5 8 800 - 1 000 2.5 5 9 1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15		250	- 315	2		2.5		5																					
500 - 630 2 3.5 7 630 - 800 2 4.5 8 800 - 1 000 2.5 5 9 1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15	Ξ	315	- 400	2		3		6																					
630 - 800 2 4.5 8 800 - 1 000 2.5 5 9 1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15		400 – 500		2		3		6																					
800 - 1 000 2.5 5 9 1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15	Ξ	500 - 630		2		3.5		7																					
1 000 - 1 250 3 6 10 1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15		630	- 800	2		4.5		8																					
1 250 - 1 600 4 7 11 1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15		800 -	- 1 000	2.5		5		5		9																			
1 600 - 2 000 4.5 8 13 2 000 - 2 500 5 10 15		1 000	- 1 250	3		6		10																					
2 000 – 2 500 5 10 15	Ξ	1 250 – 1 600		4		7		11																					
		1 600 – 2 000		4.5		4.5		4.5		4.5		4.5		4.5		8		8		8		8		8		4.5 8		13	
0.500 0.450 0 44	Ξ	2 000 – 2 500		5		10		15																					
2 500 – 3 150 6 11 1/		2 500 – 3 150		6		11		17																					
3 150 – 4 000 9 16 23		3 150	- 4 000	9		16		23																					

(2) Accuracy Standard

Three accuracy grades are available: Ultra precision P3, Super precision P4 and High precision P5.

	Table 2		Unit: µm
Accuracy grade Characteristics	Ultra precision P3	Super precision P4	High precision P5
Mounting height <i>H</i> Variation of <i>H</i> (All ball slides on a set of rails)	±10 3	±10 5	±20 7
Mounting width W_2 or W_3 Variation of W_2 or W_3 (All ball slides on reference rail)	±15 3	±15 7	±25 10
Running parallelism of surface C to surface A Running parallelism of surface D to surface B		Refer to Table 1 and Fig . 7	7

(3) Assembled accuracy

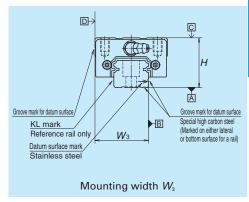


Fig. 7

(4) Preload and rigidity

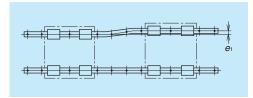
Slight preload Z1 and Medium preload Z3 are available for preload, which can be selected for specific applications.

	Table 3										
	Prolo	ad (N)	Rigidity (N/μm)								
Model No.	1 1610	au (IV)	Vertical	direction	Lateral direction						
	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)					
HS15	98	785	260	530	173	355					
HS20	147	1 030	305	600	212	415					
HS25	245	1 620	385	735	263	505					
HS30	390	2 550	505	965	345	665					
HS35	590	3 550	610	1 140	415	780					

4. Maximum rail length

Table 4 shows the limitation. The dimension in parenthesis is for stainless steel products. However, the limitations vary by accuracy grades.

Table 4	Lenath	limitation of	rails
---------	--------	---------------	-------


Unit: mm

Series Size	15	20	25	30	35
HS	2 000 (1 700)	3 960 (3 500)	3 960 (3 500)	4 000 (3 500)	4 000 (3 500)

Note: Rails can be butted if user requirement exceeds the rail length shown in the table. Please consult NSK.

5. Installation

(1) Permissible values of mounting error

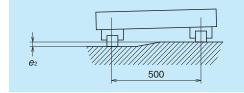
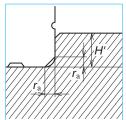



Fig. 8

Fig. 9

			Table 5			Unit: µm			
Value	Preload			Model No.					
value	rieloau	HS15	HS20	HS25	HS30	HS35			
Permissible values of	Z1	18	20	26	31	37			
parallelism in two rails e ₁	Z3	12	14	18	22	26			
Permissible values of	71 70		220						
parallelism (height) in two rails e2	Z1, Z3		330 μm/500 mm						

(2) Shoulder height of the mounting surface and corner radius r

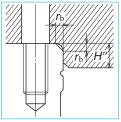


Fig. 10 Shoulder for the rail datum surface

Fig. 11 Shoulder for the ball slide datum surface

Table 6

				Unit: mm		
Model No.	Corner radius	s (maximum)	Shoulder height			
wouer no.	$r_{\rm a}$	$r_{\rm b}$	H'	H"		
HS15	0.5	0.5	4	4		
HS20	0.5	0.5	4.5	5		
HS25	0.5	0.5	5	5		
HS30	0.5	0.5	6	6		
HS35	0.5	0.5	6	6		

6. Lubrication components

Refer to pages A38 and D13 for linear guide lubrication.

(1) Types of lubrication accessories

Fig. 12 and Table 7 show grease fittings and tube fittings.

We provide lubrication accessories with extended thread body length (L) for the addition of dust-proof accessories such as NSK K1 lubrication unit, double seal and protector.

We provide a suitable lubrication accessory for the special requirement on dust-proof accessories.

Consult NSK for a lubrication accessory with extended length of thread body for your convenience of replenishing lubricant.

When you require stainless lubrication accessories, please ask NSK.

(2) Mounting position of lubrication accessories

The standard position of grease fittings is the end face of ball slide. We mount them on the side of end cap for an option. (Fig. 13)

Please consult NSK for installation of grease or tube fittings to the ball slide body or the side of end cap.

When using a piping unit with thread of M6 \times 1, you require a connector to connect to a grease fitting mounting hole with M6 \times 0.75. The connector is available from NSK.

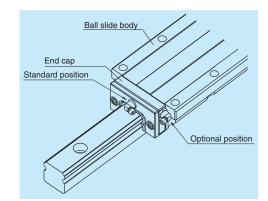


Fig. 13 Mounting position of lubrication accessories

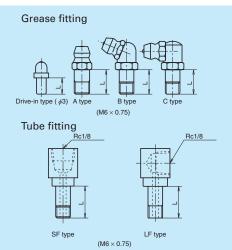


Fig. 12 Grease fitting and tube fitting

	1	Table 7	Unit: mm
Model No.	Dust-proof specification	Grease fitting Drive-in	Tube fitting
	specification	Thread body length L	Thread body length L
	Standard	5	-
HS15	With NSK K1	10	-
пото	Double seal	*	-
	Protector	*	_
	Standard	5	_
HS20	With NSK K1	10	-
	Double seal	8	-
	Protector	8	-
	Standard	5	6
HS25	With NSK K1	12	11
пого	Double seal	10	9
	Protector	10	9
	Standard	5	6
HS30	With NSK K1	14	13
HS35	Double seal	12	11
	Protector	12	11
	Standard	5	6
	With NSK K1	14	13
	Double seal	12	11
	Protector	12	11

^{*)} A connector is required for this model. Please contact NSK.

7. Dust-proof components

(1) Standard Specification

The HS Series can be readily used as they have a dust protection means for normal conditions. As the standard equipment, the ball slides have an end seal on both ends.

Bottom seal is equipped on bottom as an option.

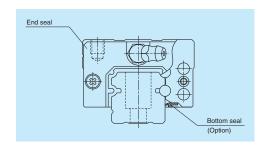


Fig. 14

Table 8 Seal friction per ball slide (maximum): end seal only

					Unit: N
Series Size	15	20	25	30	35
HS	3	3	3	3	4

(2) NSK K1[™] lubrication unit

Refer to Table 9 for dimension of linear guides equipped with the NSK K1 lubrication unit.

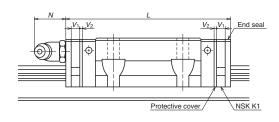


Table 9

Unit:	mm
-------	----

Model No.	Ball slide model	Standard ball slide length	Ball slide length installed with two NSK K1 L	Per NSK K1 thickness V ₁	Protective cover thickness V_2	Protruding area of the grease fitting N
HS15	AL, EM	106	115.6	4.0	0.8	(5)
HS20	AL, EM	119.7	130.3	4.5	0.8	(14)
HS25	AL, EM	148	158.6	4.5	0.8	(14)
HS30	AL, EM	176.1	188.1	5.0	1.0	(14)
HS35	AL, EM	203.6	216.6	5.5	1.0	(14)

Note: Ball slide length equipped with NSK K1 =

(Standard ball slide length) + (Thickness of NSK K1, $V_1 \times$ Number of NSK K1) + (Thickness of the protective cover $V_2 \times 2$)

(3) Double seal and protector

For the HS Series, double seal and protectors can be installed only before shipping from the factory. Please consult with NSK when you require dust tight protection.

Table 10 shows the increased thickness of $V_{\scriptscriptstyle 3}$ and $V_{\scriptscriptstyle 4}$ when the end seal and the protector are installed.

Table 10

Unit: mm

Model No.	Thickness	Thickness					
woder wo.	of end seal: V ₃	of protector: V ₄					
HS15	2.8	3					
HS20	2.5	2.7					
HS25	2.8	3.2					
HS30	3.6	4.2					
HS35	3.6	4.2					

(4) Caps to plug the rail mounting bolt hole

Table 11 Caps to plug rail bolt hole

Model No.	Bolt to	Cap	Quantity
	secure rail	reference No.	/case
HS15	M3	LG-CAP/M3	20
HS15	M4	LG-CAP/M4	20
HS20	M5	LG-CAP/M5	20
HS25, HS30	M6	LG-CAP/M6	20
HS35	M8	LG-CAP/M8	20

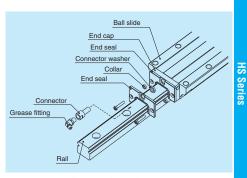


Fig. 15 Double seal

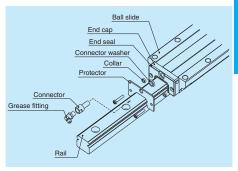


Fig. 16 Protector

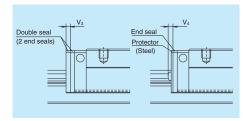


Fig. 17

8. Reference number

Reference numbers shall be set to individual NSK linear guide when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when ordering, requiring estimates, or inquiring about specifications from NSK.

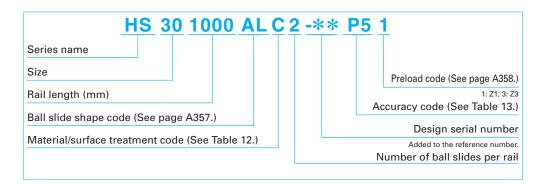
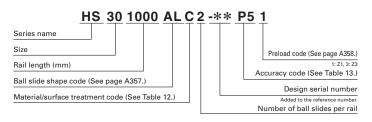


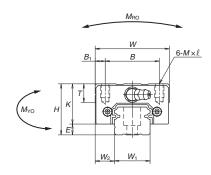
Table 12 Material/surface treatment code

Code	Description
С	Special high carbon steel (NSK standard)
K	Stainless steel
D	Special high carbon steel with surface treatment
Н	Stainless steel with surface treatment
Z	Other, special

Table 13 Accuracy code

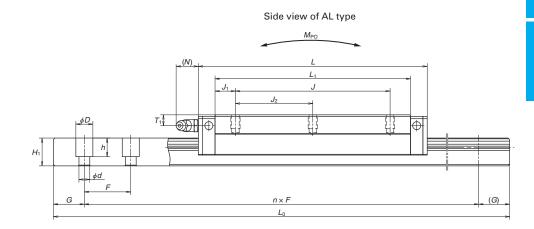

Accuracy	Standard (Without NSK K1)	With NSK K1
Ultra precision grade	P3	K3
Super precision grade	P4	K4
High precision grade	P5	K5

Note: Refer to page A38 for NSK K1 lubrication unit.


A363 A364

4S Series

9. Dimensions HS-AL


Front view of AL types

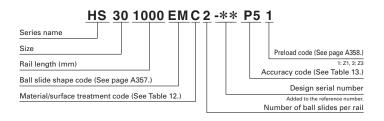
	A:	ssemb	oly		Ball slide												
Model No.	Height			Width	Length	Mounting hole									Grease	fittin	g
wiodei No.	Н	Ε	W ₂	W	L	В	$B \mid J \mid J_2 \mid M \times \operatorname{pitch} \times \ell \mid B_1 \mid L_1 \mid J_1 \mid K \mid T \mid Ho$				Hole size	T_1	N				
HS15AL	24	4.6	9.5	34	106	26	60	30	M4×0.7×6	4	89.2	14.6	19.4	10	ø 3	6	3
HS20AL	28	6	11	42	119.7	32	80	40	M5×0.8×7	5	102.5	11.25	22	12	M6×0.75	5.5	11
HS25AL	33	7	12.5	48	148	35	100	50	M6×1×9	6.5	126.4	13.2	26	12	M6×0.75	7	11
HS30AL	42	9	16	60	176.1	40	120	60	M8×1.25×12	10	150.7	15.35	33	13	M6×0.75	8	11
HS35AL	48	10.5	18	70	203.6	50	140	70	M8×1.25×12	10	175.6	17.8	37.5	14	M6×0.75	8.5	11

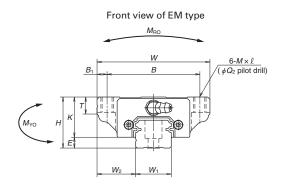
Notes: 1) The HS Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

2) External appearance of stainless steel ball slides differ from those of carbon steel ball slide.

Unit: mm

			Rail					Basic I	oad rati	ng			We	ight
Width	Height	Pitch	Mounting	G	Maximum length	Dynamic	Static	Static moment (N·m)			Ball	Rail		
			Bolt hole		L _{omax}	С	C_0	M_{RO}	N	1 _{PO}	Λ	1 _{YO}	slide	
W_1	H_1	F	$d \times D \times h$	(Reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(g)	(kg/m)
15	12.5	30	*3.5×6×8.5 4.5×7.5×8.5	20	2 000 (1 700)	15 300	40 000	199	395	1 990	335	1 670	0.34	1.4
20	15.5	30	6×9.5×10.5	20	3 960 (3 500)	20 400	52 000	350	590	2 930	495	2 460	0.52	2.3
23	18	30	7×11×12	20	3 960 (3 500)	32 000	78 000	605	1 090	5 450	910	4 600	0.85	3.1
28	23	40	7×11×16	20	4 000 (3 500)	51 500	127 000	1 190	2 120	10 600	1 780	8 850	1.7	4.8
34	27.5	40	9×14×20	20	4 000 (3 500)	71 500	172 000	1 980	3 350	16 600	2 820	13 900	2.5	7.0

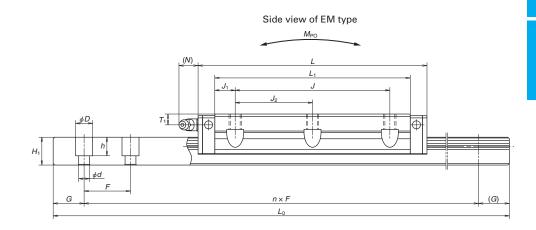

³⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load on the ball slide mounting surface. To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.


A365 A366

⁴⁾ Parenthesized dimensions are applicable to stainless steel products.

^{*)} Standard rail mounting bolt hole for HS15 is specified as hole for M3 (3.5 × 6 × 8.5). Please contact us to request a different hole for M4 (4.5 × 7.5 × 8.5).

HS-EM



	А	ssem	bly		Ball slide													
Model No.	Height			Width	Length			М	ounting hole							Grease fitting		
Wiodel No.	Н	Ε	$W_{\scriptscriptstyle 2}$	W	L	В	$B \mid J \mid J_2 \mid M \times \text{pitch} \times \ell \mid Q_2 \mid$					L ₁	J_1	К	Т	Hole size	<i>T</i> ₁	N
HS15EM	24	4.6	18.5	52	106	41	60	30	M5×0.8×7	4.4	5.5	89.2	14.6	19.4	8	φ3	6	3
HS20EM	28	6	19.5	59	119.7	49	80	40	M6×1×9 (M6×1×9.5)	5.3	5	102.5	11.25	22	10	M6×0.75	5.5	11
HS25EM	33	7	25	73	148	60	100	50	M8×1.25×10 (M8×1.25×11.5)	6.8	6.5	126.4	13.2	26	11 (12)	M6×0.75	7	11
HS30EM	42	9	31	90	176.1	72	120	60	M10×1.5×12 (M10×1.5×14.5)	8.6	9	150.7	15.35		(15)	M6×0.75	-	11
HS35EM	48	10.5	33	100	203.6	82	140	70	M10×1.5×13 (M10×1.5×14.5)	8.6	9	175.6	17.8	37.5	12 (15)	M6×0.75	8.5	11

Notes: 1) The HS Series does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail.

2) External appearance of stainless steel ball slides differ from those of carbon steel ball slide.

Unit: mm

			Rail					Basic I	oad rati	ng			We	ight
Width	Height	Pitch	Mounting	G	Maximum length	Dynamic	Static		Static r	momen	t (N·m)		Ball	Rail
			Bolt hole		Lomax	С	C _o	M_{RO}	N	1 _{PO}	N	1 _{YO}	slide	
W_1	H ₁	F	$d \times D \times h$	(Reference)	() for stainless	(N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
15	12.5	30	*3.5×6×8.5 4.5×7.5×8.5		2 000 (1 700)	15 300	40 000	199	395	1 990	335	1 670	0.45	1.4
20	15.5	30	6×9.5×10.5	20	3 960 (3 500)	20 400	52 000	350	590	2 930	495	2 460	0.67	2.3
23	18	30	7×11×12	20	3 960 (3 500)	32 000	78 000	605	1 090	5 450	910	4 600	1.3	3.1
28	23	40	7×11×16	20	4 000 (3 500)	51 500	127 000	1 190	2 120	10 600	1 780	8 850	2.4	4.8
34	27.5	40	9×14×20	20	4 000 (3 500)	71 500	172 000	1 980	3 350	16 600	2 820	13 900	3.4	7.0

³⁾ Basic dynamic load rating is a load that allows for a 50-km rating fatigue life and is a vertical and constant load to the ball slide mounting surface. To convert C to C₁₀₀ for a 100-km rating fatigue life, divide C by 1.26.

A367 A368

⁴⁾ Parenthesized dimensions are applicable to stainless steel products.

^{*)} Standard rail mounting bolt hole for HS15 is specified as hole for M3 (3.5 × 6 × 8.5). Please contact us to request a different hole for M4 (4.5 × 7.5 × 8.5).

A-6 Other Linear Rolling Guide Products

A-6-1 Linear Rolling Bushing

1. Features

(1) Low friction

Low friction owes to its design: Balls come into point contacts with raceway surface: the balls smoothly re-circulate. There is very little stick slip.

(2) Low noise

Noise level is low due to the ball retainer which is made of a synthetic resin.

(3) High precision

Due to NSK's superb quality control, precision is guaranteed.

(4) Dust prevention

Series with seal is available. The seal has small friction, and is highly durable. Highly dust-preventive double-lip system has been adopted.

(5) Superb durability

The material of outer sleeve is vacuum degassed, highly pure, and is heat-treated with good expertise.

2. Models

There are three models

(1) Standard type LB (Fig. 1)

This model is the most commonly used, and is the only model that comes with a seal and in super precision grade.

Fig. 1 Standard type LB

(2) Adjustable clearance type LB-T (Fig. 2)

A part of the outer sleeve is cut open toward the axial direction. Used with a housing which can adjust inside diameter, it makes minute adjustment of the clearance between the linear shaft and the inscribed circle (an imaginary circle that connects the summit of the ball) of linear rolling bushing.

Fig. 2 Adjustable Clearance type LB-T

(3) Open type LB-K (Fig. 3)

A cut is made in the outer sleeve and retainer, to a width equivalent to one row of the retainer, to the axial direction. The opening is used to hold this linear rolling bushing by a support or base to prevent a long linear shaft from bending.

Fig. 3 Open type LB-K

NSK

3. Accuracy

(1) Accuracy grades

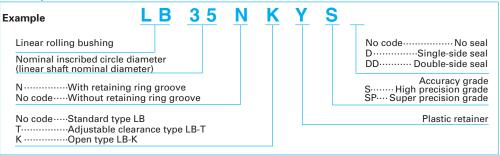
- Standard type LB······High precision grade S, and super precision grade SP are available.
- Space adjustment type LB-T
 Open type LB-K
 High precision grade S is available.

(2) Tolerance of rolling linear bushing, linear shaft and housing

Table 1 Tolerance for inscribed circle of the linear rolling bushing and shaft diameter

Unit: um

	dimension/		ce/inscribe	ed circle dia	ameter*1	Toleranc	e/width <i>B</i>		slot distance ng rings <i>B</i> n	Recommended tolerance/ shaft diameter				
	cle diameter neter (mm)	High pr grad					ion grade S ecision grade SP		sion grade S ecision grade SP	High precision grade S		Super high precising grade SP		
over	or less	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	
2.5	6									-6	-14	-4	-9	
6	10	0	-8	0	-5					-6	-15	-4	-10	
10	18					0	-120	+240	-240	-6	-17	-4	-12	
18	30	0	-10	0	-6					-6	-19	-4	-13	
30	50	0	-12	0	-8					-7	-23	-5	-16	


Table 2 Tolerance of linear rolling bush outside diameter, and housing inside diameter

Unit: µm

Nominal o	limension/	Tole	rance/outsid	de diamete	r D*1	Eccentricity*2	Tolerance/housing inside diameter					
	eter/housing meter (mm)	High pr grad	ecision de S	Super high grad		Super high precision grade SP		ecision de S	Super high precision grade SP			
over	or less	upper	lower	upper	lower	Maximum	upper	lower	upper	lower		
2.5	6						+12	0	+8	0		
6	10	0	-10	0	-7	8	+15	0	+9	0		
10	18						+18	0	+11	0		
18	30	0	-12	0	-8	9	+21	0	+13	0		
30	50	0	-14	0	-9	10	+25	0	+16	0		

^{*1)} For adjustable clearance type and open type, figures indicate tolerances before the cut is made.

4. Composition of Reference Number

A369 A370

^{*2)} Eccentricity means the run-out of offset between the centers of outer sleeve diameter and inscribed circle diameter.

5. Lubrication and Friction

(1) Grease Iubrication

① Supply at initial stage

At time of delivery, the linear rolling bushing has a coat of rust preventive agent. Wipe it off with clean kerosene or organic solvent. Dry with an air blower, etc., then apply grease.

Lithium soap based greases with consistency level of 2 are generally used (e.g. NSK Grease LR3, PS2, and AS2).

2 Replenishment

- Sealed linear rolling bushing is designed to be a disposal item. Therefore, a replenishing grease is considered to be not required. However, if replenishment becomes necessary due to dirty environment or wear of the seal, remove the linear bushing from the shaft and replenish lubricant in the same manner as the initial lubricating.
- For items without seal, wipe off old grease from the linear shaft, and apply new grease.
- Intervals of replenishments are every 100 km in a dirty environment, 500 km in a slightly dirty environment, 1 000 km or no replenishing for a normal environment.

(2) Oil lubrication

It is not necessary to wash off the rust preventive agent applied before delivery.

Use an oil of ISO viscosity grade VG15-100. Drip the oil on the linear shaft by an oil supply system.

Temperature to use

-30°C to 50°C Viscosity VG15 – 46 50°C to 80°C Viscosity VG46 – 100

Lubricant is removed by the seal if the linear ball bearing has a seal. Therefore, the drip method cannot be used except for single-seal types.

(3) Friction coefficient

The linear rolling bushing has a small dynamic friction coefficient. This contributes to low power loss and temperature rise.

According to **Fig. 4**, dynamic friction coefficient is merely 0.001-0.004. Also, at the speed of under 60 m/min, there is no danger of the temperature rising. Friction force can be obtained by the following formula.

$$F = \mu \cdot P \cdot \cdots (1)$$

In this formula:

F: Friction force (N)

P: Load (vertical load to the shaft center line) (N)

 μ : Friction coefficient (dynamic or static)

For a seal type, a seal resistance of 0.3 to 2.40 N is added to the above.

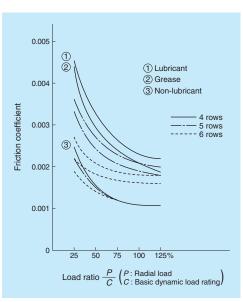


Fig. 4 Dynamic friction coefficient of linear rolling bushing

6. Range of Conditions to Use

Generally, use under the following conditions.

Please consult NSK when values exceed the ranges given below.

Temperature: – 30°C to 80°C

Speed: Up to 120 m/min

(excluding oscillation and short strokes)

7. Preload and Rigidity

The linear rolling bushing is normally used without applying preload. If high positioning accuracy is required, set the clearance between the linear rolling bush and the shaft at the range of 0 to 5 μ m. Slight preload is a general rule (1% of basic dynamic load rating C -- see the dimension table).

The dimension table shows theoretical rigidity K when clearance with the shaft is zero, and a load of 0.1 C is applied to the summit of the ball.

Rigidity K_{N} , when load is not 0.1C, is obtained by the following formula.

$$K_N = K (P/0.1C)^{1/3} \cdots (2)$$

In this formula:

K: Rigidity value in the dimension table (N/µm)

P: Radial load (N)

When the load is applied between the ball raws, the load becomes 1.122 times for 4 ball rows; 0.959 times for 5 ball rows; 0.98 times for 6 ball rows.

8. Basic Load Rating and Rated Life

(1) Basic dynamic load rating

Basic dynamic load rating C is: A radial load which allows 90% of a group of linear rolling bush to run a distance of 50 km without suffering damage when they are moved individually.

There is a relationship as below between C and the

$$L = 50 \ f_{L}^{3} \cdots (3)$$

 $f_{L} = C/P \cdots (4)$

In this formula:

L: Rated life (km)

P: Radial load (N)

 f_{\perp} : Life factor (Refer to Fig. 5)

This formula is used provided that the shaft hardness is HRC58 or higher. Rated life is shorter if the shaft is softer. In this case, find the hardness factor $f_{\rm H}$ from Fig. 6, and multiply the value.

$$f_L = C \cdot f_H/P \cdot \cdot \cdot \cdot (5)$$
Or

Life in time can be obtained by the following formula, substituting for given stroke length, cycle numbers, and running distance:

$$L_h = (L/1.2 \cdot S \cdot n) \times 10^4 \cdot \dots (7)$$

In this formula:

L_h: Life hours (h)

L: Rated life (km)

S: Stroke (mm)

n: Cycles per minute (cpm)

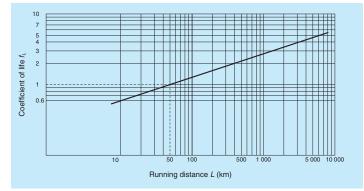


Fig. 5 Relationship between life factor and running distance

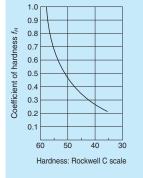


Fig. 6 Hardness factor

(2) Basic static load rating

It is a load that the total permanent deformation of outer sleeve, ball and shaft at the contact point, becomes 0.01% of the ball diameter when this load is applied to the rolling bushing. It is understood in general that this is the applicable load limit which causes this much permanent deformation without hampering operation.

(3) Calculation example

What is the appropriate rolling bushing size if required life is 5 000 hours?

Conditions are:

- Three linear rolling bushings are installed in two parallel shafts, and support a reciprocating table.
- Load 450 N is equally distributed to the three bushings.
- The table is required to reciprocate on the shafts at 200 times per minute at a stroke of 70 mm.
- · Hardness of the shaft: HRC 55

$$450/3 = 150 (N)$$

· Load per linear rolling bushing is:

From Formula (7), the required life when indicated in distance is:

$$L = 5 \times 10^{3} \times 1.2 \times 70 \times 200/10^{4} = 8.4 \times 10^{3}$$
 (km)

From Fig. 5 and Fig. 6,

Life factor $f_{\perp} = 5.6$

Hardness factor $f_{\rm H} = 0.65$

Therefore, from Formula (6),

$$C = P \times f_1 / f_H$$

$$=150 \times 5.6/0.65 = 1292$$
 (N)

Based on the above, select linear rolling bushing LB30NY with shaft diameter of 30 mm, basic dynamic load rating of 1 400 N.

(4) Compensating load rating by ball row position

Load rating of the linear rolling bushing changes by the position of the ball circuit rows.

Permissible load is larger when it is applied to the middle of the ball circuit rows than when it is applied directly above the ball row (Fig. 7).

(Radial clearance set at zero in this case.)

Load ratings in the dimension table are in case "A" when it is applied directly above the ball circuit row. If used as in case "B," the load rating becomes larger (refer to Fig. 7).

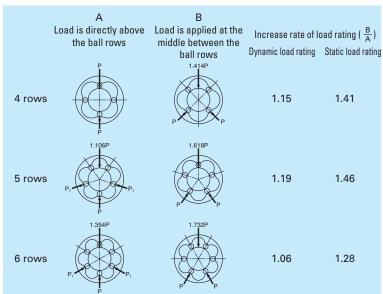


Fig. 7 Increasing rate of load rating by position of ball row (B/A)

9. Shaft Specification

Harden the shaft surface where the balls run with heat treatment to provide the following values.

- Surface hardness: HRC58 or over
- Depth of core hardness at HRC50 or higher Depth for LB3; 0.3 mm or deeper Depth for LB50; 1.2 mm or deeper

Roughness of the surface should be:

• For SP grade, and "the clearance for fit" with the ball bushing less than 5 µm -

Less than 0.8 S

• For SP grade with "the clearance" of more than 5 µm, and for S grade -

Less than 1.2 S

Bending should be:

- LB3 -- 15 μm/100 mm
- LB50 -- 100 um/1 000 mm

An appropriate clearance for normal use conditions can be obtained when the tolerance in shaft diameter remains within the recommended range (refer to **Table 1** on page A370). For operations which require particular accuracy, select the shaft diameter which creates a clearance in the range of 0 to 0.005 (mm) for example, when assembled with the rolling bushing.

10. Dust Proof

Select a linear rolling bushing with seals to prevent moisture or foreign matters which are floating in the air from entering.

11. Installation

(1) Combination of shaft and linear rolling bushing

When the linear rolling bushing is installed in a linear motion table for its reciprocating movement, it is necessary to prevent the table from rotating. In general, for this reason, two shafts installed with two linear rolling bushings on each are used.

Fig. 8 is an installation example.

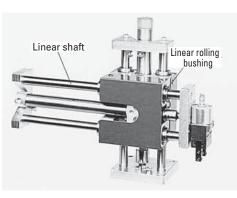


Fig. 8 Installation example

(2) Installation of linear rolling bushing

1) Standard type installation

Fig. 9 shows a method using a retainer ring. Linear rolling bushing can also be secured to the housing using a stop plate and/or screw.

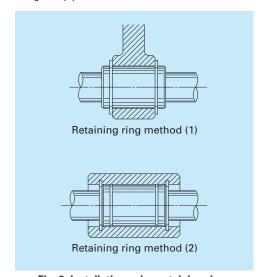


Fig. 9 Installation using retaining rings

- a) Housing inside diameter should be of a recommended value (Table 2, page A370). The entire rolling bushing contracts and gives excessive preload if: the inside diameter is small; the roundness or cylindricity is excessive. This may result in an unexpected failure.
- b) To install linear rolling bushing, use a tool (Fig. 10) and squeeze it in, or use a holder and lightly pound it.

A373 A374

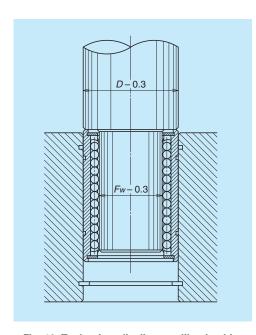


Fig. 10 Tool to install a linear rolling bushing

2) Installation of adjustable clearance type

Use a housing which can adjust the inside diameter of the rolling bushing. This way, the clearance between the rolling bushing and the linear shaft can be easily adjusted. Arrange the cut-open section of the rolling bushing at a 90-degree angle to the housing's cut-open section. This is the most effective way to evenly distribute deformation toward circumferential direction.

The tolerance of shaft diameter of the adjustable clearance type should be within the recommended range (refer to **Table 1** on page A370). As a general rule, set the preload at slight or light volume. (Do not provide excessive preload.) Use a dial gauge to measure and adjust clearance. However, here is an easy method to adjust .

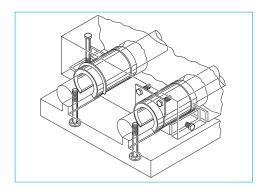
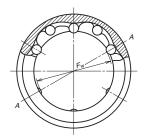
First, loosen the housing until shaft turns freely. Then narrow the clearance gradually. Stop at the point when the shaft rotation becomes heavy. This creates a clearance zero or light preload.

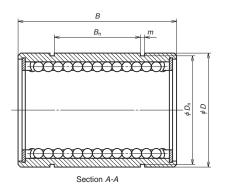
3) Installation of open type

Use with clearance or with light preload.

Keep the tolerance in shaft diameter within the recommended range (refer to **Table 1** on page A370), so the preload shall not become excessive.

(Unlike the adjustable clearance type, clearance cannot be narrowed by rotating the shaft because the state of shaft rotation does not indicate how narrow the space has become. Narrowing clearance requires caution for open type.)


Fig. 11 Installation example of an open type

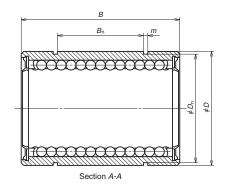
(3) Precaution for installing a shaft in the linear rolling bushing

- To install two shafts parallel to each other, first install one shaft accurately. Use this as a reference, and install the other parallel to the first shaft. This makes installation easy.
- Do not incline the shaft when inserting it into the linear rolling bushing. Do not force it to enter by twisting. This deforms the retainer, and causes the balls to fall out.
- Do not use the shaft for rotating movement after inserting the shaft to the linear rolling bushing.
 The balls slip and damage the shaft.
- Do not twist the shaft after it is inserted to the linear rolling bushing. The pressure scars the shaft.

12. Dimension tables Model LB (standard type), no seal

Unit: mm

											Offic. Iffili
	Inscribed	Outside	Length		ning ring g		Stiffness*1	Number		Basic dynamic	Basic static
Model No.	circle	diameter		Distance	Width	Bottom		of ball	(kg)	load rating	load rating
	diameter					diameter	(N/µm)	circuit	(Reference only)	C	C_0
	F _w	D	В	B₁	m	D _n				(N)	(N)
LB3Y	3	7	10	_	_	_	3	4	0.0016	20	39
LB4Y	4	8	12	_	_	_	4.5	4	0.0022	29	59
LB6NY	6	12	19	11	1.15	11.5	7	4	0.0074	74	147
LB8ANY*2	8	15	17	9	1.15	14.3	5.5	4	0.0094	78	118
LB8NY	8	15	24	15	1.15	14.3	9.5	4	0.014	118	226
LB10NY	10	19	29	19	1.35	18	12	4	0.025	206	355
LB12NY	12	21	30	20	1.35	20	13	4	0.028	265	500
LB13NY	13	23	32	20	1.35	22	13	4	0.040	294	510
LB16NY	16	28	37	23	1.65	26.6	14	4	0.063	440	635
LB20NY	20	32	42	27	1.65	30.3	19	5	0.088	610	1 010
LB25NY	25	40	59	37	1.9	38	35	6	0.267	1 000	1 960
LB30NY	30	45	64	40	1.9	42.5	41	6	0.305	1 400	2 500
LB35NY	35	52	70	45	2.2	49	48	6	0.440	1 510	2 800
LB40NY	40	60	80	56	2.2	57	54	6	0.520	2 230	4 000
LB50NY	50	80	100	68	2.7	76.5	69	6	1.770	4 100	7 100

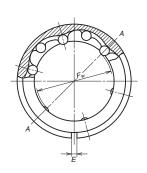

^{*1):} Refer to Section (7).

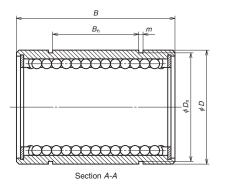
A375 A376

^{*2):} Semi-standard item of which length B is shorter than standard.

Model LB (standard type), with seal

Fu

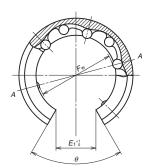


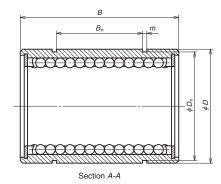

	m	

	Inscribed	Outside	Length	Retaining ring groove			Number	Weight	Basic dynamic	Basic static
*Model No.	circle	diameter		Distance	Width	Bottom	of ball	(kg)	load rating	load rating
	diameter					diameter	circuit	(Reference only)		C_0
	F _w	D	В	B₁	m	D₁			(N)	(N)
LB6NYDD	6	12	19	11	1.15	11.5	4	0.0074	74	147
LB8ANYDD	8	15	17	9	1.15	14.3	4	0.0094	78	118
LB8NYDD	8	15	24	15	1.15	14.3	4	0.014	118	226
LB10NYDD	10	19	29	19	1.35	18	4	0.025	206	355
LB12NYDD	12	21	30	20	1.35	20	4	0.028	265	500
LB13NYDD	13	23	32	20	1.35	22	4	0.040	294	510
LB16NYDD	16	28	37	23	1.65	26.6	4	0.063	440	635
LB20NYDD	20	32	42	27	1.65	30.3	5	0.088	610	1 010
LB25NYDD	25	40	59	37	1.9	38	6	0.267	1 000	1 960
LB30NYDD	30	45	64	40	1.9	42.5	6	0.305	1 400	2 500
LB35NYDD	35	52	70	45	2.2	49	6	0.440	1 510	2 800
LB40NYDD	40	60	80	56	2.2	57	6	0.520	2 230	4 000
LB50NYDD	50	80	100	68	2.7	76.5	6	1.770	4 100	7 100

^{*)} Single-seal type is indicated as LB-D.

Model LB-T (Adjustable clearance type)




Unit: mm

	Inscribed	Outside	Length	Opening	3 33		Number	Weight	Basic dynamic	Basic static	
Model No.	circle	diameter		width	Distance	Width	Bottom	of ball	(kg)	load rating	load rating
	diameter	_	_	_	_		diameter	circuit	(Reference only)		C_0
	Fw	D	В	Ε	B₁	m	D _n			(N)	(N)
LB6NTY	6	12	19	0.8	11	1.15	11.5	4	0.0073	74	147
LB8ANTY	8	15	17	1	9	1.15	14.3	4	0.0093	78	118
LB8NTY	8	15	24	1	15	1.15	14.3	4	0.014	118	226
LB10NTY	10	19	29	1.5	19	1.35	18	4	0.025	206	355
LB12NTY	12	21	30	1.5	20	1.35	20	4	0.028	265	500
LB13NTY	13	23	32	1.5	20	1.35	22	4	0.040	294	510
LB16NTY	16	28	37	1.5	23	1.65	26.6	4	0.062	440	635
LB20NTY	20	32	42	2	27	1.65	30.3	5	0.087	610	1 010
LB25NTY	25	40	59	2	37	1.9	38	6	0.265	1 000	1 960
LB30NTY	30	45	64	2	40	1.9	42.5	6	0.302	1 400	2 500
LB35NTY	35	52	70	3	45	2.2	49	6	0.44	1 510	2 800
LB40NTY	40	60	80	3	56	2.2	57	6	0.52	2 230	4 000
LB50NTY	50	80	100	3	68	2.7	76.5	6	1.75	4 100	7 100

A377 A378

Model LB-K (Open type)

Unit: mm

	Inscribed	Outside	Length	Opening	Opening	Retai	Retaining ring groove			Weight	Basic dynamic	Basic static
Model No.	circle	diameter		width	angle	Distance	Width	Bottom	of ball	(kg)	load rating	load rating
	diameter							diameter	circuit	(Reference		C_0
	F _w	D	В	E1	θ	B₁	m	D_n		only)	(N)	(N)
LB20NKY	20	32	42	11	60°	27	1.65	30.3	4	0.072	610	1 010
LB25NKY	25	40	59	13	50°	37	1.9	38	5	0.220	1 000	1 960
LB30NKY	30	45	64	15	50°	40	1.9	42.5	5	0.260	1 400	2 500
LB35NKY	35	52	70	17	50°	45	2.2	49	5	0.370	1 510	2 800
LB40NKY	40	60	80	20	50°	56	2.2	57	5	0.440	2 230	4 000
LB50NKY	50	80	100	25	50°	68	2.7	76.5	5	1.480	4 100	7 100

A-6-2 Crossed Roller Guide

1. Structure

Rollers with a retainer (hereinafter referred to as "retainer") are assembled in a pair of rails which have a V-shape groove. (The grooves form a 90degree angle. Refer to Figs. 1, 2.) Rollers are placed crisscrossed, and are able to support load in all directions, including moment loads.

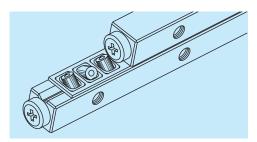


Fig. 1 Structure of crossed roller guide

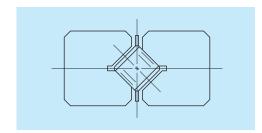


Fig. 2 Cross section of a crossed roller guide

2. Features

(1) High rigidity

This is attributable to the long contact area between the rollers and their accurately ground rolling surface.

(2) Superbly smooth movement, low noise

The window which directly embraces the roller is made of plastic for smooth and quiet operation, lowering clatter when the retainer and the rollers come into contact.

(3) Less micro-slip

Occasionally, a minute continuous slippage of the retainer to one direction, called "micro-slip," is caused due to installation error of the rail. After years of testing and research, NSK developed technology to minimize this.

(4) Easy installation

Installation is easy because the rail bending is

minimal, and the bolt hole pitch for installation is precise.

(5) Long durability

The material is vacuum-degassed and highly pure, and is hardened by carburized heat treatment for superb resistance to wear and fatigue.

3. Accuracy

Accuracy grade P5 super precision and high precision grade P6 are available.

Fig. 3 shows parallelism of the roller's rolling surface to the mounting datum surface.

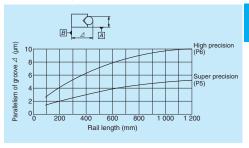


Fig. 3 Parallelism of the roller rolling surface

4. Rigidity

The number of the load rollers changes by the direction of the load. This is because the rollers are positioned crisscross.

That is, in case of Fig. 4:

The number of load rollers = $1/2 \times \text{total roller number}$(1)

In case of Fig. 5:

The number of load rollers = Total roller number

.....(2)

Fig. 6 shows changes in elastic deformation when there are 20 load rollers. If the total number of rollers is other than 20, use the graph in Fig. 7. Obtain the compensation factor which converts the elastic deformation value at time of 20 load rollers into the value when a specific number of rollers are loaded. That is, obtain a compensation factor on the ordinate that correspond to the number of load rollers on the abscissa. Then, multiply this factor by the elastic deformation value (on ordinates) which corresponds to the load (on abscissa) shown in Fig. 6.

Fig. 4

[Calculation example: Elastic deformation]

A retainer which contains 30 rollers (roller diameter 6 mm) is installed on both right and left side (Fig. 8). How large is the elastic deformation of the crossed roller guide when a load of 4 kN is applied to the table center?

Fig. 5

[Answer]

A load of 2 kN is applied to each side of the crossed roller guide. The elastic deformation value on the ordinate which corresponds to the load 2 kN on the abscissa (in Fig. 6) is:

4.5 um

This application of load is the same as in Fig. 4. Therefore, the number of load rollers is one-half of 30, or 15. From Fig. 7, the compensation factor on the ordinate which corresponds to 15 rollers on abscissa is:

1.3

Multiply 1.3 by 4.5 µm obtained above. The answer is:

$$4.5 \times 1.3 \stackrel{.}{=} 6 \mu m$$

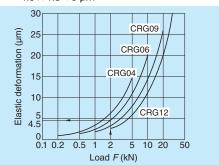


Fig. 6 Elastic deformation with 20 rollers

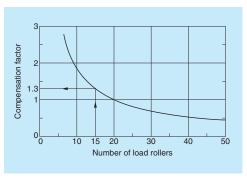


Fig. 7 Compensation factor to obtain elastic deformation

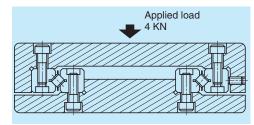


Fig. 8 Example calculation of elastic deformation (illustration)

5. Friction Force

If installation and lubrication are appropriate, the starting friction coefficient is markedly small as shown below:

 $\mu = 0.005$

6. Lengths of Rail and Retainer

The relationship of rail length L with stroke S is as

When
$$S \le 400$$
 mm, $L \ge 1.5S$ (3)
When $S > 400$ mm, $L \ge S$ (4)

Since the retainer travels a distance of half of the stroke, the retainer length K is:

$$K < L - \frac{S}{2}$$
(5)

The retainer does not detach from the rail when condition in Formula (5) is satisfied (Refer to Fig. 9).

Fig. 11 shows the standard installation procedures.

- (1) Secure Rail 1 and 2 to the machine base using the fixing bolts. Secure Rail 3 to the table with the bolts. Temporarily secure Rail 4 and loosen the side bolt.
- (2) Match the machine base and the table. Insert the retainer in the roller space. At this time, measure the distance from the rail end to the retainer end with a depth gauge to determine its position. If the roller space is too narrow and the retainer does not go inside, slide Rail 4 toward the side bolt, then insert the retainer.
- (3) Follow the reading of dial gauge which is previously set, and squeeze in all side bolts until they stop rattling. Do not apply excessive force. When the side bolts are tightened, the rollers should be in the vicinity of the bolt position. Then, secure Rail 4 with the fixing bolts. Finally, install a stopper to the rail end.

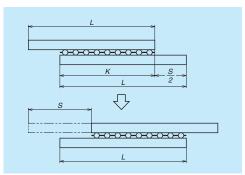


Fig. 9 Relationship of rail and retainer

7. Lubrication and Dust Proof

For grease lubrication, lithium soap based greases of consistency 1 or 2 are used.

For example; NSK Grease LR 3,

NSK Grease PS 2,

NSK Grease AS 2

For oil lubrication, JIS viscosity 32 to 150 is recommended.

When necessary, install a bellows on the rail, or install a seal on the side of the rail to arrest foreign matters and dust as shown in Fig. 10.

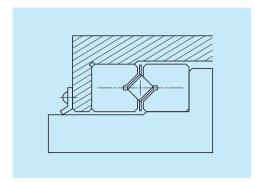


Fig. 10 Dust prevention (example)

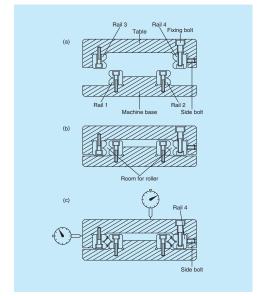


Fig. 11 Standard installation procedures

[Regarding preload]

As crossed roller guide has higher rigidity than other linear rolling guides, it does not need preload. It is also difficult to apply preload accurately. Crossed roller guide is usually used without clearance. For highly accurate applications, it is desirable to press the crossed roller guide by means of a bolt over the gib as shown in Fig. 12.

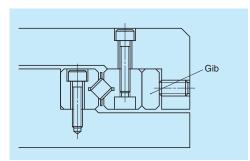


Fig. 12 Tightening using a gib

9. Basic Static Load Rating

Basic static load rating becomes larger in proportion to the number of the load rollers "n." Obtain basic static load rating per roller Co1. Then the basic static load rating C_{0n} , when the number of rollers is n, can be obtained as follows.

$$C_{0n} = n \times C_{01} \cdots (6)$$
 Values of C_{01} are shown in the dimension table.

10. Basic Dynamic Load Rating and **Rated Life**

Basic static load rating is based on a rated traveled distance of 50 km. The dimension table shows the value with 20 load rollers. When the number of load rollers is other than 20, a basic dynamic load rating C_n can be obtained by multiplying a compensation factor (obtained from Fig. 13.) by C in the dimension table.

(Suffix 'n' is to refer the number of load rollers.) As an example: Number of load rollers: n = 15. The compensation factor from Fig. 13 is 0.8.

$$C_{15} = 0.8 \times C$$

Therefore, C_{15} is obtained from the following formula. Rated life (km) is shown in the formula below. In this formula:

$$L = 50 \left(\frac{C_n}{f_w \cdot F_c} \right)^{\frac{10}{3}} \cdots (7)$$

 f_w : Load factor. 1.0 to 1.2 under smooth operation

F_c: Computed load which applies to the guide (kN) Please refer to NSK Linear Guide Technical Description for details.

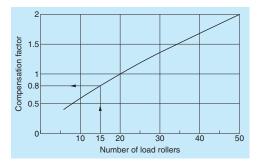
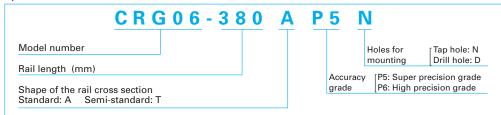
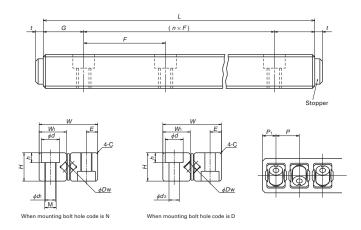



Fig. 13 Compensation factor for basic dynamic load rating

11. Reference Number and Standard Set for "One-Axis"

Specifications are indicated as a reference number as shown below.



Notes: 1) Semi-standard T, a shape of rail cross section, is available only for CRG04. It is lower in H dimension, and wider in W dimension compared with A.

2) Standard set for "one axis" of the guide refers to 4 rails and 2 retainers which usually comprise the guide way for one axis.

12. Dimension Table

Crossed roller guide: Model CRG

																		ı	Unit:	mm
Model No.	D _w	W	Н	w	С	Ε	d	h	d ₁	d₂	М	G	F	t	Р	P ₁	Dynamic load rating C when rollers are 20 (N)	Static load rating Con when roller is one (N)	Max le	Cupor
CRG04A	4	24	12	11.3	0.5	5	8	4.2	4.3	5	M 5×0.8	20	40	2.3	6.5	3.8	9 800	665	200	300
CRG04T	4	26	10	12.3	0.5	5	8	4.2	4.3	5	M 5×0.8	12/15	38/40	2.3	6.5	3.8	9 800	665	200	300
CRG06A	6	31	15	14.5	0.8	6	9.5	5.2	5.2	5.5	M 6×1	25	50	3.2	9.5	5.8	26 700	1 510	400	600
CRG09A	9	44	22	20.7	1	9	11	6.2	6.8	7	M 8×1.25	50	100	4	14	8	72 500	3 400	600	900
CRG12A	12	58	28	27.6	1.5	12	14	8.2	8.5	9	M10×1.5	50	100	5	20	12	130 000	6 050	900	1 200

Note: The area which embraces the roller is plastic for the standard retainer. A solid type made of steel plate is available for high temperature resistance.

A-6-3 Roller Pack

1. Structure

A roller pack comprises a main body which supports load from the guide way block via two rows of rollers; an end cap which changes the direction of the recirculation of rollers at the end of the main body; a side plate which guides the rollers (**Fig. 1**). Roller pack is one of the linear rolling guides, where rollers are allowed to re-circulate infinitely.

There is a plate spring attached to a side of roller pack to prevent roller pack from falling out when it is turned upside down after assembly.

Other component of the roller pack is spring pin. Spring pin is on the top surface of the roller pack, and makes installation of wedge block and fitting plate easier.

Wedge block is a unit to provide preload (Fig. 3) to roller pack; a fitting plate (Fig. 2), functioning like a pivot, adjusts misalignment of roller pack automatically. Wedge of wedge block moves up and down to apply preload by turning the adjust screw.

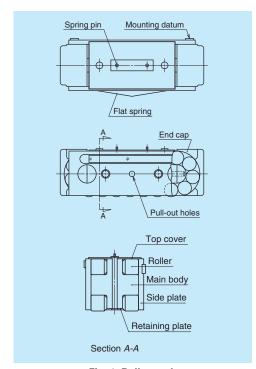


Fig. 1 Roller pack

Photo 1 Roller pack

Photo 2 Wedge block

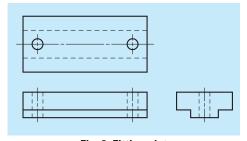


Fig. 2 Fitting plate

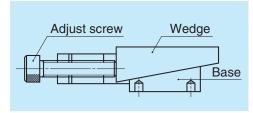


Fig. 3 Wedge block

2. Features

Roller pack has two remarkable characteristics other linear roller guide bearings do not have.

(1) No roller skewing

If the roller is long relative to its diameter, the roller inclines during operation. This phenomenon is called skewing. Skewing causes problems such as sudden rise in friction force. However, a short roller lacks large load carrying capacity. The roller introduced here solved the skewing problem, yet has a large load carrying capacity:

short rollers are combined into double rows.

(2) Load is applied equally.

This is due to a "fitting plate," a result of "changed way of conceiving." Installation is quite easy: Merely place the fitting plate through the two holes to spring pins. The stop pins are inserted to holes on the top surface of the roller pack. The contact area between the fitting plate and the main body is made small. This way, the self-alignment is automatically accomplished by elastic contact of both parts.

This distributes an equal load to the rollers, far extending the life, compared to conventional roller linear guides.

Other characteristics include: Easy to provide preload by the wedge block; can be installed to vertical shaft; and reduction in noise level.

3. Accuracy

The height tolerance of roller pack is 10 μ m. Roller packs are grouped into a size difference of every 2 μ m (corded by A to E) before delivery (**Table 1**).

Table 1 Height Classification

it٠	

Category	Code
over or less +3 - +5	А
+1 - +3	В
-1 - +1	С
-31	D
-53	E

4. Rigidity

Fig. 4 shows the relationship between load and deformation. This includes deformation caused by contact between: the rollers and main body; the rollers and guide way surface; the main body and fitting plate.

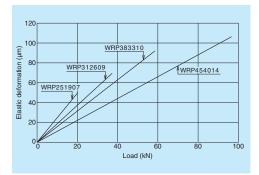


Fig. 4 Elastic deformation of the roller pack

5. Preload

Fig. 5 shows conversions of tightening torque of the wedge block adjust screw into preload volume. Use a dial gauge for accurate measurement.

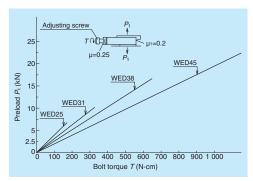


Fig. 5 Tightening torque of the adjust screw, and preload volume

6. Friction and Lubrication

(1) Lubricants and volume

Mineral oils are commonly used. Since roller pack is used under a relatively heavy load, the oil should, ideally, have high viscosity and provide a strong film. Select from JIS viscosity 32-150.

Criteria of oil supply per roller pack Q (cc/h) can be calculated by the following formula.

$$Q \ge S \times 1/4 \cdots (1)$$

In this formula, S (stroke) is shown in meters. The oil volume, when the stroke is 1 m, per roller pack is more than 0.25 (cc/h). It is more desirable to supply a small amount of oil at short intervals than supplying a large amount at one time. In case of grease lubrication, use a grease of consistency 2. Albania EP2 is widely used.

(2) Friction coefficient

Starting friction coefficient is significantly small at under 0.005.

(3) Seal

It is necessary to install a wiper seal to the guide way surface to prevent foreign matters (swarf from cutting, and other dust) from entering the roller pack to enjoy the full benefit of the designed life of it. The material of the seal should have strong resistance to oil and wear. Felt and synthetic rubber (acrylonitril butadiene rubber) are some of the suitable materials.

Fig. 6 shows a general method to install the seals.

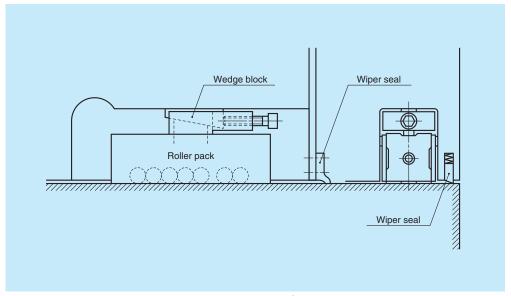


Fig. 6 Installation of seal

A387 A388

7. Installation

(1) Installation and applying preload

As shown in Fig. 7, it is basic that a fitting plate is installed on the roller pack which receives load, and a wedge block is installed on the roller pack which receives no load, but is only used for preload. All components should be secured with a stop pin, facing toward the direction of movement. To cut costs for processing, it is recommended to divide the pocket (which contains roller pack) into some blocks and secure them with bolts (Fig. 7). Preload is provided by the wedge block. Estimate the actual load beforehand, so the preload shall not be lost when a load is applied. A load variation equivalent to up to two times of the preload volume can be absorbed in this case.

(Take into consideration the rated life in 8. in determining preload volume.)

(2) Accuracy of way block

The following is the ideal accuracy specification and installation accuracy of way block as a guide surface.

Hardness by heat treatment

: More than HRC58 hardened depth 2 mm or more

Surface roughness

: Less than 1.6 S

Parallelism as a single unit: Less than 0.010 mm per meter

Parallelism after installation

: Less than 0.020 mm per meter

Please consult NSK when using cast iron or cast steel guide face.

(3) Pocket accuracy

Accuracy of the pocket in which the roller pack is mounted should satisfy the following conditions.

Pocket width

: Roller pack width + 0.10 to 0.20 mm Parallelism of the pocket side faces to the guide way face

: Less than 0.010 mm per 100 mm.

Parallelism of the fitting plate (pocket bottom) mounting surface to the guide way face and parallelism of the wedge block mounting surface to the guide way surface:

: Less than 0.040 mm per 100 mm.

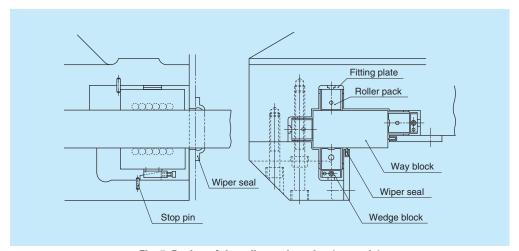


Fig. 7 Design of the roller pack pocket (example)

8. Rated life

Rated life L (km) is shown in the following formula. In this formula:

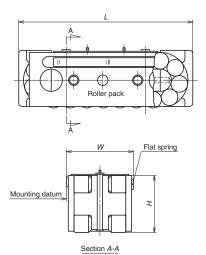
$$L = 50 \left(\frac{C}{f_w \cdot F_c} \right)^{\frac{10}{3}} \dots (2)$$

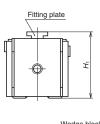
C: Basic dynamic load rating (N)

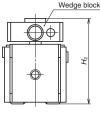
 f_{w} : Load factors. 1.0 to 1.2 at time of smooth operation

F_c: Calculated load (N) applied to the roller pack

9. Disassembly

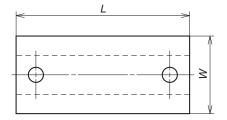

Remove the roller pack preloaded by the wedge block in the following manner.

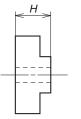

- Loosen the adjust screw of the wedge block. Lightly tap the wedge. In case of light preload, the wedge loosens, and the roller pack can be pulled out.
- When pulling, put the bolt in the tap hole at the end of the end cap, and tug the bolt.
- In case of heavy load, the roller pack could not be pulled out by the above method. Hook a tool to the pull-out hole (Fig. 1) on the side plate of the roller pack, and pull out the roller pack.


A389 A390

10. Dimension Table

Roller pack: Model WRP

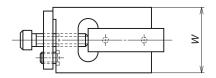


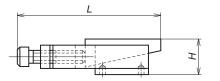

	m	

Model No.	Width W	Height ±0.005	Length	Applicable fitting plate reference No.	Assembled height	Applicable wedge reference No.	Assembled height H_2	Basic dynamic load rating C (N)	Basic static load rating C ₀ (N)
WRP 251907	25	19	65.5	WFT 25	24	WED 25	31 (30.4 – 31.6)	31 000	40 500
WRP 312609	31	26	85	WFT 31	31	WED 31	40 (39.4 – 40.6)	57 000	73 000
WRP 383310	38.1	33.31	104.4	WFT 38	38.91	WED 38	50.8 (50 – 51.5)	91 000	113 000
WRP 454014	45	40	138	WFT 45	45	WED 45	60 (59.2 – 60.8)	151 000	191 000

Note: Numbers in the parentheses in column H_2 show the adjustable height range of the wedge block.

Fitting plate: Model WFT





Unit: mm

Model No.	Width <i>W</i>	Height (±0.01) <i>H</i>	Length <i>L</i>	Applicable roller pack
WFT 25	10	5	20	WRP 251907
WFT 31	12	5	26	WRP 312609
WFT 38	12.8	5.6	29	WRP 383310
WFT 45	16	5	40	WRP 454014

Wedge block: Model WED

Unit: mm

Model No.	Width <i>W</i>	Height <i>H</i>	Length <i>L</i>	Applicable roller pack		
WED 25	23	12 (11.5 – 12.5)	47	WRP 251907		
WED 31	28	14 (13.5 – 14.5)	63	WRP 312609		
WED 38	35	17.47 (16.9 – 18.1)	76	WRP 383310		
WED 45	40	20 (19.2 – 20.8)	95	WRP 454014		

Note: Numbers in the parentheses in column H_2 show adjustable height range of the wedge block.

A-6-4 Linear Roller Bearings

1. Structure

Linear roller bearing comprises: A single row of rollers; the main body which supports load via rollers; the end cap which turns the roller recirculating direction at the end of the main body from the loaded zone to the unloaded zone; a retaining wire which prevents rollers from falling out (Fig. 1). The main body, as the cylindrical roller bearing, has a rib at both sides. The rib guides the rollers to travel correctly, and assists the rollers to circulate infinitely in the bearing in a stable manner. This contributes to the bearing's linear movement without the restriction of travel range.

NSK also developed a highly functional preload pad

(Photo 2) to provide a slight preload to the bearing. The preload pad basically comprises parallel plates and sandwiched bellevile springs, having adjusted its spring rate.

Preloaded pad can be used in a machine tool in the following manner.

When two bearings are installed with one on the top and the other under the way block (the bearings comprise a set), a preloaded pad is used at the bottom bearing. This provides an equal preload to the top and bottom bearings. This way, to a certain extent, the variation in the load and the uneven thickness of the way block can be absorbed.

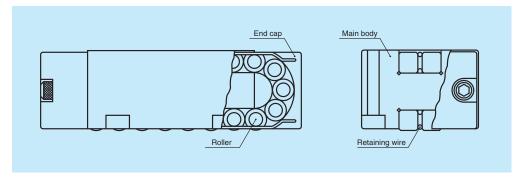


Fig. 1 Linear roller bearing

Photo 1 Linear roller bearing

Photo 2 Preload pad

2. Features

In addition to the general features of a roller bearing guide such as no-stick slip, small friction resistance, and easy maintenance, the linear roller bearing has several more advantages.

(1) No trouble by roller skewing

Skewing is the inclination of the rollers during operation. It causes friction force to suddenly soar. Skewing is apt to occur when the roller is long relative to its diameter. The proportion of the length and diameter is 1:2 for the products in this series. This is superior to the commonly used 1:3 ratio.

(2) Highly reliable

Retaining the rollers without allowing them to fall out of the bearing is a crucial function of the linear guide bearing. The simple and highly effective retaining wire has solved the problem for this product series.

(3) Compact design

Despite the load carrying capacity, this series is smaller in size than any other models. This contributes to the application which requires compact design.

(4) High rigidity

The contact area between the bearing and the mounting surface is large to increase rigidity.

3. Accuracy

The nominal height difference between bearings is 10 μ m. The bearings are grouped into every 2 μ m, and are coded before delivery (**Table 1**).

Table 1 Classification of height

Unit: µm Code Category over or less Α 0 -2 -4 В -6 С -6 -8 D -10

4. Rigidity

Fig. 2 shows elastic deformation.

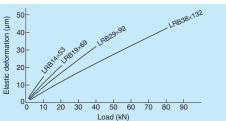


Fig. 2 Elastic deformation

5. Friction and Lubrication

(1) Lubricants and volume

Mineral oils are used in general. The linear roller bearing is used under relatively heavy load. An oil which has high viscosity and creates a strong oil film is ideal for linear roller guides. Select from JIS viscosity 32 to 150.

General oil supply for a linear roller bearing *Q* (cc/h) can be calculated by the following formula.

$$Q \ge S \times 1/4$$
(1)

In this formula, S (stroke) is shown in meters. Therefore, when the stroke is 1 m, the volume of lubricant per roller bearing is more than 0.25 (cc/h). It is recommended to supply a small amount of oil at short intervals rather than supplying a large amount at one time. In case of grease lubrication, a grease of consistency degree 2, such as Albania EP2, is generally used.

(2) Friction coefficient

Starting friction coefficient is significantly small at under 0.005.

(3) Seal

Install a wiper seal on the way block surface to prevent foreign matters (cutting chip and other contaminant from entering) to realize a full life of the linear roller bearing. The material of the seal should have strong resistance against oil and wear. Felt and synthetic rubber (acrylonitril-butadien rubber) are some of the suitable materials.

6. Installation

Secure the linear roller bearing using four bolts. The bearing main body has four holes for mounting.

Accuracy of way block

The ideal accuracy specification and mounting accuracy of a way block as a guide way surface are as follows.

Hardness by heat treatment

: More than HRC58 hardened depth

2 mm or more

Surface roughness

: Less than 1.6 S

Parallelism as a single unit

: Less than 0.010 mm per 1 m

Parallelism after installation

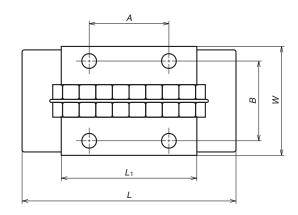
: Less than 0.020 mm per 1 m

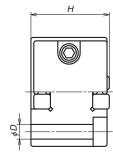
Please consult NSK when using cast iron or cast steel guide way.

7. Rated life

Rated life L (km) is shown in the following formula. In this formula:

$$L = 50 \left(\frac{C}{f_{\text{w}} \cdot F_{\text{c}}} \right)^{\frac{10}{3}} \dots (2)$$

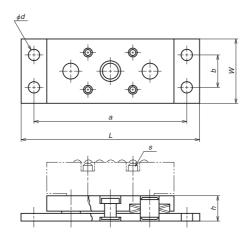

C: Basic dynamic load rating (N)


 $f_{\rm w}$: Load factor. 1.0 to 1.2 at time of smooth operation

F_c: Calculated load applied on the bearing (N)

8. Dimension Table

Linear roller bearing Model: LRB



Unit: mm										
Model No.	Width W	Height <i>H</i> -8.010	Length L	L ₁	Roller diameter ×	Mounting bolt hole	Bolt hole distance		Basic dynamic load rating C	Basic static load rating C_0
					length	D	A B	В	(N)	(N)
LRB 14×53	26.5	14.29	52.8	32.8	φ 4×8	3.4	19	19.3	15 400	21 900
LRB 19×69	30.5	19.05	68.6	44.6	φ 5×10	3.4	25.4	23.3	27 000	39 000
LRB 29×92	41.5	28.58	92.0	59	φ 7.5×15	4.5	38.1	32.7	57 500	76 500
LRB 38×132	51.4	38.10	132.0	88	φ 10×20	5.5	50.8	41.5	119 000	159 000

Note: Bearings are grouped into heights of every 2 µm before delivery.

A395 A396

Preload pad Model: PRP

Unit: r								Unit: mm		
Model No.	Applicable linear roller bearing	Height (no-load) <i>h</i> max.	Compressed height h min.	h min. Load when fully compressed (N)	W	L	d	а	b	s Hex. Socket cap screw
PRP 14×53	LRB 14×53	10.23	9.53	1 570	26	72	4.5	62	14	M3×16
PRP 19×69	LRB 19×69	11.53	11.10	2 650	30	96	4.5	86	18	M3×19
PRP 29×92	LRB 29×92	13.13	12.70	6 450	41	120	4.5	110	27	M3×25
PRP 38×132	LRB 38×132	16.28	15.88	12 000	51	157	4.5	147	35	M5×38

B-1 Selection Guide to NSK Ball Screw

1. Features of NSK Ball Screws B1
2. Structure of a Ball Screw B3
2.1 Ball Recirculation System B4
2.2 Preload System B5
3. Ball Screw Series B7
3.1 Ball Screw Classification B7
3.2 Product Externals B9
4. Procedures to Select Ball
Screw B17
4.1 Flow Chart for Selection B17
4.2 Accuracy Grades B19
4.3 Axial Play B20
4.4 Screw Shaft Diameter, Lead,
and Stroke B21
4.5 Manufacturing Capability for
Screw Shaft B25
4.6 Outside Shapes of Ball Nut
B26
4.7 Shaft End Configuration B27

	5. When Placing Orders B31
١	5.1 When Ordering Standard
	Ball Screws B31
	5.2 When Ordering Made-to-
	Order Ball Screws B33
	BLOCK

Ball Screw

B-2 Technical Description

of Ball Screws	
1. Accuracy ·····	B37
1.1 Lead Accuracy	B37
1.2 Thermal Expansion and	
Target Value of Specified	l
Travel	
1.3 Mounting Accuracy and	
Tolerance of Ball Screws	B41
1.4 Automatic Lead Accurac	
Measuring System of NS	
	B43
2. Static Load Limitation	
2.1 Buckling Load······	
2.2 Yield by Tensional/	
Compressive Stress	R46
2.3 Permanent Deformation	of
the Ball Contact Point	
3. Permissible Rotational Spec	
3.1 Critical Speed of the Scr	
Shaft	
3.2 d•n Value	
4. Supporting Conditions for	DOU
Calculation of Buckling Loa	٦
and Critical Speed	
5. Life (Dynamic Load Limitati	
5. Life (Dynamic Load Limitati	
5.1 Life of Ball Screw	
5. I Life of Ball Screw	DDS
5.2 Fatigue Life	BDS
5.3 Ball Screw and Hardness	B22
5.4 Wear Life	
6. Preload and Rigidity	
6.1 Elastic Deformation of th	
Preloaded Ball Screw	
6.2 Rigidity of the Feed Scre	w
System	B57
7. Friction Torque and Drive	
Torque	
7.1 Friction Torque ·······	B62
7.2 Drive Torque	B63
8. Even Load Distribution in Ba	II
Nut (In Case of High-Load	_
Drive Ball Screws)	B65

B-3 Ball Screw Dimension Table

 9. Lubrication of Ball Screw B67 10. Dust Prevention for Ball Screw B68 11. Rust Prevention and Surface Treatment of Ball Screws - B69 12. Ball Screw Specifications for Special Environment B70 	 Dimension Table and Reference Number of Standard Ball Screws 1.1 Compact FA SeriesB103 1.2 Finished Shaft End MA Type, Miniature, Fine Lead .B145 FA Type for Small Equipment .B167 SA Type for Machine ToolsB203
12.1 Clean Environment B70 12.2 Measures for Use Under Vacuum	1.3 Finished Shaft End KA Type Stainless Steel Product • B259 1.4 Blank Shaft End MS Type, Miniature, Fine Lead • B287 FS Type for Small Equipment • B295 SS Type for Machine Tools • B307 1.5 Ball Screws for Transfer Equipment B335 1.6 Accessories • B375 2. Dimension Table and Reference Number of Standard Nut Ball Screws
14.1 Installation B73 14.2 Inserting R Series Nut into Rolled Screw Shaft B76 14.3 Installation of Ball Screw and Support Unit B77 14.4 Shaft End Machining B79 15. Precautions for Designing Ball Screw B80 15.1 Safety System B80 15.2 Design Cautions to Assembling	2.1 End Deflector Type
Ball Screw B80 15.3 Effective Stroke of Ball Screw B82	3.3 BSL™ Type for Miniature Lathes B483 3.4 For High-Load Drives
15.4 Matching after Delivery B82 15.5 "NSK K1 TM " Lubrication Unit	3.4.1 HTF-SRC Type

B37 -B100

B-1 Selection Guide to NSK Ball Screw

B-1-1 Features of NSK Ball Screws

(1) Quick delivery

Standard ball screws are for short lead time.

- Precision ball screws with finished shaft end Compact FA Series, MA Type, FA Type, SA Type, KA Type
- Precision ball screws with blank shaft end MS Type, FS Type, SS Type
- Ball screws for transfer equipment with finished shaft end

VFA Type, RMA Type

 Ball screws for transfer equipment with blank shaft end

RMS Type, R Series

(2) Competitive prices

NSK reduces cost by well-planned mass production of standardized items. We rank the best in the world production of ordered items. We are able to offer our products at competitive prices by producing similar items in the same production group.

(3) Unparalleled accuracy

NSK utilizes its unique grinding technique and measuring equipment for topnotch precision.

(4) Superb durability

NSK uses thoroughly purified alloy steel for superb durability.

(5) No backlash, and unparalleled rigidity

NSK ball screws use Gothic arch grooves as shown in Fig. 1.1 to minimize the clearance between the balls and grooves. Further, an application of preload makes no backlash possible. As providing controlled preload is easy, appropriate rigidity is obtained.

As the Gothic arch also minimizes the clearance between the balls and the grooves, the backlash is minimized without applying preload.

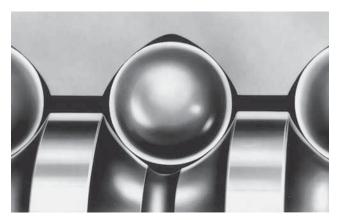


Fig. 1.1 Ball groove profile of NSK ball screw

(6) Smooth movement assures high efficiency

When the circular-arc groove is used for the ball screws, balls are wedging into the grooves of ball nut and ball screw shaft. But this phenomenon does not happen in the Gothic arc groove. The Gothic arc groove, along with the low friction that is inherent nature of ball screw, is accountable for a smooth and highly efficient conversion of motion as shown in Fig. 1.2.

(7) Optimal units available

Utilizing bearing technology, NSK produces high quality support units (for light load type to be used for small equipment and heavy load type to be used for machine tools) which are exclusive for ball screws. These units are standardized.

NSK also offers quality-assured accessories such as lock nuts to tighten bearings, travel stoppers to prevent overrun, and sealing units to cool hollow shaft ball screws.

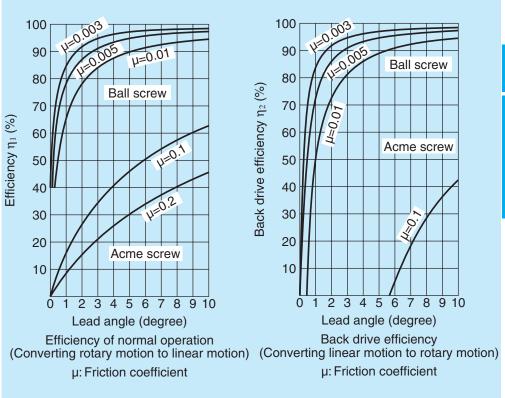
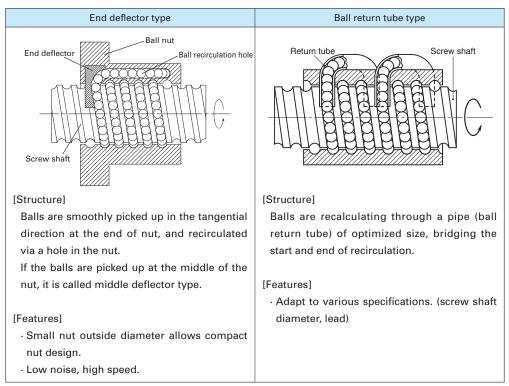


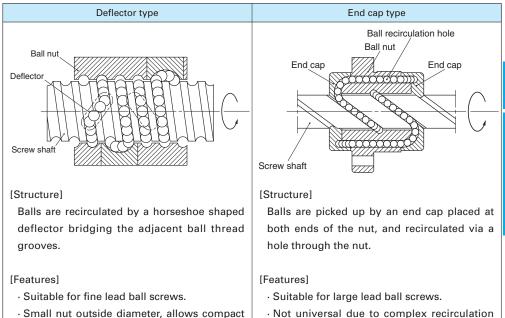
Fig. 1.2 Mechanical efficiency of ball screws


81 B2

B-1-2 Structure of a Ball Screw

Balls are placed between the screw shaft and nut, and roll. This system is called a "ball screw." To keep the balls recirculating continually, this system requires a screw shaft, a nut, balls, and recirculation components as basic items. A ball screw has the following functions.

- (1) Converting motion: Changing rotary motion to linear motion (normal operation); Changing linear motion to rotary motion efficiently (back-drive operation).
- (2) Increasing power: A small torque is converted to a large thrust force.
- (3) Positioning: Sets accurate position in linear motion.

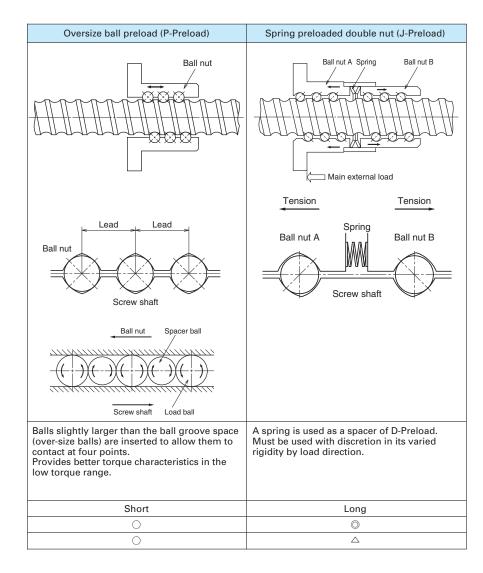

Table 2.1 Ball screw recirculation system

B-1-2.1 Ball Recirculation System

A ball recirculation system is categorically most important, as well as the preload system, to classify the structure of ball screw.

As shown in **Table 2.1**, four types of ball recirculation system are used for the NSK ball screws.

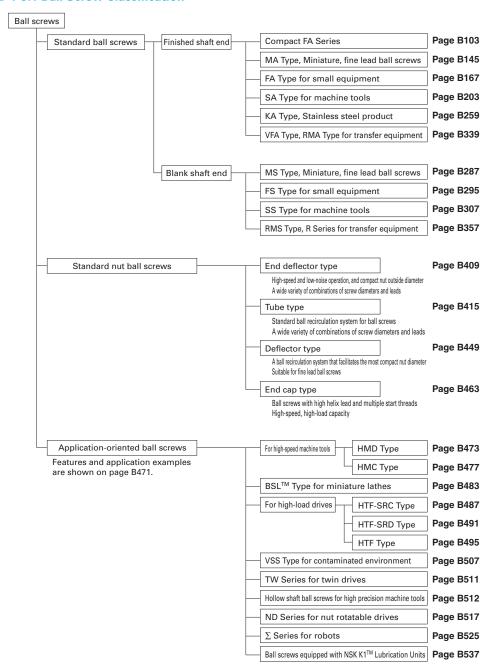
structure.

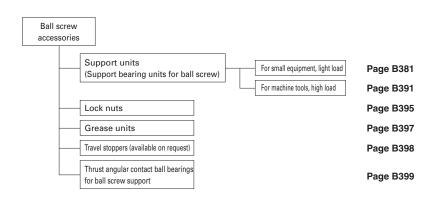

nut design.

B-1-2.2 Preload system

There are four systems to apply preload to NSK ball screws depending on the application.

Table 2.2 Preload system for ball screws


Preload system	Double nut preload (D-Preload)	Offset preload (Z-Preload)
Structure	Tension Spacer Ball nut B Tension Spacer Ball nut B Ball nut A Ball nut B	Ball nut Lead Lead + α Lead Ball nut
	Screw shaft Uses two nuts, and inserts a spacer between	Screw shaft To apply preload, the lead near the center of
Description	them to apply the preload. In general, a spacer is thicker (by the deformation equivalent to the preload) than the actual space between two nuts. However, a thin spacer is inserted in some cases.	the nut is offset by the volume equivalent to preload (α) . This method is like to creating a preload system similar to the double nut preload (D-preload) by a single ball nut, thus enabling a compact nut design.
Nut length	Long	Medium
Torque characteristics	0	0
Rigidity	0	0



B5 B6

B-1-3 Ball Screw Series

B-1-3.1 Ball Screw Classification

Lead classification

Classification	Lead ratio K = lead <i>l</i> / shaft diameterd
Fine	K < 0.5
Medium	0.5 ≤ <i>K</i> < 1
High helix	1 ≤ <i>K</i> < 2
Ultra high helix	2 ≤ K

B7 B8

B-1-3.2 Product Externals

(1) Ball screws

Standard ball screws

Fig. 3.1 Finished shaft end compact FA Series

Fig. 3.2 Finished shaft end MA type, FA type and SA type

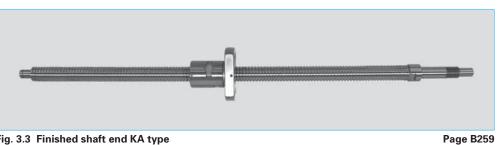


Fig. 3.3 Finished shaft end KA type

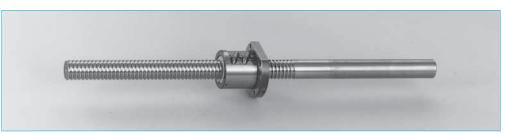


Fig. 3.4 Blank shaft end MS type, FS type and SS type

Page B287

Fig. 3.5 Finished shaft end VFA type for transfer equipment

Page B335

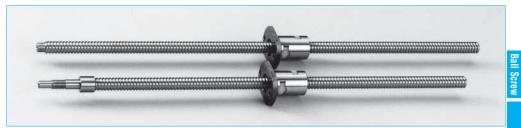


Fig. 3.6 Finished shaft end RMA type and blank shaft end RMS type for transfer equipment

Page B335

Fig. 3.7 Blank shaft end R series for transfer equipment

Page B335

Fig. 3.8 R series nut assembly for transfer Page B335 equipment

Standard nut ball screws

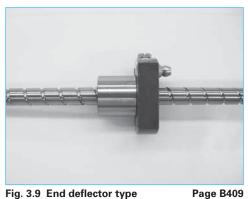


Fig. 3.9 End deflector type

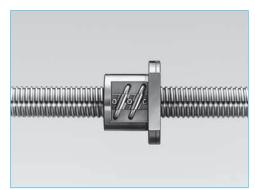


Fig. 3.10 Tube type

Page B415

Page B463

Fig. 3.11 Deflector type

Page B449

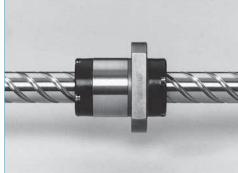
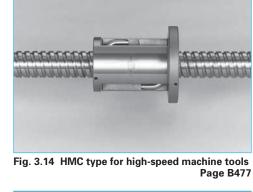



Fig. 3.12 End cap type

Application-oriented ball screws

Fig. 3.13 HMD type for high-speed machine tools Page B473

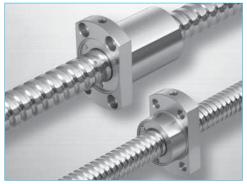


Fig. 3.15 BSL™ type for miniature lathes Page B483

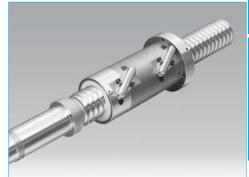


Fig. 3.16 HTF-SRC type for high-load drives Page B487

Fig. 3.17 HTF-SRD type for high-load drives Page B491

Fig. 3.18 HTF type for high-load drives Page B495 B12

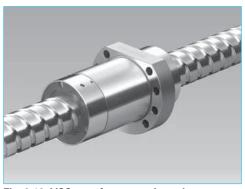


Fig. 3.19 VSS type for contaminated environments Page B507

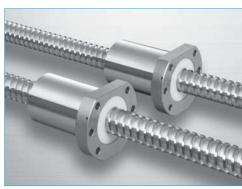


Fig. 3.20 TW series for twin-drive systems
Page B511

Fig. 3.21 Hollow shaft ball screws for high-precision machine tools

Fig. 3.22 ND series for nut-rotatable drives

Page B517

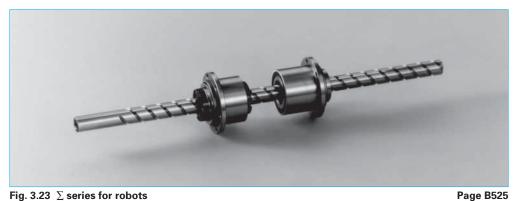


Fig. 3.23 Σ series for robots

Fig. 3.24 Ball screws equipped with NSK K1™ lubrication units Page B537

(2) Standard accessories

Fig. 3.25 Support units Page B381 (for small equipment, light load)

Fig. 3.26 Support units Page B381 (for small equipment, light load, low-profile)

Fig. 3.30 Lock nuts A type

Fig. 3.31 Lock nuts S type

Page B396

Page B391 Fig. 3.27 Support units (for machine tools, heavy load)

Fig. 3.28 Support unit for VFA type Page B396 (simple support side)

Fig. 3.32 NSK hand grease pump unit Page D19

Fig. 3.33 NSK grease

Page B397, D19

Fig. 3.29 Support kits for RMA and RMS types Page B397

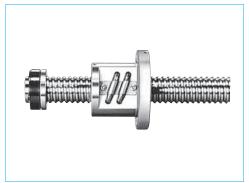


Fig. 3.34 Travel stoppers (by order)

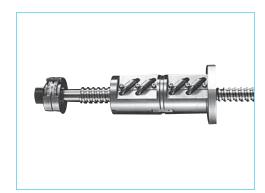


Fig. 3.35 Thrust angular contact ball bearings for ball screw support Page B399

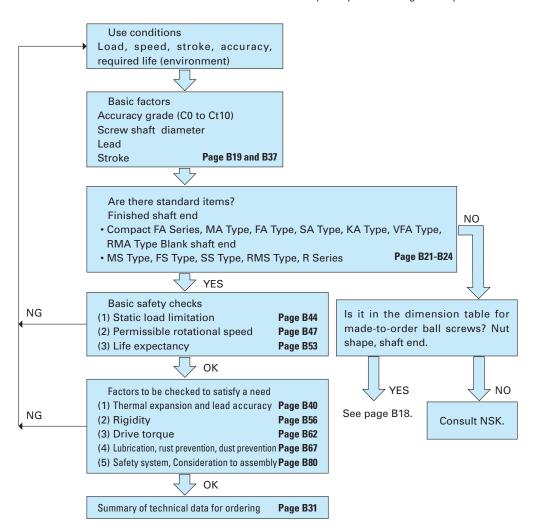
B-1-4 Procedures to Select Ball Screw

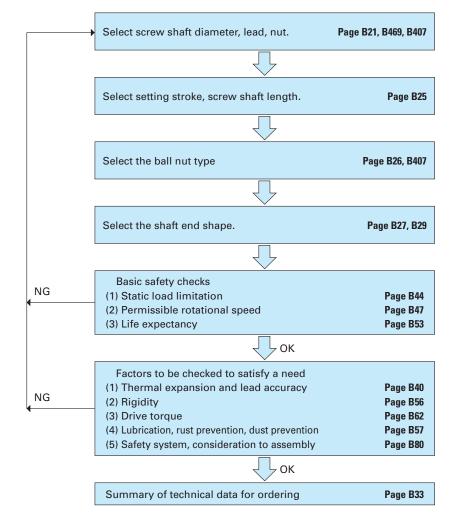
B-1-4.1 Flow Chart for Selection

When selecting a ball screw, you have to review a variety of use conditions and requirements such as applied loads, speeds, motion strokes, positioning accuracy, required life and operating environment. You require a multiple inspection because some of these conditions force a ball screw to have conflicting characteristics.

(1) Standard ball screw

The chart below is one of the selection procedures. To take advantage of prompt delivery and reasonable prices, this procedure focuses on the standardized ball screws.


NSK offers a ball screw selection program, and also has a service to select appropriate items using data file compiled by our knowledge and experience.


(2) Made-to-order ball screws

Dimensions and specifications can be decided individually for the application-oriented ball screws and standard nut ball screws. Procedures are as follows. Refer to the selection exercises on page B83.

Table 4.4 is "Combinations of screw shaft diameter and leads for basic type ball screw." Please consult

NSK if you require the types that are not listed in the table.

B17 B18

B-1-4.2 Accuracy Grades

Table 4.1 shows examples of how to select accuracy grade for a specific use. These practical cases are based on NSK's experience. The circles indicate the range of the accuracy grade in actual use. The double circles indicate accuracy grades most frequently used among the cases marked with the single circle. These

symbols help to select the accuracy grade of ball screws temporarily. To confirm whether a specific ball screw accuracy grade satisfies requirements in positioning accuracy in actual use, refer to "Technical Description" and "Mean travel deviation and travel variation." (page B38)

Table 4.1 Accuracy grades of ball screw and their application

		NC machine tools																			
Application			Latnes	Milling machines	Boring machines	Machining centers Drilling machines		Drilling machines	Jig boring machines		, i	Sign	Electric discharge	machines	Wire cuttings	Electric discharge machines	Punch presss		Laser cutung magnines	Woodworking machines	
A	xis	Χ	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	Z	XY	XY	Z	
	C0	0								0	0	0									
Φ	C1	0		0		0				0	0	0	0	0		0	0				
grade	C2	0		0	0	0	0					0	0	0	0	0	0				
acy	С3	0	0	0	0	0	0	0					0	0	0	0	0	0	0	0	
Accuracy	C5	0	0	0	0	0	0	0	0						0		0	0	0	0	0
Ğ	Ct7								0												0
	Ct10																				\circ

		(0 =	Sem	nicondu	ctor/as	ssociat	ed indu	ustry		Indus	trial r	obots				te		rt	Nuclea	power	
		General industrial machines Machines for specific use	Lithographic machines	Chemical processing equipment	Wire bonders	Probers	Electric component mounted devices	Printed circuit board drilling machines		. Cartesian type	:	Articulate type	SCARA type	el mills equipment	Plastic injection molding machines	Three-dimensional coordinate measuring machines	Office machines	processing equipment	Fuel rod controls	Mechanical snubbers	Aircrafts
		Genera Mach	Lithog	Chen	>		Elec	Printed (Assembly	other purposes	Assembly	other purposes	0)	Steel	Plast	Three-d me	O	Image	Fue	Mech	
	C0		0			0										0		0			
Φ	C1		0		0	0		0								0		0			
grade	C2				0	0	0	0	0							0					
	СЗ	0		0			0	0	0		0		0						0		0
Accuracy	C5	0		0			0	0	0	0	0	0	0		0		0		0		0
Ā	Ct7	0		0					0	0	0	0	0	0	0		0		0	0	
	Ct10	0		0						0				0	0		0			0	

B-1-4.3 Axial Play

Table 4.2 indicates the combinations of NSK ball screw accuracy grades and axial play. Select an axial play which satisfies the required accuracy in backlash, positioning and repeatability. Ranges of available ball thread effective length in relation to accuracy grade and axial play are shown in Table 4.3. Please note that if the effective length exceeds the

range, the axial play may become partially negative (preloaded condition).

For the axial play of Ct10 grade (ball screws for transfer equipment), refer to the R series dimension tables.

Table 4.2 Combinations of accuracy grades and axial play

Axial	Z	Т	S	N	L
play	0 mm	0.005 mm	0.020 mm	0.050 mm	0.3 mm
Accuracy grade	(Preload)	or less	or less	or less	or less
C0	C0Z	C0T	_	_	_
C1	C1Z	C1T	_	_	_
C2	C2Z	C2T	_	_	_ _
C3	C3Z	C3T	C3S	_	_
C 5	C5Z	C5T	C5S	C5N	_
Ct7	_	_	C7S	C7N	_

Table 4.3 Maximum effective thread length in combination of accuracy grade and axial play

Unit: mm

Screw shaft		Effective length	of the screw th	read (maximum))
diameter	Axial play T (0.00	05 mm or under)	Axial pla	y <i>S</i> (0.020 mm (or under)
diarrietei	C0 - C3	C5	C3	C 5	Ct7
4 – 6	80	100	80	100	_
8 – 10	250	200	250	300	_
12 – 16	500	400	500	600	700
20 – 25	800	700	1 000	1 000	1 000
32 – 40	1 000	800	2 000	1 500	1 500
50 – 63	1 200	1 000	2 500	2 000	2 000
80 – 125	_	_	4 000	3 000	3 000

Note: Refer to Table 4.8 (page B25) for the available length of screw shaft (maximum length). Also, axial play of code N does not become partial negative play if it is within the available range of effective ball thread length.

B19 B20

Unit: mm

B-1-4.4 Screw Shaft Diameter, Lead, and Stroke

Choose a screw shaft diameter and stroke based on the allowable space for ball screw installation. A lead should be set based on the required running speed, and should give some allowance to the maximum rotational speed of the motor.

(1) Standard ball screw

Tables 4.4 and 4.5 show the combinations of ball screw shaft diameter and leads, and range of stroke. From these tables, select the closest values to the shaft diameter, lead, and stroke which had been selected previously. Also, confirm detailed specifications and sizes in "Dimensional table of standard ball screw" (page B101).

Table 4.4 Screw shaft diameter, lead and stroke of standard ball screw

Shaft dia.	Lead							Stroke						
	Leau	- 50	- 100	- 150	- 200	- 250	- 300	- 350	- 400	- 450	- 500	- 550	- 600	- 650
4	1	0	$\bigcirc \triangle$											
	1	0		$\bigcirc \triangle$	$\bigcirc \triangle$									
6	8													
ŭ	12													
	1		<u>О</u> Д	0	$\bigcirc \triangle$									
-	1.5		$\bigcirc \Delta$		$\bigcirc \Delta$									
	1.5		<u> </u>	0	04									
8	10		ŎΔ	Ŏ										
	10													
	15													
	2			$\bigcirc \triangle$		$\bigcirc \triangle$								
	2.5		Ŏ	ŎΔ	0	ŎΔ								
10	4		\sim	ÖΔ	\sim	ŎΔ		$\bigcirc \triangle$						
	5		ĕ											
-	10		_											
	10				_ ^			_		_				
	2.5				QA.		\bigcirc							
	2.5		Ŏ	0	$\bigcirc \triangle$	Ö	$\bigcirc \triangle$							
12	5									\bigcirc \triangle				
12	10				$\bigcirc \triangle$		0/		<u>О</u> Д		O/			
	20													
	30													
	5				0		0				0		Δ	
14	5 8 5			8	8	0	8	<u></u>	8	0	OA	0	0	8
	5						\sim							$\overline{}$
	10													
15 -	10 20			90	<u>Q</u>		<u>Q</u>		0		<u>Q</u>	•O△ √	0	
	20			•0	0		0	O /	ÓΔ		0	○ ○✓	$\bigcirc \triangle$	
	30													
	2 2.5 5		8		0	$\bigcirc \triangle$		8	Δ					
	2.5			0		ŎΔ			Δ					
16	5			Ŏ		0		Ŏ		()	Δ			
, o	16			ŏ	0	ŏ	0	ŏ	0	ŏ	0	()A	0	
-								8		0	0		0	
	32											Q		
	4				0	0	Δ	Q			Δ	Q		0.
	5					OOA		00		OOA				0
	10													
20	20													
	30					i i		ă		ă		ă		Ŏ
	40										•0			
-	60													
	4				0		Δ	0				0	Δ	
-	4									<u> </u>				-
	5 6							ODA		<u> </u>				0
L	6							$\bigcirc \triangle$				Q		
25	10							Δ				X		Δ
20	20													
Г	25 30													
	30													
-	50													-
	5				0	0		()A	()	0	()	<u></u> ()Δ		
28	5 6											84		
	0						8	$\bigcirc \triangle$			0	84		
L	5 6 8 10		1		0	0	0	QΔ	0	0	0	ŎΔ	0	0
L	6						Q	0			Q	ŎΔ Δ		
32	8											\triangle		
32	10				0		Ŏ		ΟΔ			Δ	$\bigcirc \triangle$	
j	25 32												~	
}	32		—											
36	10											Δ	()A	
30	5						8				8	Δ	<u> </u>	
ļ.	5						0				0		_	$\overline{}$
40	8					0				0			Δ	
70	10								0		0	Δ	$\bigcirc \triangle$	
Г	12												Ŏ	
45	10												Ŏ	
50	10									0	0		ă	0
50	. 0													$\overline{}$

Table 4.5 Screw shaft diameter, lead and stroke of KA type in stainless steel product

OL (: 1:						Stroke				
Shaft dia.	Lead	- 150	- 200	- 250	- 300	- 350	- 450	- 500	- 650	- 1 050
6	1									
	1									
8	2									
4.0	2									
10	4									
	2									
12	5									
	10									
	10									
15	20									
16	2									
20	20									

• mark; PSS type, USS type, FSS type: ○mark; MA type, FA type, SA type: △mark; MS type, FS type, SS type
✓mark; VFA type: ■mark; RMA type: □mark; RMS type

Unit: mm

						C+r	aka						
- 700	- 750	- 800	- 850	- 900	- 950	1 1 100	1 200	1 200	1 100	1 500	- 1 700	2 100	2.000
- 700	- /50	- 800	- 850	- 900	- 950	- 1 100	- 1 200	- 1 300	- 1 400	- 1 500	- 1 700	- 2 100	- 3 000
		_						l					
	0	Δ											
			<u></u>	_		- X							
				Δ									
-													
			()	\triangle									
			Ŏ			$\bigcirc \triangle$							
			\sim	_									
			0	Δ				$\bigcirc \triangle$					
		Δ											
					Δ								
			○ ○△		0			● ○△					
					OΔ	•Õ				$\bigcirc \triangle$			
	×		<u> </u>										
			_								- O A		
						● ○△					● ○△		
							<u>ΟΔ</u>						
	OΔ						\triangle						
	Δ			•0		● ○△		i	0	Δ			
						1 7 7		000					
Q			_	Q						8			
										0		$-\bigcirc\triangle$	
								Ŏ		-			
										Δ		<u> </u>	
								_		\triangle			
	$\bigcirc \triangle$						$\bigcirc \triangle$						
	<u>A</u>			0		Ŏ.	Δ ΟΔ						
8	\bigcirc		Δ	Ö	()	- X	\bigcirc			\cap	Δ		
	00				1		<u> </u>			0 <u>Δ</u>			
	0			0	O _A					$\bigcirc \triangle$			
_		0	Δ	\bigcirc \triangle		0		<u>О</u> Д	Ŏ				
		-				$-\times$		00	-		$-\times$		
											$\bigcirc \triangle$		<u>О</u> Д
		0		()		Ö		0			ΟΔ ΟΔ ΟΔ	8	
											<u></u>		
				0	Δ					0			
						О О Д					Δ		
			8	$\cap \triangle$		0		$\cap \triangle$		Ŏ	$\cap \triangle$		$\cap \triangle$
	 	$-\sim$	Δ	$-\times\overline{-}$		-			$\overline{\lambda}$	$\overline{\Delta}$			$-\times\overline{-}$
		ŎΔ		$\bigcirc \triangle$			Ŏ			\triangle			
				ΟΔ ΟΔ ΟΔ				<u>О</u> Д		Δ	<u> </u>		
			<u>О</u> Д	ŎΔ		0			$\bigcirc \triangle$			$\bigcirc \triangle$	ŎΔ
				<u> </u>								<u> </u>	

Note: See Table 4.5 for KA Type in stainless steel product.

Screw shaft		Standard screw shaft length									
diameter	Lead	400	500	800	1 000	1 500	2 000	2 500	3 000	4 000	5 000
10	3										
10	6										
10	8										
12	12										
14	4										
14	5		•								
15	20										
	10		•								
16	16										
	32		•								
18	8										
	5		•								
20	10		•				•				
20	20		•								
	40		•								
	5						•				
25	10										
20	25										
	50										
28	6										
	10										
32	32										
	64										
36	10										
	10										
40	40										
	80								•		
45	12										
	10										
50	16										
	50										

Table 4.6 Screw shaft diameter, lead and standard screw shaft length of R Series Unit: mm

(2) Made-to-order ball screws

1.5

D

2 2.5 3

D

D

D

D D

D

D

D

D

D

D D D T S,T

D

Screw shaft diameter

4

6 D D

8

10

12

14

15

16

20

25

28

32

36

40

45

50

55

63

80

100 120

125

140

160

200

0.5

D D

D D

D

D

Table 4.7 shows the combinations of screw shaft diameter and leads for made-to-order ball screws. For details, refer to the dimension tables from pages B407 and B469.

Table 4.7 Combinations of screw shaft diameter and leads for typical ball screw Unit: mm

S

15 | 16 | 20 | 25 | 30 | 32 | 36

S

S

S

S

S,T C

С

S,T C,V N

T,H N

T,H N

F

T,F Т

S,C

S,C

S,T C

T S,T

S,V S,T T,N

S,T S,H S,T S,H

S,T S,T S,T S,H

T,D F F

T,D F

Т

FF

F F

T,F T,D

FF

|S,H|S,H|S,H| H

F H H H H

S,HS,H

T,C

Т

10 | 12 | 14

S

Т

S

Τ

S

Т

Т

S,T D

S,T

S,T T,D D,B B

S,T T,D D,B B

S

S

S,T

S,T

T S,T

T,B S,T D,B

T,D T,D D,B S,T

T,D T,D T,D S,T S,T F

T,D T,D T,D S,T S,T D,F D,F

D D T,DD,F

Т

V,F S,T F S,F

S,T S,T F F

T,F F

T,D T,D F

D T,D

	С					
		С				
	S,C		S,C			
		s,c			С	
				S,C		
	S,T C,V N				S	
	T,N F	S,T C,V N				S
Ī						

40 | 50 | 60 | 64 | 80 | 100

T: Tube type D: Deflector type

S: End deflector type H: HMC type, HMD type F: HTF-SRC, HTF-SRD, HTF type N: ND Series B: BSL type V: VSS type

FF

F F

B-1-4.5 Manufacturing Capability for Screw Shaft

Table 4.8 shows the manufacturing capability for the screw shaft overall length for each accuracy grade. The capability of large ball screw whose shaft diameter exceeds 100 mm is limited due to the weight. Please consult NSK in such a case. * Also consult NSK if the screw shaft size you desire exceeds the size listed in Table 4.8.

Table 4.8 Manufacturing capability of screw shaft

	'	able 4.0 IVI	anulacturing	саравінту о	i Sciew Sila		Unit: mm
Accuracy Screw grade shaft diameter	C0	C1	C2	C3	C5	Ct7	Ct10
4	90	110	120	140	140	140	_
6	150	180	200	250	250	250	
8	240	280	340	340	340	340	_
10	350	400	500	500	500	550	800
12	450	500	650	700	750	800	800
14	600	650	750	800	1 000	1 000	1 000
15	600	700	800	900	1 250	1 250	1 500
16	600	750	900	1 000	1 500	1 500	1 500
18	_	_	_	_	_	_	1 500
20	850	1 000	1 200	1 400	1 900	1 900	2 000
25	1 100	1 400	1 600	1 900	2 500	2 500	2 500
28	1 100	1 400	1 600	1 900	2 500	2 500	2 500
32	1 500	1 750	2 250	2 500	3 200	3 200	3 000 (4 000)
36	1 500	1 750	2 250	2 500	3 200	3 500	3 000
40	2 000	2 400	3 000	3 400	3 800	4 300	4 000 (5 000)
45	2 000	2 400	3 000	3 400	4 000	4 500	4 000
50	2 000	3 200	4 000	4 500	5 000	5 750	4 000
63	2 000	4 000	5 000	6 000	6 800	7 700	
80	_	4 000	6 300	8 200	9 200	10 000	_
100	_	4 000	6 300	10 000	12 500	13 500	
*120	_	_	_	_	_	13 500	_
* 125	_	_	_	10 000	13 500	13 500	_
*140	_	_	_	_	_	10 000	_
*160	_	_	_	_	_	8 000	_
*200	_	_	_	_	_	5 000	_

Notes: 1. Values in parentheses of Ct10 are applicable to the ultra high helix lead (I/d≥2). Refer to dimension tables on B371 and following pages for details.

B-1-4.6 Outside Shapes of Ball Nut

(1) Flange shape

Fig. 4.1 shows the available flange shape. Select the appropriate shape according to the nut installation condition. (Fig. 4.2)

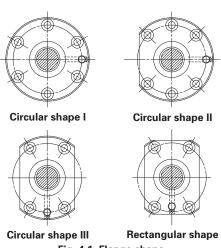


Fig. 4.1 Flange shape

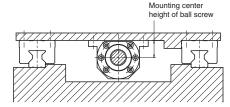


Fig. 4.2 Installation example

(2) Shapes of nut cross section

Cross-section of nuts are shown in Fig. 4.3. For detailed dimensions, refer to dimension table of nut.

① Circular (round)

The ball recirculation components are contained inside the circumference of the nut. It can be inserted in a round hole.

2 Tube-projecting type

This shape is unique to the tube recirculation type. The nut outside diameter is small. However some recess must be given for housing because the ball recirculation tube protrudes from the circumference of the nut.

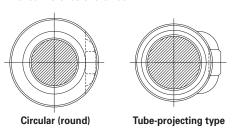


Fig. 4.3 Shape of the cross section of nut

B25 B26

^{2.} Please note that the range for small leads (3 mm or under) are also limited by the screw length.

B-1-4.7 Shaft End Configuration

(1) Standard shaft end dimensions

Tables 4.9 and **4.10** show shaft end types for NSK standard support units. Refer to the dimension tables below when designing

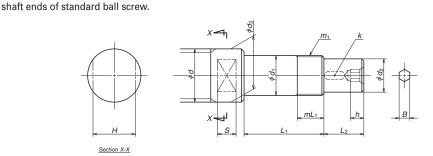


Fig. 4.4 Configuration of standard shaft end (drive side)

Table 4.9 Dimensions of shaft ends (drive side)

Unit: mm Thread Bearing journal Drive section Seal section Hexagon hole Wrench flats Support Screw shaft Outside Length Key width Outside /idth across Depth Width across Length Outside unit Nominal spec. Length Length flats flats diameter diamete diameter diameter Reference No. В h Н S d d_1 d_2 d_3 22.5 M6×0.75 4.5 7.5 9.5 4.5 WBK06-01A WBK06-11 22.5 M6×0.75 4.5 7.5 9.5 4.5 WBK06-01A WBK06-11 5.5 WBK08-01A WBK08-11 M8×1 11.5 5.5 WBK08-01A WBK08-11 M8×1 11.5 M10×1 _ 6.5 WBK10-01A WBK10-11 M12×1 6.5 WBK12-01A WBK12-11 M12×1 6.5 WBK12-01A WBK12-11 M12×1 6.5 WBK12-01A WBK12-11 M15×1 19.5 8.5 WBK15-01A WBK15-11 M17×1 WBK17DF-31 M20×1 WBK20-01 WBK20-11 WBK20DF-31 M20×1 M20×1 WBK20-01 WBK20-11 M20×1 WBK20DF-31 WBK25-01W WBK25-11 M25×1.5 M25×1.5 WBK25DF-31 M25×1.5 WBK25DFD-31 M30×1.5 WBK30DF-31 M30×1.5 WBK30DFD-31 M30×1.5 WBK30DF-31 WBK30DFD-31 M30×1.5 M35×1.5 WBK35DF-31 WBK35DFD-31 M35×1.5 M40×1.5 WBK40DF-31 107 | M40×1.5 | 30 10 50 WBK40DFD-31

Note: Low-profile support unit is available for compact FA Series.

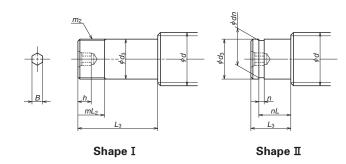


Fig. 4.5 Standard shaft end configuration (opposite to the drive side)

Table 4.10 Dimensions of shaft ends (opposite to the drive side)

Unit: mm

Screw shaft			g journal		lock nut		ner ring		Hexago		Support unit
diameter	Shape	Outside diameter	Length	Nominal spec.	Length	Width	Groove diameter	Groove position	Width across flats		Reference No. Numbers in parentheses are
d		d₃	L ₃	m ₂	mL ₂	n	dn	nL	В	h	bearing reference number.
8	Π	6	9	_	_	0.8	5.7	6.8	_	_	WBK08S-01
10	Π	6	9	_	_	0.8	5.7	6.8	_	_	WBK08S-01
12	Π	8	10	_	_	0.9	7.6	7.9	_	_	WBK10S-01
14	П	10	22(12)	_		1.15	9.6	9.15	4	6	WBK12S-01
15	П	10	22(12)	_	_	1.15	9.6	9.15	4	6	WBK12S-01
16	П	10	22(12)	_	_	1.15	9.6	9.15	4	6	WBK12S-01
20	П	15	25(13)	_	_	1.15	14.3	10.15	5	7	WBK15S-01
	П	20	19	_	_	1.35	19	15.35	6	8	WBK20S-01
25	I	20	53	M20×1	16	_	_	_	6	8	WBK20-01 WBK20-11
	I	20	81	M20×1	23	_	_	_	6	8	WBK20DF-31
	Π	20	19	_	_	1.35	19	15.35	6	8	WBK20S-01
28	I	20	53	M20×1	16	_	_	_	6	8	WBK20-01 WBK20-11
	I	20	81	M20×1	23	_	_	_	6	8	WBK20DF-31
	П	25	20	_	_	1.35	23.9	16.35	8	10	WBK25S-01W
32	I	25	62	M25×1.5	20	_	_	_	8	10	WBK25-01W WBK25-11
	I	25	89	M25×1.5	26	_	_	_	8	10	WBK25DF-31
36	П	25	20	_	_	1.35	23.9	16.35	10	12	(6205)
30	I	25	89	M25×1.5	26	_	_	_	10	12	WBK30DF-31
40	П	30	22	_	_	1.75	28.6	17.75	10	12	(6206)
40	I	30	89	M30×1.5	26	_	_	_	10	12	WBK30DF-31
45	П	35	25	_	_	1.75	33	18.75	12	14	(6207)
45	I	35	92	M35×1.5	30	_	_	_	12	14	WBK35DF-31
	Π	40	25	_	_	1.95	38	19.95	14	18	(6208)
50	I	40	92	M40×1.5	30	_	_	_	14	18	WBK40DF-31

(2) Shaft end configuration of R series ball screws for transfer equipment

Tables 4.11 and 4.12 show shaft end types for R Series.

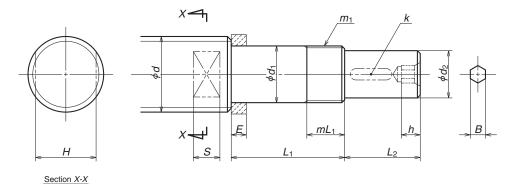


Fig. 4.6 R Series shaft end (drive side)

Table 4.11 Dimensions of R Series shaft ends (drive side)

Unit: mm

Screw		journal			'		ve sect		Hexagor				Sup	
shaft diameter	Outside diameter	Length	Nominal spec	Length	Width	Outside diameter	Length	Key width	Width across flats	Depth	Width across flats	Length	un	it
d	d_1	L ₁	$m_{\scriptscriptstyle 1}$	mL₁	Ε	$d_{\scriptscriptstyle 2}$	L_2	k	В	h	Н	S	Referer	ice No.
10	6	27	M6×0.75	7	5.0	4.5	7.5	_	_	_	8	4.5	WBK06-01A	WBK06-11
12	8	32	M8×1	9	5.5	6	10	_	_	_	10	5.5	WBK08-01A	WBK08-11
14	10	35	M10×1	10	5.5	8	15	_	_	_	12	6.5	WBK10-01A	WBK10-11
15	10	35	M10×1	10	5.5	8	15	_	_	_	12	6.5	WBK10-01A	WBK10-11
16	12	35	M12×1	10	5.6	10	15	3	4	6	12	6.5	WBK12-01A	WBK12-11
18	12	35	M12×1	10	5.6	10	15	3	4	6	12	6.5	WBK12-01A	WBK12-11
20	15	50	M15×1	15	10	12	20	4	5	7	17	8.5	WBK15-01A	WBK15-11
25	17	53	M17×1	17	7	15	27	5	6	8	22	10	WBK17-01A	_
	20	64	M20×1	16	11	15	27	5	6	8	22	10	WBK20-01	WBK20-11
28	20	64	M20×1	16	11	15	27	5	6	8	22	10	WBK20-01	WBK20-11
32	25	76	M25×1.5	20	14	20	33	6	8	10	27	12	WBK25-01W	WBK25-11
36	25	76	M25×1.5	20	14	20	33	6	8	10	27	12	WBK25-01W	WBK25-11
40	30	89	M30×1.5	26	_	25	61	8	10	12	_	_	WBK30	DF-31
45	35	92	M35×1.5	30	_	30	63	8	12	14	_	_	WBK35	DF-31
50	35	92	M35×1.5	30	_	30	63	8	12	14	_	_	WBK35	DF-31

Note: The dimension d, shall be smaller enough than the minor diameter of the ball screw thread to provide sufficient shoulder surface for the spacer.

Refer to "Precautions for Designing Ball Screw (page B80)".

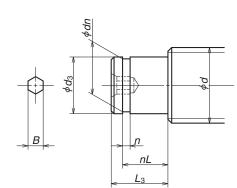


Fig. 4.7 Shaft end configuration of R Series (opposite to the drive side)

Table 4.12 Dimensions of R Series shaft ends (opposite to the drive side)

Unit: mm

								Onit. min
Screw shaft	Bearing	ı journal	Reta	ining ring g	roove	Hexagon	al hole	Support unit
diameter	Outside diameter	Length	Width	Groove diameter	Groove position	Width across flats	Depth	Numbers in parentheses are bearing reference numbers.
d	d ₃	L ₃	n	dn	nL	В	h	bearing reference numbers.
10	6	9	0.8	5.7	6.8	_	_	WBK08S-01(606)
12	8	10	0.9	7.6	7.9	_	_	WBK10S-01(608)
14	10	12	1.15	9.6	9.15	4	6	WBK12S-01(6000)
15	10	12	1.15	9.6	9.15	4	6	WBK12S-01(6000)
16	10	12	1.15	9.6	9.15	4	6	WBK12S-01(6000)
18	10	12	1.15	9.6	9.15	4	6	WBK12S-01(6000)
20	15	13	1.15	14.3	10.15	5	7	WBK15S-01(6002)
25	17	16	1.15	16.2	13.15	6	8	WBK17S-01(6203)
23	20	19	1.35	19	15.35	6	8	WBK20S-01(6204)
28	20	19	1.35	19	15.35	6	8	WBK20S-01(6204)
32	25	20	1.35	23.9	16.35	8	10	WBK25S-01W(6205)
36	25	20	1.35	23.9	16.35	8	10	WBK25S-01W(6205)
40	30	22	1.75	28.6	17.75	10	12	(6206)
45	35	23	1.75	33	18.75	12	14	(6207)
50	35	23	1.75	33	18.75	12	14	(6207)

B29 B30

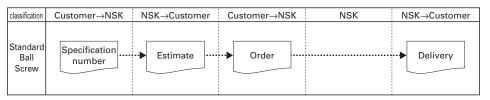
B-1-5 When Placing Orders

To avoid confusion, please use "reference number" or "specification number" when inquiring about desired ball screw specifications.

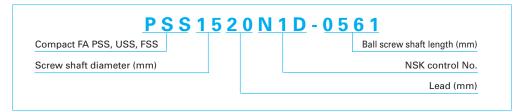
♦ Reference number:

Alpha-numeric codes are assigned to each ball screw. When placing order, please use this reference number.

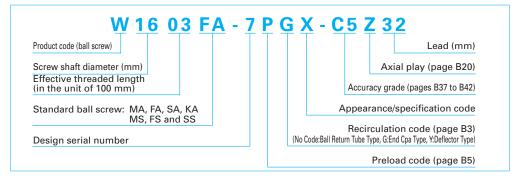
♦ Specification number:


Specification factors are identified by alpha-numeric codes. Codes are for easy explanation of your requirements. (If you do not use these numbers, please itemize your requirements.)

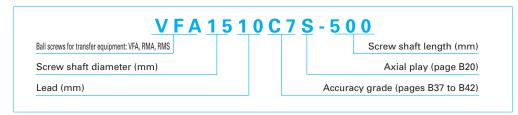
B-1-5.1 When Ordering Standard Ball Screws


Find the reference number from the dimension table. Enter the reference number in the "Order Form by Fax" (page B34). Send the fax to your local NSK agency (branch office, sales office, or

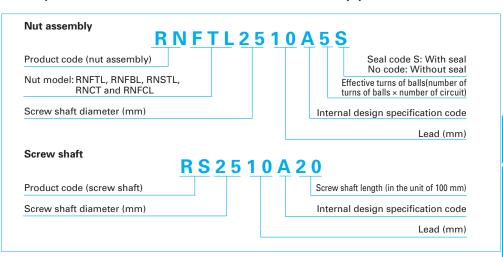
your local representative.).


The following is the flow chart for ordering standard ball screws.

(1) Example of reference number for Standard ball screws Compact FA Series

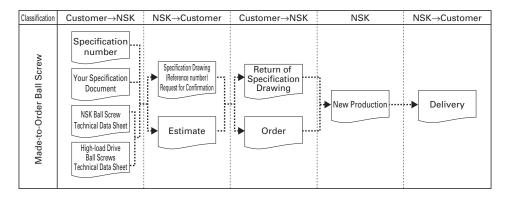


(2) Example of reference number of Standard ball screws

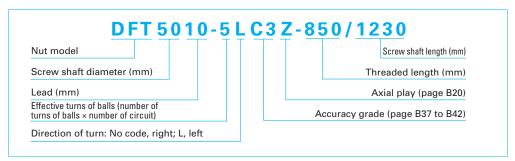


(3) Example of reference number of ball screws for transfer equipment with finished shaft end and blank shaft end

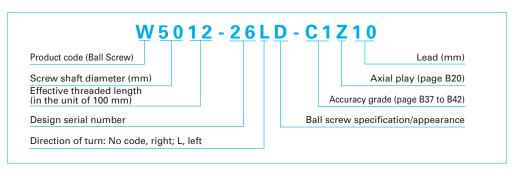
(4) Example of reference number of R series ball screws for transfer equipment


B31 B32

B-1-5.2 When Ordering Made-to-Order Ball Screws


If you would like to discuss technical points regarding specifications, use the NSK ball screw technical data sheet as an aid (page B36). For high-load drive ball screws, use the technical

sheet on page B505 for NSK high-load drive


The following is the flow chart for ordering made-to-order ball screws.

(1) Example of specification number of made-to-order ball screw

(2) Example of reference number of made-to-order ball screw

Fax Order Form

(Make copies for future orders)

(1) Standard ball screw

Drive side

Company name :		Date: Day Month Year
Address :		Telephone :
Name of person in charge :	Section :	

Product name	Specification number	Quantity	Desired delivery date
Precision ball screw			
R Series ball screw Nut			
R Series ball screw Screw shaft			
Support unit			
Lock nut			
Grease unit			

Describe the shaft end configuration if processing is required (blank shaft end ball screw). In this case, specify which ball screw in the above list the shaft end shall be processed.

Refer to pages B27 to B30 for shaft end configuration. These pages also show the reference number for support units.

Opposite of drive side		
Opposite of drive side		

B33 B34

묫	
ĭ	
တ	
a .	

NSK Ball Screw Technical Data Sheet (example)

(2) Made-to-order ball screw

Company name	Date: Day Month Year
Address	Telephone
Person in charge	Section
Machine which uses the ball screw <u>Machining center Model MC-</u>	Application Table left/right movement (X axis)
Drawing/rough sketch attached? Yes No	

Use conditions

	Axial loa	d	Rotation	nal speed	Operating	hours		
Maximum load	9 000	N	20	min ^{−1}	15	%		Shaft rotation - Moving nut Normal operation
								Shaft rotation - Moving shaft Back drive operation
Load in normal use	4 000	N	360	min ⁻¹	60	%	Operating conditions	Nut rotation - Moving nut
								Nut rotation - Moving shaft Oscillation
Minimum load	2 000	N	1 000	min ⁻¹	2 5	%		
							Degree of vibration shock	Normal
Maximum rotational speed		1 00	0	min ⁻¹			Required life	20 000h
Lubricant	Grease/oil	(Brane Make		SK GR	S AS2)	Motor in use	Company A, Model 1
Seal		Ye	s		No		Control system	Company B, Model 2 (resolution: 1µm)
Support bearing	Drive side	3 5 TA	C 6 2 D F				Opposite to drive	side 35TAC62DF
Guide way	Rolling	Slidin	g (R A 4	51500G	M 2 - P 4 Z .	3 - I)		
Environment	Temperature (No	ormal tem	perature in de	grees Celsius)	Dust	Humi	dity Gas L	iquid (where?) Clean room In vacuum
Schedule for prototype	D	ay	l	Month	Year (a	pprox.)	Quantity used	Piece
Date, going in production/Quantity	/Month /Year		/L	ot	per machine			

Specification factors of the ball screw

Screw shaft diameter	50 mm	Direction of turn	right	Accuracy grade	C2	Screw shaft length	880 mm	Preload	3000 N
Lead	10 mm	Effective turns of balls		Axial play	0 mm	Overall shaft length	1 335 mm	Required torque	
Nut model	ZFT5010-10		Flange type	Circular I	Nut orientation	Same as show	n in the dimens	sion table	Opposite

oplemental explanation/requests	

NSK Ball Screw Technical Data Sheet (example)

(2) Made-to-order ball screw

Company name	Date: Day Month Year
Address_	Telephone
Person in charge	Section
Machine which uses the ball screw_	Application
Drawing/rough sketch attached? Yes No	

Use conditions

	Axial load	Rotational speed	Operating hours			
Maximum load	N	min ⁻¹	%		Shaft rotation - Moving nut	Normal operation
					Shaft rotation - Moving shaft	Back drive operation
Load in normal use	N	min ⁻¹	%	Operating conditions	Nut rotation - Moving nut	
					Nut rotation - Moving shaft	Oscillation
Minimum load	N	min ⁻¹	%			
				Degree of vibration shock		
Maximum rotational speed		min ⁻¹		Required life		
Lubricant	Grease/oil (Bran	d name: er:)	Motor in use		
Seal	Ye	S	No	Control system	(resolution:)
Support bearing	Drive side			Opposite to drive	side	
Guide way	Rolling Slidin	ng ()			
Environment	Temperature (Normal tem	perature in degrees Celsius)	Dust Hum	idity Gas L	iquid (where?) Clean ro	om In vacuum
Schedule for prototype	Day	Month	Year (approx.)	Quantity used	Piece	9
Date, going in production/Quantity	/Month	/Year	/Lot	per machine		

Specification factors of the ball screw

Screw shaft diameter	Direction of turn		Accuracy grade		Screw shaft length		Preload	
Lead	Effective turns of balls		Axial play		Overall shaft length		Required torque	
Nut model		Flange type		Nut orientation	Same as shown in	n the dimension ta	ble	Opposite

Supplemental explanation/requests			

B35 B36

B-2 Technical Description of Ball Screws

B-2-1 Accuracy

B-2-1.1 Lead Accuracy

The lead accuracy of NSK precision ball screws (C0 to C5 grades) conforms to the four characteristics specified in JIS Standards. These characteristics are expressed by codes $ep_1 v_{111} v_{3001}$, and $v_{2\pi}$.

Fig. 1.1 explains the definition of each characteristic, and shows allowable value of each. Leads are classified into two categories: C system for positioning; Ct system for transportation. Tables 1.2, 1.3 and 1.4 show tolerance of each characteristic.

JIS B1192 sets C type and Cp type standards for positioning ball screws. NSK uses the specification of C type only. JIS B1192 specifies Ct1, 3, and 5 grade. NSK standards are integrated by C type only. Refer to **Table 1.2** for C type standard tolerance.

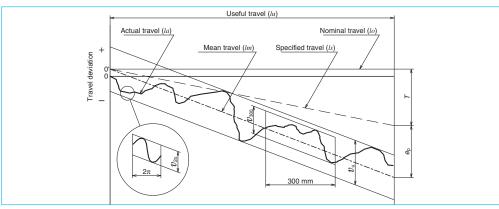


Fig. 1.1 Definition of lead accuracy

Table 1.1 Terminology in lead accuracy

Term	Code	Description	Tolerance
Specified travel	ls	The travel compensates the nominal travel for an elongation caused by an increase of temperature or load.	
Travel compensation	Т	Value obtained by subtracting the specified travel from the nominal travel based on the useful travel. The value is to compensate for the errors caused by thermal deformation or deformation by load. This value is determined by tests and experience (see page B39).	
Actual travel	la	Actually measured travel	
Actual mean travel	lm	A straight line that demonstrates the direction of actual travel. This straight line is obtained from the curve that shows actual travel volume by least-squares method or by resembling approximation.	
Tolerance on specified travel	ер	Obtained by subtracting the specified travel from the actual mean travel.	Table 1.2
Travel variation	υ _и υ ₃₀₀ υ _{2π}	Maximum range of the actual travel which is between the two straight lines drawn parallel to the actual mean travel. There are three categories as shown below. • Maximum range relative to the effective length of thread. • Maximum range relative to the length of 300 mm anywhere within the effective length of thread. • Maximum range which corresponds to any single rotation (2π rad.) within the effective length of thread.	Table 1.2 Table 1.3, 1.4

Table 1.2 Tolerance on specified travel ($\pm ep$) and travel variation (ν_u) of the positioning (C type)

	Accuracy grade C0 C1				:1	С	2	С	3	C5		•	
	over	or less	±ep	v_{u}	±ep	v_{u}	±ep	$\upsilon_{\scriptscriptstyle u}$	± <i>ep</i>	\mathbf{v}_{u}	±ep	$\upsilon_{\scriptscriptstyle u}$	٠.
	_	100	3	3	3.5	5	5	7	8	8	18	18	
	100	200	3.5	3	4.5	5	7	7	10	8	20	18	
	200	315	4	3.5	6	5	8	7	12	8	23	18	
	315	400	5	3.5	7	5	9	7	13	10	25	20	
	400	500	6	4	8	5	10	7	15	10	27	20	
_	500	630	6	4	9	6	11	8	16	12	30	23	
E	630	800	7	5	10	7	13	9	18	13	35	25	
yth,	800	1 000	8	6	11	8	15	10	21	15	40	27	
Effective thread length, mm	1 000	1 250	9	6	13	9	18	11	24	16	46	30	
ad	1 250	1 600	11	7	15	10	21	13	29	18	54	35	
thre	1 600	2 000			18	11	25	15	35	21	65	40	
ive ive	2 000	2 500			22	13	30	18	41	24	77	46	
fect	2 500	3 150			26	15	36	21	50	29	93	54	_
Щ	3 150	4 000			30	18	44	25	60	35	115	65	
	4 000	5 000					52	30	72	41	140	77	Į
	5 000	6 300					65	36	90	50	170	93	Majac IIIga
	6 300	8 000							110	60	210	115	Ĭ
	8 000	10 000									260	140	٤
	10 000	12 500									320	170	

Table 1.3 Tolerance of travel variation relative to 300 mm (v_{300}) and one revolution $(v_{2\pi})$ of the positioning (*C* type) ball screws Unit: µm

					1
Accuracy grade	C0	C1	C2	C3	C5
$v_{\scriptscriptstyle 300}$	3.5	5	7	8	18
$\upsilon_{\scriptscriptstyle 2\pi}$	2.5	4	5	6	8

Note: _____ to JIS B1192 standards. Values in other areas are NSK standards.

Table 1.4 Travel variation (v_{so}) relative to 300 mm of the transportation (Ct type) ball screws

		ΟΠΙ. μΠ
Accuracy grade	Ct7	Ct10
$\upsilon_{\scriptscriptstyle 300}$	52	210

Note: Tolerance on specified travel (ep) of the transportation (Ct type) ball screws is calculated as follows.

$$ep = \frac{2 \cdot lu}{300} \cdot v_{300}$$

B37 B38

Example of specifying lead accuracy

<Use Conditions>

Nut model: DFT4010-5 Stroke: 1 000 mm

Positioning accuracy: ±0.035 mm/1 000 mm

<Calculation>

Obtain required lead accuracy of a ball screw under these conditions.

(1) Calculate the length of the thread

(2) Calculate lead accuracy

From **Table 1.2**, obtain the tolerance on specified travel relative to the length of thread (1 300 mm).

C5 ··· ±0.054/1 250 - 1 600 C3 ··· ±0.029/1 250 - 1 600

(3) Determine lead accuracy

Positioning accuracy is: ±ep <±0.035/1 000 mm

Accuracy grade: C3 grade $\pm ep$ = 0.029/length of thread (1 300 mm) $\upsilon_{\rm u}$ = 0.018

B-2-1.2 Thermal Expansion and Target Value of Specified Travel

(1) Thermal expansion

Thermal expansion of screw shaft induces the degradation of positioning accuracy of the ball screws. Thermal expansion of a screw shaft is calculated as follows.

 $\Delta L_{\theta} = \rho \cdot \theta \cdot L \text{ (mm) } \cdots 1$

In this formula:

 $\Delta L_{\rm B}$: Thermal expansion (mm)

 ρ : Thermal expansion coefficient (12.0 × 10⁻⁶ °C⁻¹)

 θ : Average temperature rise of screw shaft (Celsius)

L: Length of screw shaft (mm)

The above formula indicates that when the temperature rises one degree Celsius, the screw shaft stretches 12 µm per meter. Ball screw generates more heat when it is used at high speed. This causes elongation of the screw shaft. Although the ball screw lead is ground into high precision, an elongated screw shaft due to high temperature rise may not satisfy required highly accurate positioning.

(2) Countermeasures against temperature rise

Countermeasures against temperature rise of the ball screw are:

Hollow shaft cooling is recommended to operate high-speed and high-precision conditions.

- (a) Suppress heat generation.
- Do not apply excessive preload to the ball screw and support bearing.
- Select appropriate lubricant and use it properly.
- Use higher helix ball screw lead to lower rotational speed.
- (b) Use forced cooling.
- Use hollow screw shaft, and flow liquid coolant through it. - Refer to hollow ball screws in the section for applicationoriented ball screws (page B512).
- Cool screw shaft surface with lubricant oil or air.
- (c) Avoid effects of temperature rise on positioning.
 - Warm up the machine by high speed until the temperature rise of ball screw shaft

saturates, then maintain it properly.

- Set pre-tension. (Fig. 1.2)
- Set the negative (minus) target value of specified travel.
- Employ the closed loop control system.

(3) How to determine specified travel

In general, the specified travel of ball screw is the same as the nominal travel. However, the specified lead of ball screw is sometimes set to negative (minus) or positive (plus) to adjust expansion by temperature rise during operation, or the elongation/contraction of the screw shaft by external load. For such occasion, specify travel compensation (T) when ordering the ball screw.

As an example, **Table 1.5** shows the travel compensation (*T*) for typical NC machine tools.

Table 1.5 Travel compensation (T) of specified travel for typical NC machine tools

		Unit: mm
Type of machine	Axis	Travel compensation
		(per 1 m)
NC lathes	X	- 0.02 — - 0.05
	Z	- 0.02 — - 0.03
Machining	X, Y	- 0.03 — - 0.04
centers	Z	Differs by structure

(4) How to determine pre-tension force

In order to absorb thermal expansion, pretension can be provided to the screw shaft at the time of installation. In this case, the pretension is usually equivalent to the expansion brought about by the temperature rise of 2 to 3°C.

Fig. 1.2 shows the bearing support structure in such occasion.

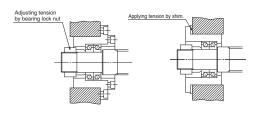


Fig. 1.2 Bearing structure to provide pre-tension

B-2-1.3 Mounting Accuracy and Tolerance of Ball Screws

The accuracy related to mount the ball screws is specified in the following seven characteristics (Fig. 1.3).

The tolerance is indicated in the specification drawing.

Detailed tolerances are specified by JIS B1192. For reference, Table 1.6 shows standard values of "(7) Total run-out of the screw shaft axis (straightness of the screw shaft)". NSK sets stricter tolerance standards than JIS standards. For accuracy of the ball screw installation, refer to "Installation of Ball Screw (1) Centering of the units" (page B73).

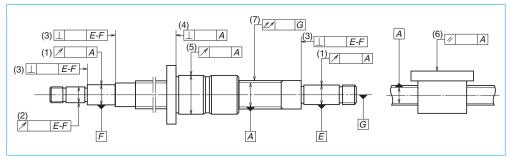


Fig. 1.3 Mounting accuracy of ball screw

- (1) Radial run-out of the support bearing seat relative to the axis of the ball thread of screw shaft.
- (2) Radial run-out of the other shaft ends section relative to the axis of the support bearing
- (3) Perpendicularity of the shoulder of support bearing seat relative to the axis of support
- (4) Perpendicularity of the nut flange surface, or of the nut end datum surface, relative to the axis of screw shaft.
- (5) Eccentricity of the nut outside surface (cylindrical shape) to the axis of screw shaft.
- (6) Parallelism of the nut mounting surface to the screw shaft axis. (in case of flat mounting surface)
- (7) Total run-out of the screw shaft axis.

Table 1.6 Total run-out of the screw shaft axis

Unit: µm

	Accuracy g	rade			С	:0						C1			
Nomina	Nominal diameter (mm) over		-	8	12	20	32	50	-	8	12	20	32	50	80
	over	or less	8	12	20	32	50	80	8	12	20	32	50	80	125
	-	125	15	15	15				20	20	15				
	125	200	25	20	20	15			30	25	20				
(mm)	200	315	35	25	20	20			40	30	25	20			
	315	400		35	25	20	15		45	40	30	25	20		
shaft	400	500		45	35	25	20			50	40	30	25		
8	500	630		50	40	30	20	15		60	45	35	25	20	
screw	630	800			50	35	25	20			60	40	30	25	
of	800	1 000			65	45	30	25			75	55	40	30	25
gth	1 000	1 250			85	55	40	30			95	65	45	35	30
len	1 250	1 600			110	70	50	40			130	85	60	45	35
Overall length	1 600	2 000				95	65	45				120	80	55	40
Ŏ	2 000	2 500											100	70	50
	2 500	3 150												130	90
	3 150	4 000													120

Unit: um

Accuracy grade						C3					C5					
Nomina	l diameter (mm)	over	-	8	12	20	32	50	80	-	8	12	20	32	50	80
	over	or less	8	12	20	32	50	80	125	8	12	20	32	50	80	125
	-	125	25	25	20					35	35	35				
	125	200	35	35	25	20				50	40	40	35			
	200	315	50	40	30	30				65	55	45	40			
	315	400	60	50	40	35	25			75	65	55	45	35		
(FIL	400	500		65	50	40	30				80	60	50	45		
Overall length of screw shaft (mm)	500	630		70	55	45	35	30			90	75	60	50	40	
hafi	630	800			70	55	40	35				90	70	55	45	
× ×	800	1 000			95	65	50	40	30			120	85	65	50	45
scre	1 000	1 250			120	85	60	45	35			150	100	75	60	50
of s	1 250	1 600			160	110	75	55	40			190	130	95	70	55
gth	1 600	2 000				140	95	70	50				170	120	85	65
len	2 000	2 500					120	85	60					150	110	80
erall	2 500	3 150					160	110	75					200	140	95
Õ	3 150	4 000					220	150	100					260	180	120
	4 000	5 000						200	130						240	160
	5 000	6 300													310	210
	6 300	8 000														280
	8 000	10 000														370

B-2-1.4 Automatic Lead Accuracy Measuring System of NSK

In response to the demand for high precision in production technology, NSK is the first in the world that developed and uses "Lead Accuracy Measuring System (LAMS)." Lead accuracy is measured by the system that employs a laser interferometer measuring instrument and a personal computer.

Fig. 1.4 shows the lead accuracy measuring system. The inspection date of the ball screw is shown in Fig. 1.5. The laser interferometer measures either ball nut travel accuracy or lead accuracy of the ball thread. The data which are input into a computer are processed into four characteristics readings regarding lead accuracy. (See page B37.)

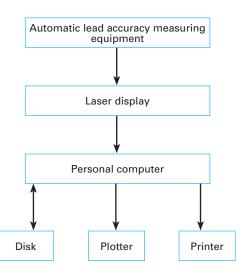


Fig. 1.4 Lead accuracy measuring system

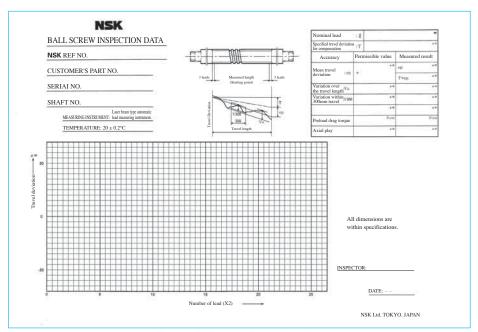


Fig. 1.5 Ball screw Inspection data

B-2-2 Static Load Limitation

Ball screws, based on their function, will generally receive axial load only. Ball screw shafts in general are long, so it is necessary to consider 3 items below:

- · Buckling load of the screw shaft
- Yielding of the screw shaft by tensional or compressive stress
- Permanent deformation at the ball contact points

B-2-2.1 Buckling Load

It is necessary to calculate whether the ball screw shaft is safe against buckling.

Buckling load, i.e. permissible compressive load "P" to axial direction, is calculated as follows.

$$P = \alpha \times \frac{N \cdot \pi^{2} \cdot E \cdot I}{L^{2}} = m \frac{d_{r}^{4}}{L^{2}} \times 10^{4} \text{ (N) } \cdots 2)$$

In this formula:

 α : Safety factor (α = 0.5)

E: Elastic modulus ($E = 2.06 \times 10^5 \text{ MPa}$)

I: Moment of inertia

$I = \frac{\pi}{64} d_r^4 \qquad (mm^4) \cdots 3$	3)
---	----

- d_r: Screw shaft root diameter (mm) (See the dimension table.)
- L: Unsupported length (mm) (See Figs. 4.1 and 4.2 'Supporting conditions of screw shaft and nut' on page B51.)
- m, N: Factors determined by the supporting condition of the ball screw shaft

Table 2.1 Factors of bucking load

Supporting condition	m	N
Fixed - Fixed support	19.9	4
Fixed - Simple support	10.0	2
Fixed support - Free	1.2	0.25
Simple - Simple support	5.0	1

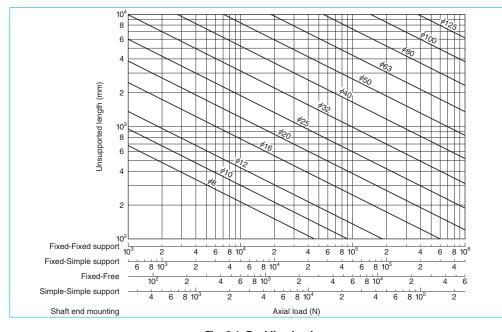


Fig. 2.1 Buckling load

B43 B44

<<Calculation example of buckling load>>

Calculate buckling load under the conditions in Fig. 2.2.

<Use conditions>

Nut model: DFT4010-5

Supporting condition is Fixed - Fixed support (From the supporting condition (ii)

in Fig. 4.1 'Supporting conditions of screw shaft and nut' on page B51.)

Unsupported length L = 2000 mm

Screw shaft root diameter $d_r = 34.4 \text{ mm}$ (From the dimension table)

<Calculation>

Support condition is Fixed - Fixed support, from Table 2.1 on page B44

N = 4

m = 19.9

By formula 2) on page B44

$$P = m \frac{d_1^4}{L^2} \cdot 10^4 = 19.9 \times \frac{34.4^4}{2000^2} \times 10^4 = 69 667 \text{ (N)}$$

Therefore,

Permissible buckling load P = 69600 N

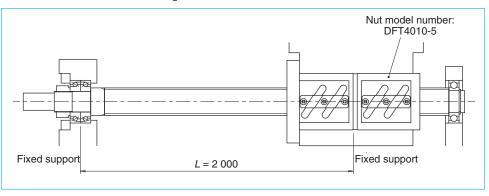


Fig. 2.2 Calculation example of buckling load

B-2-2.2 Yield by Tensional/Compressive Stress

It is necessary to consider permissible load in regards to the yield stress.

Permissible load "P" by tensional or compressive stress to screw shaft is

$$P = \sigma \cdot A = 1.15 d_r^2 \times 10^2 \text{ (N)}$$
 ... 4

In this formula:

σ: Allowable stress (= 147 MPa)

A: Cross section area of a screw shaft using root diameter (mm²)

$$A = \frac{\pi}{4} \cdot d_r^2 \text{ (mm}^2\text{)} \qquad \dots 5$$

d: Screw shaft root diameter (mm)

<<Calculation example of yield load>>

Obtain load in respect to the allowable stress under the conditions in **Fig. 2.2**.

<Use conditions>

Nut model: DFT4010-5

Screw shaft root diameter $d_r = 34.4$ (mm)

(From the dimension table)

<Calculation>

By formula 4)

$$P = 1.15 d_r^2 \times 10^2 = 1.15 \times 34.4^2 \times 10^2$$

= 136 086 (N)

Therefore,

Permissible load $P = 136\,000\,\text{N}$

B-2-2.3 Permanent Deformation at the Ball Contact Point

Exposed to an excessively heavy load in axial direction, the balls are squashed, and the ball rolling surface is dented. The deformations on these points do not perfectly restore to original shape after the load is removed. They are permanently disfigured. It is necessary to determine the limitation of this disfigurement to containing it within a certain range.

(1) Basic static load rating C_{0a}

Basic static load rating C_{oa} is a load to axial direction that results in the combined permanent deformation equal to 0.01% of the ball diameter at the contact points of ball and ball grooves of the screw shaft and nut.

(2) Calculation of permissible load by C_{0a}

 P_{\circ} (allowable axial direction load to limit the permanent deformation) is calculated using $C_{\circ \circ}$.

$$P_0 = \frac{C_{0a}}{f} (N) \qquad \cdots 6)$$

In this formula, f.: Static permissible load factor

Table 2.2 Static permissible load factor

At time of normal operation	1 – 2
With vibration impact	1.5 – 3

<<Calculation example of the maximum allowable load>>

Obtain the maximum allowable load to the ball groove section under conditions in Fig. 2.2.

<Use conditions>

Nut model: DFT4010-5

Basic static load rating $C_{0a} = 137\,000$ (N)

(From the dimension table)

Static permissible load factor $f_s = 2$

(normal operation, no vibration impact)

<Calculation>

By formula 6), the maximum allowable load of the ball groove section

$$P_0 = \frac{C_{0a}}{f_s} = \frac{137\ 000}{2} = 68\ 500\ (N)$$

B-2-3 Permissible Rotational Speed

Permissible rotational speed is determined by the feeding speed and ball screw lead. When selecting a ball screw, it is important to know the permissible rotational speed.

It is necessary to calculate two items below, and whichever smaller is the permissible rotational speed.

The lower of the following two factors, d·n and critical speed, will determine the overall permissible rotational speed of the ball screw.

- Critical speed which is the resonance vibration of the shaft.
- d-n value which is involved in damaging the ball recirculation components.
- * Please consult NSK if the maximum rotational speed exceeds the criteria of maximum rotational speed on page B50, even both the critical speed of screw shaft rotation and the d·n value are in range of the allowable limit.

B-2-3.1 Critical Speed of the Screw Shaft

Calculate the critical speed which is the matching value of the ball screw rotational speed and the natural frequency of the screw shaft. The 80% of the critical speed is defined as the permissible rotational speed.

Calculate the critical speed of the screw shaft whether you use shaft rotation or nut rotation. Critical speed varies by the nut traveling position. Please consult NSK for detailed calculation.

If using a ball screw exceeding the critical speed, it is necessary to increase the natural frequency by using an intermediate support, etc. If using with nut rotation, it is possible to operate exceeding critical speed by installing a vibration energy absorbing system (optional, vibration control damper: patented by NSK) to the screw shaft. (Refer to "Nut rotatable drive ND Series" on page B517.)

Calculate the permissible rotational speed based on critical speed $n_{\rm c}$ as follows, taking in account "B-2-4 Supporting Conditions for Calculation of Buckling Load and Critical Speed" on page B51.

Fig. 3.1 shows the permissible rotational speeds against critical speed for each shaft diameter.

$$n_{c} = \alpha \times \frac{60\lambda^{2}}{2\pi L^{2}} \sqrt{\frac{E \cdot I \cdot g}{\gamma \cdot A}}$$

$$= f \frac{d_{r}}{I^{2}} \times 10^{7} \text{ (min}^{-1)} \qquad \dots 7)$$

In this formula:

 α : Safety factor (α = 0.8)

E: Elastic modulus (E = 2.06 × 10⁵ MPa)

I: Moment of inertia of area of screw shaft

$$I = \frac{\pi}{64} d_r^4 (\text{mm}^4) \qquad \cdots 3$$

 d_r : Screw shaft root diameter (mm) (See the dimension table.)

g: Acceleration of gravity (= 9.8 × 10³ mm/s²)

 γ : Specific weight ($\gamma = 7.65 \times 10^{-5} \text{ N/mm}^3$)

A: Cross section area of the screw shaft root diameter (mm²)

$$A = \frac{\pi}{4} \times d_r^2 \text{ (mm}^2\text{)} \qquad \cdots 5$$

L: Unsupported length (mm) (See Figs. 4.1, and 4.2 "Supporting conditions of screw shaft and ball nut" on page B51)

 f_{i} λ : Factors determined by the supporting condition

Table 3.1 Coefficients of critical speed

Supporting condition	f	λ
Fixed - Simple support	15.1	3.927
Fixed - Fixed support	21.9	4.730
Fixed support - Free	3.4	1.875
Simple - Simple support	9.7	π

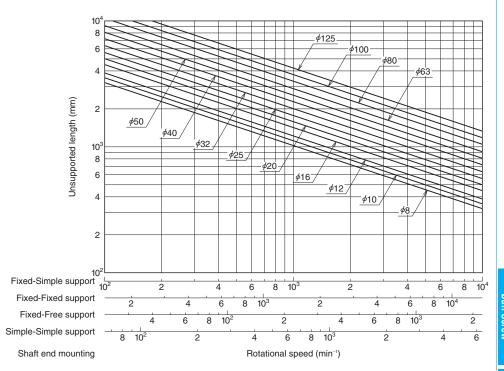


Fig. 3.1 Permissible rotational speeds vs. critical speeds

B47 B48

<<Calculation example of permissible rotational speed to the critical speed>> Calculate the permissible rotational speed to the critical speed under conditions in Fig. 3.2.

<Use conditions>

Nut model: DFT4010-5

Supporting condition is Fixed - Simple support (From the supporting condition (ii) in **Fig. 4.1** "Supporting conditions of screw shaft and ball

nut" on page B51.)

Unsupported length L = 2000 mm

Screw shaft root diameter $d_r = 34.4 \text{ mm}$ (from the dimension table)

<Calculation>

Supporting condition is Fixed-Simple support, from Table 3.1 on page B47

$$\lambda = 3.927$$

f = 15.1

By formula 7) on page B47, permissible rotational speed to critical speed is

$$n_c = f \frac{d_c}{L^2} \times 10^7 = 15.1 \times \frac{34.4}{2000^2} \times 10^7 = 1298.6 \text{ (min}^{-1})$$

 $n_c = 1290 \text{ min}^{-1} \text{ or under}$

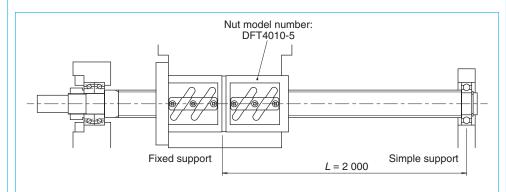


Fig. 3.2 Calculation example of permissible rotational speed to the critical speed

B-2-3.2 d·n Value

An increase of ball orbital speed increases the collision impact of balls to ball recirculation parts, and thus resulting in damage to them. For this reason, the permissible rotational speed is also limited by the d·n value (d, shaft diameter in millimeters; n, rotational speed per minutes). Table 3.2 shows the allowable d·n value and the

Table 3.2 shows the allowable d·n value and the maximum rotational speed of ball screws.

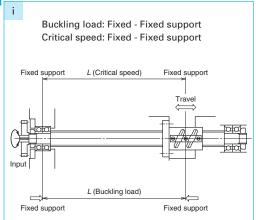
- Notes: 1. Special measure must be taken for high-speed specification products.

 Please consult NSK.
 - Please consult NSK if the maximum rotational speed or the d·n value exceed the values on the table below, even both the critical speed of screw shaft and the d·n value are in ranges of the allowable limit.

Table 3.2 Criteria of allowable d·n value and maximum rotational speed

ъ.,	o	Allowable d∙n	value	Criterion of permissible
Ball screw recirculation system, Series/Type		Standard	High-speed	rotational speed [min ⁻¹]
Standard ball screw	Ball screw for transfer equipment R series	50 000 or less	-	3 000
	End-deflector type	180 000 or less	_	5 000
Standard nut ball	Return tube type	70 000 or less	100 000 or less	3 000
screws	Deflector type	84 000 or less	100 000 or less	3 000
	End cap type	80 000 or less	100 000 or less	3 000
	HMD type for high-speed machine tools	160 000 or less	-	4 000
	HMC type for high-speed machine tools	100 000 or less, 135 000 or less*1	-	3 750
	BSL type for miniature lathes	(180 000 or less)	_	4 000
	HTF-SRC type for high-load drives	140 000 or less, 160 000 or less*1	_	3 225
Application-	HTF-SRD type for high-load drives	120 000 or less	-	2 400
oriented ball screws	HTF type for high-load drives	50 000 or less, 70 000 or less*1	100 000 or less	3 125
	VSS type for contaminated environment	150 000 or less	_	3 000
	ND series nut-rotatable ball screws	70 000 or less	100 000 or less	3 000
	∑ series for robots	70 000 or less	_	3 000
	R series for transfer equipment	50 000 or less	_	3 000

- *1) Please refer to the explanation of each ball screw for which two allowable d-n values are listed
 - · HMC type for high-speed machine tools: page B477
 - · HTF-SRC type for high-load drives: page B487
 - · HTF type for high-load drives: page B495

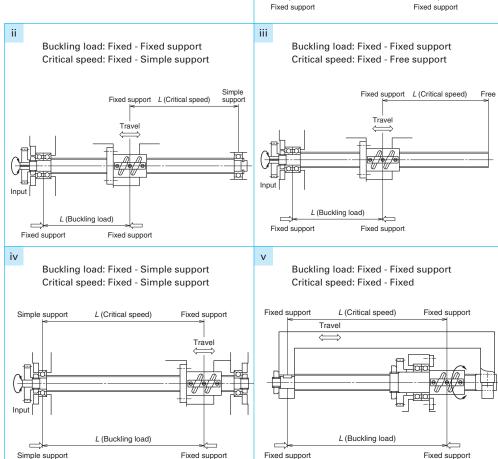
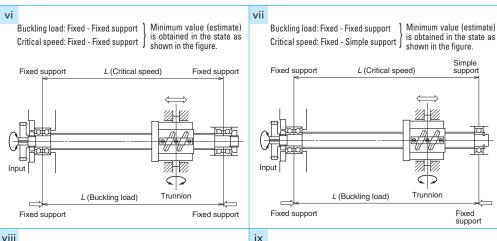
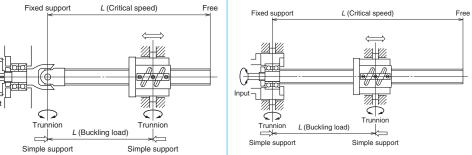

B-2-4 Supporting Conditions for Calculation of Buckling Load and Critical Speed

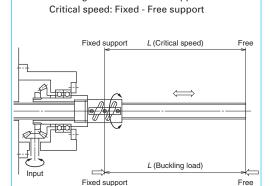
Figs. 4.1 and 4.2 are typical conditions in supporting ball screws. Use them as reference to calculate the buckling load and the critical speed.

Please consult NSK if it is necessary to scrutinize calculation due to use conditions, or if boundary conditions are not clear due to special installation.

[How to read the tables]

Example ii: A buckling load generates between the nut and the left bearings, indicating that the critical speed appears between the nut and the right bearing. Therefore, set L at the maximum stroke for each side. Calculate by applying support bearing conditions.


Fig. 4.1 Supporting conditions for screw shaft and ball nut

Buckling load: Simple support - Simple support Buckling load: Simple support - Simple support Critical speed: Fixed - Free support→ Minimum value Critical speed: Fixed - Free support→ Minimum value (estimate) is obtained in the state as shown in the figure. (estimate) is obtained in the state as shown in the figure. Fixed support L (Critical speed) L (Critical speed) Fixed support

хi

Buckling load: Fixed - Free support

Х

Critical speed: Fixed - Free support Fixed support L (Critical speed) Free

L (Buckling load)

Buckling load: Fixed - Fixed support

B-2-5 Life (Dynamic Load Limitation)

B-2-5.1 Life of Ball Screw

Although used in appropriate conditions and is ideally designed, the ball screw deteriorates after a certain operation period, and eventually becomes unusable. The period in this situation is the life of the ball screw. There are two life categories, "fatigue life" caused by flaking, and "life of accuracy" caused by deterioration in precision because of wear.

B-2-5.2 Fatique Life

Fatigue life of a ball screw can be estimated by basic dynamic load rating (C_a) as is for the rolling bearings.

(1) Basic dynamic load rating C_a

Basic dynamic load rating is the axial load that allows a 90% of the group of the same ball screws to rotate 1 million times (106 rev) under the same condition without causing flaking by rolling contact fatigue.

(2) Fatigue life calculation

Fatigue life is defined as a total rotation number in general. It is sometimes indicated by total rolling hours or total running distance. Fatique life is obtained by the following formula.

$$L = \left(\frac{C_{\rm a}}{F \cdot f}\right)^3 \cdot 10^6 \qquad \cdots 8)$$

$$L_{t} = \frac{L}{60n} \qquad \cdots 9)$$

$$L_{\rm s} = \frac{L \cdot l}{10^6} \qquad \cdots 10)$$

In this formula:

L: Rating fatigue life (rev)

L.: Life in hours (h)

 $L_{\rm s}$: Life by running distance (km)

C₂: Basic dynamic load rating (N)

F_a: Axial load (N)

n: Rotational speed (min⁻¹)

l: Lead (mm)

f. : Load factor (Coefficient by operating condition)

Load factor f_w for operating conditions is shown in **Table 5.1**.

Table 5.1 Load coefficient f_w

Smooth operation without impact	1.0 – 1.2
Normal operation	1.2 – 1.5
Operation associated with impact or vibration	1.5 – 3.0

Setting too long fatigue life requires larger ball screw, and is not economical. Below are the general target values of operating life for machines. (reference)

Table 5.2 General target values of fatigue life

Machine tools	20 000 hours
Industrial machines	10 000 hours
Automatic control system	15 000 hours
Measuring equipment	15 000 hours

(3) Mean load

If the axial load often varies, calculate life by obtaining the mean load, which gives the equivalent fatigue life under this varying load conditions.

(a) When the load and the rotational speed shift stepwise Obtain the mean load F_m by the formula below. Obtain mean rotational speed N_m by the formula below as Table 5.3 and Fig. 5.1.

$$F_{m} = \left(\frac{F_{1}^{3} \cdot n_{1} \cdot t_{1} + F_{2}^{3} \cdot n_{2} \cdot t_{2} + \cdots F_{n}^{3} \cdot n_{n} \cdot t_{n}}{n_{1} \cdot t_{1} + n_{2} \cdot t_{2} + \cdots + n_{n} \cdot t_{n}}\right)^{\frac{1}{3}} \quad \cdots 11$$

$$N_{m} = \frac{n_{1} \cdot t_{1} + n_{2} \cdot t_{2} + \dots + n_{n} \cdot t_{n}}{t_{1} + t_{2} + \dots + t_{n}} \dots 12$$

Table 5.3 Stepwise operation condition

Axial load	Rotational speed	Hours of use, or
(N)	(min ⁻¹)	ratio of hours of use
F ₁	n_1	<i>t</i> ₁
F_2	$n_{\scriptscriptstyle 2}$	t ₂
:	:	:
F _n	n _n	t _n

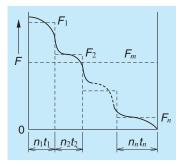


Fig. 5.1 Stepwise load variation

(b) When the rotational speed is constant, and the load changes linearly, obtain approximate value of the mean load F_m by the formula below.

$$F_{\rm m} = \frac{1}{3} \left(F_{\rm min} + 2 F_{\rm max} \right) \qquad \cdots 13$$

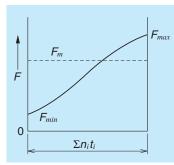


Fig. 5.2 Linear load change

(c) When the rotational speed is constant, and the load changes in a sinusoidal pattern, obtain approximate value of the mean load F_m by the formula below.

> When the sine curve is Fig. (a) $F_{\rm m} = 0.65 F_{\rm max}$... 14) When the sine curve is Fig. (b)

 $F_{\rm m} = 0.75 F_{\rm max}$

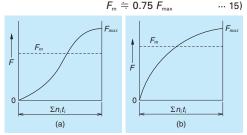


Fig. 5.3 Load changes in sinusoidal pattern

(4) Affect of mounting misalignment

If moment load or radial load is applied to the ball screw, it adversely affects ball screw function, and shortens life. Watch for eccentric load that induces moment or radial load.

Fig. 5.4 shows a calculation example of fatigue life when moment load is applied to the ball screw. In this figure, the value of the rigidity of mounting ball screw sections (screw shaft, support bearing, guide, etc.) is set at infinity. In actual use, deformation is absorbing the moment load in various areas, and the moment load that generates between the screw shaft and nut is abated.

In general, the following values are recommended as control values for precision grade.

Misalignment in inclination .. 1/2 000 or less Eccentricity-----20 µm or less

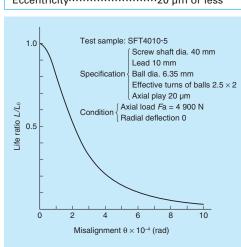


Fig. 5.4 Affects of misalignment

(5) Effects of heavy load and short stroke

If the ball screw is used under heavy load and short strokes, such as for the drive of plastic injection molding machine and of press machines, the fatigue life may become significantly shorter than the rated fatigue life which is calculated in B-2-5.2.

This decreased life occurs because the heavy load generates large stress (surface pressure) in the contact points of balls and ball grooves of the screw shaft and the nut, adversely affecting the life.

The axial load F_{amax}^{*1} during operation and the size of strokes, which affect fatigue life, can be obtained by the following formula.

In such case, the life calculation should take into account the size of the surface pressure as well as the size of the stroke. Please consult with NSK.

$$F_{\text{amax}} \ge 0.10 C_{0a}$$
 ... 16)
 $S \le 4$

In this formula:

 F_{amax} : Maximum load to axial direction during drive (N)

 C_{0a} : Basic static load rating (N)

S: Stroke (rev)

$$S = \frac{L_s}{I}$$

L_c: Stroke distance (mm)

l: Lead (mm)

*1) Axial load: The load is applied to the axial direction when screw shaft and the nut of ball screw are rotating relatively each other. The rotational speed is irrelevant.

B-2-5.3 Ball Screw and Hardness

Table 5.4 indicates the hardness of NSK standard ball screw.

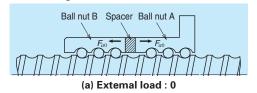
Table 5.4 Ball screw materials and their hardness

Component	Heat treatment method	Hardness (HRC)
Screw shaft	Carburizing	58 or over
Screw Shart	Induction hardening	58 or over
Nut	Carburizing	58 or over

Note: NSK manufactures special material ball screws for special environments (stainless steel: SUS440C, SUS630). NSK also furnishes protective surface treatment (refer to page D5). Please consult NSK for such request.

B-2-5.4 Wear Life

Wear of materials, as is the case for other mechanical components, is significantly affected by use conditions, lubrication conditions and other factors. It is difficult to estimate its volume, and measuring requires various tests and field data.


NSK has the data of wear accumulated through abundant experience. Please contact NSK for inquiry pertaining to the wear.

B-2-6 Preload and Rigidity

B-2-6.1 Elastic Deformation of Preloaded Ball Screw

(1) Position preload (D, Z, and P preload)

The concept of double nut preload ball screw is shown in Fig. 6.1.

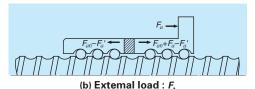


Fig. 6.1 Position preload (double-nut)

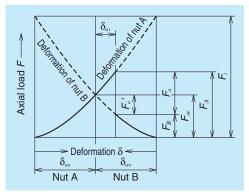


Fig. 6.2 Deformation of A and B nut (position preload)

Elastic deformation of Nut A and B is already given at time of assembly by the amount of δa o by preload F_{a0} . When the external load F_a is added to Nut A, the elastic deformation δ_a and $\delta_{\scriptscriptstyle b}$ of each Nut A and B change as shown in Fig.

$$\delta_a = \delta_{a0} + \delta_{a1}$$
 $\delta_b = \delta_{a0} - \delta_{a1}$

At this time, the load to each Nut A and B are:

$$F_A = F_{ao} + F_a - F_a$$

$$F_{\rm B} = F_{\rm co} - F_{\rm c}$$

It shows that the load applied to Nut A is

affected by Nut B and reduced by the amount of F_a . Thereby, the elastic deformation of Nut A becomes smaller. This effect continues until the elastic deformation by the external load becomes δ_{oo} , and the preload by Nut B disappears.

Assuming that the load when the preload is absorbed is F_{ν} the relationship between the axial load and the elastic deformation is as follows (refer to Fig. 6.2).

$$\delta_{ao} = K \cdot F_{ao}^{2/3}$$
 $2\delta_{ao} = K \cdot F_{l}^{2/3}$ (K: Invariable number)

$$\left[\frac{F_l}{F_{ao}}\right]^{2/3} = \frac{2\delta_{ao}}{\delta_{ao}} = 2$$

For this reason, the preload should be about 1/3 of the maximum axial load. However, please note that if the preload of about 1/3 of the maximum axial load exceeds 10% of C_a , which is the criterion of the maximum preload, the ball screw may adversely increases heat generation and / or may shortens its lifetime.

Fig. 6.3 shows two types of elastic deformation curves: one is by the ball screw with preload, the other without preload. When an axial load which is about three times as large as the preload is applied, the deformation of the preloaded ball screw is 1/2 of the deformation of the ball screw without preload.

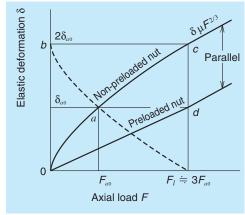


Fig. 6.3 Deformation of preloaded ball nut (position preload)

<u>NSK</u>

(2) Constant pressure preload (J preload: preloaded by spring)

Fig. 6.5 shows an elastic deformation of a ball screw which is preloaded with "constant pressure." The rigidity of the preload spring is sufficiently smaller than the nut rigidity. Therefore, the deformation of the spring becomes nearly parallel to the abscissa axis. For this reason, the elastic deformation by the preload with constant pressure changes along the deformation curve by Nut A.

In order to take advantage of the characteristics of the preload with constant pressure, the major external load should be applied in the directions shown by an arrow in **Fig. 6.4**.

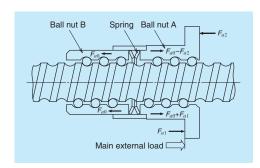


Fig. 6.4 Constant pressure preload (double nut)

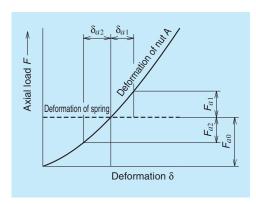


Fig. 6.5 Deformation curve of constant pressure preloaded nut

B-2-6.2 Rigidity of the Feed Screw System

A low rigidity around the feed screw mounting area causes lost motion. To improve the positioning accuracy of precision machines such as NC machine tools, it requires a good balance in axial rigidities of composing parts of the feed screw system.

Also should examine torsional rigidities of the feed screw system.

(1) Axial rigidity of the feed screw system K_T

Elastic deformation and rigidity of the feed screw system can be obtained by the following formula.

$$\delta = \frac{F_a}{K_T} - 17$$

$$\frac{1}{K_{T}} = \frac{1}{K_{S}} + \frac{1}{K_{N}} + \frac{1}{K_{B}} + \frac{1}{K_{H}}$$
......18)

In this formula:

 δ : Volume of axial elastic deformation of the feed screw system (μ m)

F_a: Axial load to the feed screw system (N)

 K_T : Axial rigidity of the feed system (N/ μ m)

 K_s : Axial rigidity of the screw shaft (N/ μ m)

 K_N : Axial rigidity of the nut (N/ μ m)

 $K_{\rm B}$: Axial rigidity of the support bearing (N/µm)

 K_H : Axial rigidity of the nut and bearing mounting section (N/ μ m)

(2) Axial rigidity of the screw shaft: K_s

(a) In case of: Fixed support - Free (axial direction)

$$K_{\rm S} = \frac{A \cdot E}{x} \times 10^{-3} \dots 19$$

In this formula:

 $\textit{K}_{\text{\tiny S}}$: Axial rigidity of the screw shaft (N/µm)

A: Cross section area of the screw shaft (mm²)

$$A = \frac{\pi}{4} dr^2$$

dr: Screw shaft root diameter (mm)

E: Elastic modulus ($E = 2.06 \times 10^5$ MPa)

x: Distance between points of load application (mm)

(b) In case of: Fixed - Fixed support (axial direction)

$$K_{\rm S} = \frac{A \cdot E \cdot L}{x (L - x)} \times 10^{-3} \dots 20$$

In this formula:

 K_s : Axial rigidity of the screw shaft (N/ μ m)

L: Unsupported length (mm)

x: Axial deformation is maximum at position x = L/2.

Axial rigidity of the screw shaft can be obtained by the following formula.

$$K_{\rm S} = \frac{4A \cdot E}{L} \times 10^{-3} \dots 21$$

<<Calculation example of axial rigidity (1)>>

Obtain axial rigidity of the screw shaft under the condition in Fig. 6.6.

<Use conditions>

Nut model: DFT 4010-5

From Fig. 6.6: Supporting condition;

Fixed support -- Free (axial direction)

Distance between points of load application

$$x = 1 200 \text{ mm}$$

Screw shaft root diameter (from the dimension table)

$$d_{.} = 34.4 \text{ mm}$$

<Calculation>

By formula 19), axial rigidity K_s is:

$$A = \frac{\pi}{4} d_r^2 = \frac{3.14}{4} \times 34.4^2 = 929.4 \text{ (mm}^2)$$

$$K_{\rm S} = \frac{A \cdot E}{x} \times 10^{-3} = \frac{929.4 \times 2.06 \times 10^{5}}{1200} \times 10^{-3} = 159 \text{ (N/}\mu\text{m)}$$

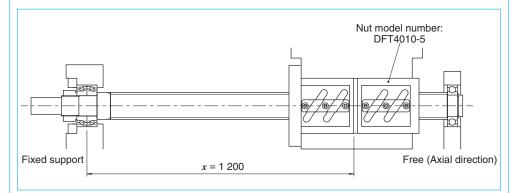


Fig. 6.6 Calculation example of axial rigidity of the screw shaft (1)

<<Calculation example of axial rigidity (2)>>

Obtain axial rigidity of the screw shaft under the conditions in Fig. 6.7.

<Use conditions>

Nut model: DFT 4010-5

From Fig. 6.7: Supporting condition:

Fixed - Fixed support (axial direction)

L = 1 200 mm

Distance between points of load application:

Screw shaft root diameter (from the dimension table)

$$dr = 34.4 \text{ mm}$$

<Calculation>

By formula 21), axial rigidity K_s is:

$$A = \frac{\pi}{4} dr^2 = \frac{3.14}{4} \times 34.4^2 = 929.4 \text{ (mm}^2\text{)}$$

$$K_s = \frac{4A \cdot E}{L} \times 10^{-3} = \frac{4 \times 929.4 \times 2.06 \times 10^5}{1200} \times 10^{-3} = 638 \text{ (N/µm)}$$

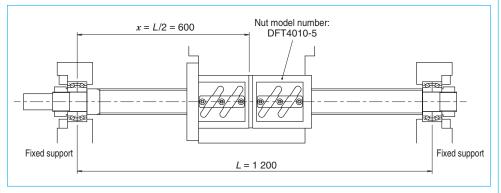


Fig. 6.7 Calculation example of axial rigidity of the screw shaft (2)

(3) Axial rigidity of the ball nut : K_N

(a) Rigidity of the nut with axial play

Theoretical rigidity value K is shown in the dimension table. The value K is obtained from the elastic deformation between screw grooves and balls when an axial load equivalent to 30% of the basic dynamic load rating C_a is applied. The criterion for the ball nut rigidity is 80% of the value listed in the table taking into consideration of deformation of the ball nut, etc. The rigidity value K_N is obtained by the following formula when the axial load " F_a " is not 30% of " C_a ."

$$K_{\rm N} = 0.8 \times K \left(\frac{F_{\rm a}}{0.3 C_{\rm a}} \right)^{1/3} (N/\mu m) \qquad \cdots 22$$

In this formula:

K: Rigidity value in dimension tables (N/ μ m)

F_a: Axial load (N)

C_a: Basic dynamic load rating (N)

<<Calculation example of axial rigidity (3)>> Obtain axial rigidity of the nut under the following conditions.

<Use conditions>

Nut model: SFT 4010-5 Axial load: $F_a = 6000 \text{ N}$

 F_a = Rigidity at 0.3 C_a K = 706 N/ μ m

(from the dimension table)

<Calculation>

By formula 22), axial rigidity K_N is:

$$K_{N} = 0.8 \times K \left[\frac{F_{a}}{0.3 \cdot C_{a}} \right]^{1/3}$$
$$= 0.8 \times 706 \times \left[\frac{6000}{0.3 \times 52000} \right]^{1/3}$$

 $= 410 (N/\mu m)$

(b) Rigidity of preloaded ball nut

Theoretical rigidity K of preloaded ball nut under an axial load is shown in each dimension table. The K is obtained from the elastic deformation of the ball rolling surface and the balls when: a preload which is equivalent to 10% of the basic dynamic load rating C_a (5% in case of the P-preload [single-nut oversize ball preload system]) is applied. The criterion for calculation of nut rigidity is 80% of the value listed in the table taking into consideration of deformation of the ball nut, etc. Rigidity K_N is obtained by the following formula when preload " F_a " is not 10% (or 5%) of " C_a ".

$$K_{\rm N} = 0.8 \times K \left(\frac{F_{\rm a0}}{\varepsilon \cdot C_{\rm a}} \right)^{1/3} (N/\mu m)$$
 ... 23)

In this formula:

K: Rigidity in the dimension tables (N/ μ m)

 F_{a0} : Preload (N)

 ϵ : Basic factor to calculate rigidity (ϵ = 0.1. For P-preload use percentage of the preload to basic dynamic load rating. e.g. 0.03 for BSS and 0.015 for VSS.)

<<Calculation example of axial rigidity of the screw shaft (4)>> Obtain axial rigidity of the nut under the following conditions.

<Use conditions>

Nut model : DFT 4010-5

Preload : $F_{a0} = 4\,000\,\text{N}$

Rigidity K when $F_{a0} = \varepsilon C_a$: $K = 1 376 \text{ N/}\mu\text{m}$ (from the dimension table on page B435)

Basic factor to calculate rigidity when

D Preload: $\varepsilon = 0.1$

<Calculation>

By formula 23)

$$K_{N} = 0.8 \times K \left(\frac{F_{a0}}{\epsilon \cdot C_{a}} \right)^{1/3}$$
$$= 0.8 \times 1376 \times \left(\frac{4000}{0.1 \times 52000} \right)^{1/3}$$

 $= 1 008 (N/\mu m)$

The criterion of the preload to ball screw

Nut rigidity increases by a larger preload volume. But an excessive preload shortens life, and generates heat. Set the maximum preload about at 0.1 C_a (0.05 for P-Preload). Table 6.1 shows the criteria for preload for different applications.

Table 6.1 Criteria of preload

Ball screw application	Preload (relative to dynamic load rating C_a)
Robots,material handling systems, etc.	Axial play or under 0.01 $C_{\scriptscriptstyle a}$
Semiconductor manufacturing systems, etc. That require highly accurate positioning	0.01 C _a - 0.04 C _a
Medium- high-speed machine tools for cutting	0.03 C _a - 0.07 C _a
Low to medium-speed systems that require especially high rigidity	0.07 C _a - 0.1 C _a

(4) Axial rigidity of support bearing: K_{R}

Rigidity of the combined thrust angular contact ball bearings which is widely used as a support bearing of the ball screw for high-precision equipment can be obtained by the following formula.

$$K_{\rm B} \doteq \frac{3F_{\rm a0}}{\delta_{\rm a0}} (N/\mu m)$$
 ... 24)

In this formula:

 $K_{\rm B}$: Rigidity of the combined thrust angular contact ball bearings (N/µm)

 F_{ao} : Preload of the bearings (N)

 δ_{ao} : Axial elastic deformation by preload (µm)

$$\delta_{a0} \doteq \frac{0.44}{\sin \alpha} \left(\frac{\textit{Q}^2}{\textit{D}_W} \right)^{1/3} (\mu m) \qquad \qquad \cdots 25)$$

$$Q = \frac{F_{a0}}{Z} \cdot \sin \alpha$$

 α : Contact angle

Dw: Ball diameter (mm)

Z: Number of balls

Refer to page B399 for data regarding thrust angular contact ball bearings which support high-precision ball screws (TAC Series).

(5) Axial rigidity of the ball nut and bearing mounting section: K_{H}

As the rigidity of mounting section has a profound effect on positioning accuracy, we recommend incorporating high rigidity of the mounting sections of ball nut and support bearings into the design at the early stage of designing the machine.

- (a) Torsional rigidity of the feed screw system Major torsion factors in the rotating system that bring about error in positioning accuracy are given three points below.
 - · Torsional deformation of the screw shaft
 - · Torsional deformation of the joint section
 - · Torsional deformation of the motor

The value of the effect of torsional strain to positioning accuracy is smaller than axial deformation. However, check the effect when designing equipment that requires high positioning accuracy.

(b) Suppress thermal error

It is necessary to minimize the thermal error for ever increasing demand for positioning accuracy give three points below.

- Suppress heat
- Forced cooling
- Avoid effect of temperature rise

Refer to "Measures against thermal expansion" on page B40.

B-2-7 Friction Torque and Drive Torque

Operations that use ball screw drives require a motor torque which is equivalent to the total of following two:

- Friction torque, i.e. the friction of the ball screw itself
- Drive torque which is required for operation

B-2-7.1 Friction Torque

(1) Starting friction torque (Break away torque)

A high torque is necessary to start a ball screw. This is called "starting friction torque" or

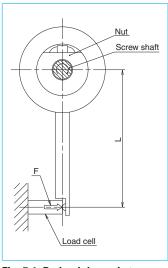


Fig. 7.1 Preload dynamic torque measuring method

"brakeaway torque." This torque is 2 to 2.5 times larger than the dynamic (friction) torque due to preload which is described below. The starting friction torque quickly diminishes once the ball screw begins to move.

(2) Dynamic friction torque (dynamic friction torque due to preload)

When a ball screw is moving, two types of torque generate: the dynamic friction torque due to preload and the friction torque associated with ball recirculation. JIS B1192 sets the standard of dynamic friction torque due to preload, which is the total of these two torque types. They are defined in Fig. 7.2.

The dynamic friction torque due to preload is calculated by the following formula. When the screw shaft is rotated as Fig. 7.1 in the following measuring conditions, measure the nut holding power F and then multiple the distance of action line L which is perpendicular to the direction of the power F.

$$T_{\rm o} = F \cdot L$$
 ... 26)

- Measuring rotational speed 100 min⁻¹
- · Viscosity of Iubrication is ISO VG 68 as prescribed in JIS K 2009.
- · Remove Seals.

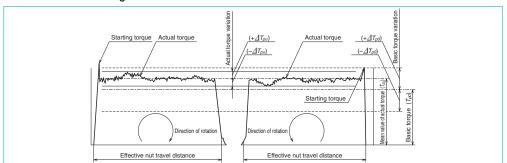


Fig. 7.2 Definitions of dynamic preloaded drag torque

(3) Calculation of basic torque

The basic torque of preloaded ball screw T_{p0} can be obtained by the following formula.

$$T_{\text{po}} = K \frac{F_{\text{a0}} \cdot l}{2\pi} \stackrel{.}{=} 0.014 F_{\text{ao}} \sqrt{d_{\text{m}} \cdot l} \quad (\text{N} \cdot \text{cm})$$
... 27

In this formula:

 F_{a0} : Preload (N)

l: Lead (cm)

K: Torque coefficient of ball screw

$$K = \frac{0.05}{\sqrt{tan\beta}}$$

β: Lead angle (deg.)

d_m: Ball pitch circle diameter (cm)

Allowable values of torque variation rate relative to basic torque are regulated as shown in **Table 7.1**.

B-2-7.2 Drive Torque

(1) Operating torque of a ball screw

(a) Normal drive

The torque when converting rotational motion to linear motion (normal operation) is obtained by the following formula.

$$T_{a} = \frac{F_{a} \cdot l}{2\pi \cdot \eta_{1}} \quad (N \cdot cm) \qquad \cdots 28)$$

In this formula:

 T_a : Normal operation torque (N · cm)

 F_a : Axial load (N)

l: Lead (cm)

 η_1 : Normal efficiency ($\eta_1 = 0.9$ to 0.95)

(b) Back-drive operation

The torque when converting linear motion to rotational motion (back-drive operation) is obtained by the following formula.

$$T_{\rm b} = \frac{F_{\rm a} \cdot l \cdot \eta_2}{2\pi} \quad (N \cdot cm) \qquad \cdots 29)$$

In this formula:

 T_b : Reverse operation torque (N · cm)

 η_2 : Reverse efficiency ($\eta_2 = 0.9$ to 0.95)

(c) Dynamic drag torque of the preloaded ball screw the operation torque of preloaded ball screw can be obtained by Formula 27).

Table 7.1 Range of allowable values of torque variation rates (Source: JIS B 1192)

		Effective length of the screw thread (mm)										
Basic	torque				4 000 0	or under				Over 4 00	0 and 10 00	0 or under
(N ·	cm)	Slend	derness ra	tio ⁽¹⁾ : 40 o	r less	Slenderness	s ratio ⁽¹⁾ : Moi	re than 40 ar	nd 60 or less		_	
			Accurac	cy grade			Accurac	cy grade		Ac	curacy gra	ade
Over	Incl.	C0	C1	C2, 3	C5	C0	C1	C2, 3	C5	C1	C2, 3	C5
20	40	±30%	±35%	±40%	±50%	±40%	±40%	±50%	±60%	_	_	_
40	60	±25%	±30%	±35%	±40%	±35%	±35%	±40%	±45%	_	_	_
60	100	±20%	±25%	±30%	±35%	±30%	±30%	±35%	±40%	_	±40%	±45%
100	250	±15%	±20%	±25%	±30%	±25%	±25%	±30%	±35%	_	±35%	±40%
250	630	±10%	±15%	±20%	±25%	±20%	±20%	±25%	±30%	_	±30%	±35%
630	1 000	_	±15%	±15%	±20%	_	_	±20%	±25%	_	±25%	±30%

Notes: 1. Slenderness ratio: The value obtained by dividing the length of the screw thread section of screw shaft (mm) by diameter of the screw shaft (mm)

2. NSK independently sets torque standards which are under 20 N · cm.

(2) Drive torque of the motor

(a) Drive torque at constant speed

The torque which is necessary to drive a ball screw at constant speed resisting to external loads can be obtained by the following formula.

$$T_1 = (T_a + T_{pmax} + T_u) \times \frac{N_1}{N_2}$$
 ... 30

In this formula:

 $T_{\rm a}$: Drive torque at constant speed

$$T_{\rm a} = \frac{F_{\rm a} \cdot l}{2\pi \cdot \eta_{\rm a}} \qquad \cdots 28)$$

F_a: Axial load (N)

The value of F_a in Fig. 7.3 is:

$$F_a = F + \mu \cdot m \cdot g$$

F: Such as cutting force to axial direction (N)

 μ : Friction coefficient of the guide way

m : Volume of the traveling section (table mass plus work mass kg)

g: Gravitational acceleration (9.80665 m/s²)

 T_{pmax} : Upper limit of the dynamic friction torque of ball screw (N · cm)

 T_u : Friction torque of the support bearing (N · cm)

N₁: Number of teeth in Gear 1

 N_2 : Number of teeth in Gear 2

Generally, though it depends on the type of motor, T_1 shall be kept under 30% of the motor rating torque.

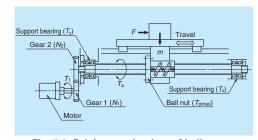


Fig. 7.3 Driving mechanism of ball screw

(b) Drive torque at acceleration

Accelerating the ball screw resisting axial load requires the maximum torque in an operation. Drive torque necessary for this occasion can be obtained by the following formula.

$$T_2 = T_1 + J \cdot \dot{\omega}$$
 ... 31)

$$J = J_M + J_{G1} \left(\frac{N_1}{N_2} \right)^2 \left[J_{G2} + J_S + m \left(\frac{l}{2\pi} \right)^2 \right] \text{ (kg} \cdot \text{m}^2\text{)}$$

... 3

In this formula:

 T_2 : Maximum drive torque at time of acceleration (N \cdot m)

 $\dot{\omega}$: Motor's angular acceleration (rad/s²)

J: Moment of inertia applied to the motor (kg · m²)

 $J_{\rm M}$: Moment of inertia of the motor (kg · m²)

 J_{G1} : Moment of inertia of Gear 1 (kg · m²)

 J_{G2} : Moment of inertia of Gear 2 (kg · m²)

 J_s : Moment of inertia of the screw shaft $(kg \cdot m^2)$

When selecting a motor, it is necessary to examine the maximum torque of the motor relative to the drive torque T_2 at the time of acceleration of ball screw.

For the calculation of the moment of inertia of a cylindrical object (ball screw, gear, etc.), please refer to the formula below.

Formula for the moment of inertia of a cylindrical object

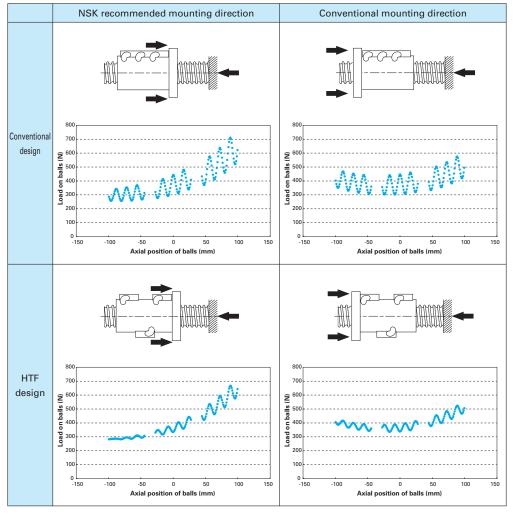
$$J = \frac{\pi \cdot \gamma}{32} D^4 \cdot L \text{ (kg} \cdot \text{cm}^2\text{)} \qquad \cdots 33\text{)}$$

In this formula:

γ: Material density (kg/cm³)

D: Diameter of the cylindrical object (cm)

L: Length of the cylindrical object (cm)


B-2-8 Even Load Distribution in Ball Nut (In Case of Ball Screws for High-Load Drive)

Generally, the distribution of loaded balls in a ball nut is three-dimensionally asymmetric, thus resulting in uneven load distribution to the balls and ball nut. NSK has taken the measures for even load distribution to the balls by an optimal arrangement of the position of ball recirculation circuits.

Additionally, a heavier load results in a measurable axial deformation of the screw

shaft and the ball nut, thus further increasing the unevenness of load distribution. We have lessened the unevenness of load distribution to the balls by arranging the load acting point of the ball nut and the screw shaft opposite to each other. The relation between loading points and load distribution is shown in Fig. 8.1, while Table. 8.1 shows the result of load distribution analysis.

Table. 8.1 The result of equalization of load distribution

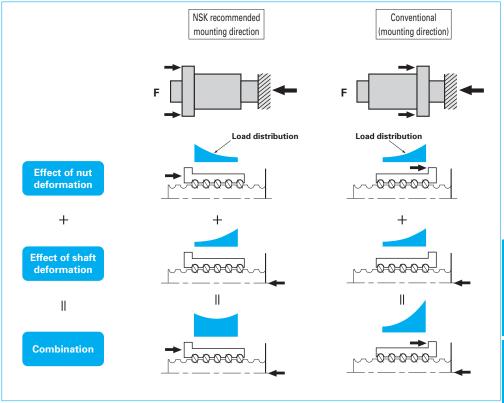


Fig. 8.1 The relationship between acting point of load and load distribution

B-2-9 Lubrication of Ball Screw

Lithium soap-based grease with base oil viscosity of 30 to 140 mm²/s (40°C) is recommended for grease lubrication and oil of ISO VG 32 to 100 for oil lubrication.

In general, a lubricant with low base oil viscosity is recommended where a ball screw is used for high-speed operation, and thus requires reducing thermal elongation of the screw shaft. On the other hand, a lubricant with high base oil viscosity is recommended for a low-speed, high-temperature operation, or a high-load and oscillating operation.

Please consult NSK about greases for high-load drives and high-temperature applications.

NSK markets "NSK Grease Unit" as the standard series products for a variety of applications. NSK Grease Unit for ball screw lubrication includes:

- 1) Various types of grease in the bellows-tube which can be instantly attached to the grease pump
- 2) Hand grease pump which is compact and easy to use
- 3) Nozzles

Table 9.1 shows NSK greases, and names of other ball screw greases.

Table 9.2 explains checking points in lubrication and standard intervals between replenishments. It is important to wipe off old grease from the screw shaft prior to applying new grease. Page D16 also explains in detail concerning the replenishing methods.

Table 9.1 Grease for ball screw

	Product name	Thickener	Base oil	Base oil viscosity mm²/s (40°C)	Range of temperature for use (°C)	Application
1	NSK Grease AS2	Lithium base	Mineral oil	130	-10 - 110	General heavy load
1	NSK Grease PS2	Lithium base	Synthetic oil combined with mineral oil	15	-50 - 110	Light load
1	NSK Grease LR3	Lithium base	Synthetic oil	30	-30 - 130	High-speed medium load
1	NSK Grease LG2	Lithium base	Mineral oil combined with Synthetic hydrocarbon oil	30	-20 - 70	For clean environment
1	NSK Grease NF2	Urea composite type	Synthetic hydrocarbon oil	27	-40 – 100	Fretting resistant

^{*}Refer to page D13 for the nature of NSK greases.

Table 9.2 Checking lubricant and intervals of replenishment

Lubricating method	Checking intervals	Check points	Replenish/replacing interval
Intermittent automatic oil supply	Once a week	Remaining volume, contamination	Supply oil when checking (depending on the tank volume)
Grease	2 – 3 months after start of use	Clean, foreign matters	Generally once a year (replenish when necessary)
Oil bath	Every day, when start to work	Oil level	Specify according to oil consumption

B-2-10 Dust Prevention for Ball Screw

If foreign matters enter inside the ball nut, all screw grooves and balls wear rapidly, or the ball screw may malfunction due to the damage of groove and/or ball recirculation system. Use bellows or telescopic pipes (Fig. 10.1) to keep foreign matters from entering into the feed

screw system. Install these items so as to shut foreign matters completely from the ball screw. Also it is even more effective to add seals on the ball nut as shown in Figs. 10.2 to 10.6. We provide seals in Table 10.1.

Table 10.1 Seal

	Sealing capability	Torque	Heat	Application
Thin plastic seal	0	0	0	End deflector type, HMD type, BSL type
Plastic seal	×	0	0	Tube type, Defiector type
Wiper seal	Δ	×	×	(Seal is not put on the lead of 1mm or smaller.)
High performance seal	0	0	0	VSS type
Brush-seal	Δ	0	0	For R Series (Seal for those with the shaft diameter of 14 mm or less is plastic seal.)

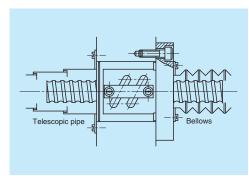


Fig. 10.1 Dust prevention by telescopic pipe and bellows

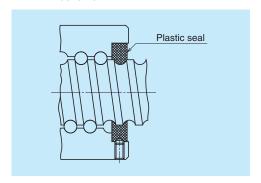


Fig. 10.3 Plastic seal

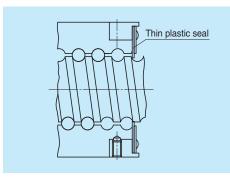


Fig. 10.2 Thin plastic seal

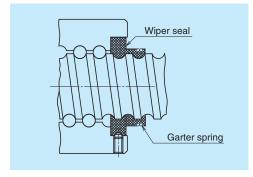


Fig. 10.4 Wiper seal

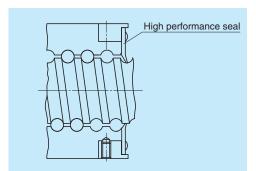


Fig. 10.5 High performance seal

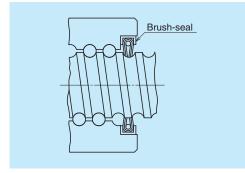


Fig. 10.6 Brush-seal for R Series

B-2-11 Rust Prevention and Surface Treatment of Ball Screws

(1) Stainless steel ball screw

KA type ball screws made of stainless steel are available. Please consult NSK for a custom made stainless steel ball screw.

(2) Types of surface treatment

The following are common types of treatment.

- OLow temperature chrome plating
- Used to prevent corrosion and light reflection. and for cosmetic purpose.
- OFluoride low temperature chrome plating
- · Fluoroplastic coating is provided following the low temperature chrome plating.
- · Resistance to corrosion is higher than low temperature chrome plating.
- OHard chrome plating
- Very hard coating provides high resistance to both wear and corrosion.
- OElectroless nickel plating
- · Creates a film of consistent thickness on complex shaped items.
- For corrosion prevention.

(3) Recommended surface treatment

Among the surface treatments mentioned above, we recommend "Low temperature chrome plating" and "fluoride low temperature chrome plating" for rust prevention because of the result of humidity chamber test for antirust characteristics.

However, never apply any organic solvent for degreasing because it has adverse effect on antirust characteristics.

Table 11.1 Surface treatment length

	Applicable length
Low temperature chrome plating	5 m or less
Fluoride low temperature chrome plating	4 m or less

Refer to "1.3 Rust Prevention and Surface Treatment" (page D5) for the results of humidity chamber test.

B-2-12 Ball Screw Specifications for Special Environments

B-2-12.1 Clean Environments

NSK manufactures NSK Clean Grease "LG2" and "LGU" for NSK linear guides, ball screws, and Monocarriers which are used under normal temperature and pressure in a clean room.

The LG2 and LGU grease are far more superior in stable torque characteristics than the vacuum grease which has been used as a countermeasure against dust generation. The LG2 and LGU also have a sufficient durability and dust prevention capability.

Features of "LG2" and "LGU"

- (a) Generates less dust than prevailing vacuum greases and general greases. Cleanliness is enhanced by simply switching the grease to the LG2 or the LGU.
- (b) Has extremely low and stable torque characteristics. It is ideal for high-speeds operation.
- (c) Unlike prevailing vacuum greases, the LG2 and LGU have a nature similar to general grease. Its effect is long-lasting, and sufficiently durable. They greatly contribute to minimize the frequency of maintenance.
- (d) They have an equal capability in rust prevention as general grease, and also are reliable.

When using NSK linear guides, ball screws, or Monocarriers in a clean environment, request the LG2 or LGU as a packed lubricant prior to delivery. NSK also makes bellows-tubes which contain 80 grams of the LG2 or LGU. The tube is easy to use, and is ideal for maintenance (refer to pages B397 and D19). Wash to remove adipose substances prior to use.

Refer to page D8 for their detailed nature, functions and characteristics of LG2 and LGU.

B-2-12.2 Measures for Use Under Vacuum

NSK developed MoS₂ / WS₂ spattering and dryfilmed ball screws for equipment to be used in space. NSK also makes soft-metal film (gold and silver) ball screws to be used in a vacuum environment for semiconductor and liquid crystal display processing equipment.

Lubricants widely used for ball screws in a high vacuum are:

- · Vacuum grease which uses base oil of low vapor pressure.
- Solid lubricants such as MoS₂, WS₂ used mainly for equipment in space.
- · Solid lubricants by soft-metal such as gold, silver, or lead film.

When used for semiconductor and liquid crystal display manufacturing equipment, the oil of the vacuum grease evaporates and causes environmental contamination. Also, it hinders creation of a super high vacuum. MoS, in the state of solid lubricant generates a large volume of dust, and Mo is unsuitable for semiconductors and reformed surface. Therefore, it is not suitable for the processing machines for semiconductor and liquid crystal display.

NSK recommends solid lubricant ball screws with a long life. These ball screws are treated with special silver film by NSK's unique processing technology, and can be used in a super-high vacuum. However, because of a solid lubricant, the film may peel off and stick to surface of ball grooves repeatedly, causing the torque to rise momentarily on some occasions. The drive motor should be of large capacity to handle this drastic variation of torque.

Refer to page D7 for the test data of ball screws for vacuum.

For ball screw specifications for special environments, refer to page D2.

B69 B70

B-2-13 Noise and Vibration

B-2-13.1 Consideration to Lowering Noise

As the machine operates at higher speeds, noise levels tend to increase. Covering the nut section is insufficient to lower noise. NSK has abundant data (NSK Motion & Control Technical Journal No.4, etc.), and offers advice to users regarding selecting ball screw.

To lower noise level in general, the following points should be taken into consideration.

- (a) Use as a large lead as possible to reduce rotational speed.
- (b) Use a ball screw with smaller outer diameter as possible.
 - (It often requires designing for critical dimensions, mandating special specification. Please consult NSK.)

For reference, noise levels by ball screws alone are plotted below. The formula for calculation is also shown below.

- (a) Average value at measuring distance of 400 mm dB (A) = 25.2 { $log_{10} (D_w \cdot d_m \cdot n \times 10^{-5})$ } + 63.9 ... 34)
- (b) Upper limit at measuring distance of 400 mm Average value + 6 dB (A)
 - D_w: Ball diameter (mm)
 - d_m : Ball pitch circle dia. (mm)
 - n: Rotational speed (min⁻¹)

If measuring distance is 1 m, the average noise level is: Various noise levels minus 8 dB (A).

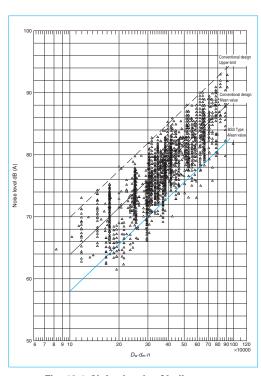


Fig. 13.1 Noise levels of ball screws

<< Example of calculation of noise levels>> <Use conditions>

Nut model: DFT4010-5

From the dimension table: $D_w = 6.350$

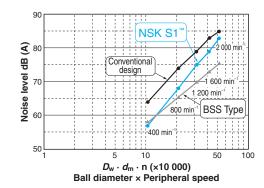
 $d_{m} = 41$

Maximum rotational speed: 2 000 min⁻¹

<Calculation> By formula 34):

dB (A) = 25.2 { $\log_{10} (D_w \cdot d_m \cdot n \times 10^{-5})$ } + 63.9

= 25.2 { $\log_{10} (6.350 \times 41 \times 2000 \times 10^{-5})$ } +


63.9

= 82 dB (A)

The average value of noise level by ball screws alone at maximum rotational speed (measuring distance 400 mm) is 82 dB (A). Upper limit is: 82 dB (A) + 6 dB (A) = 88 dB (A)If the measuring distance is 1 m, the average value of noise level is 74 dB (A), and upper limit is 80 dB (A).

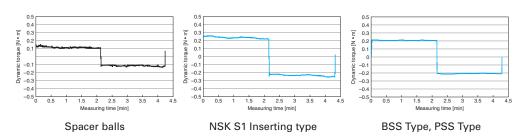
When installed, the noise of ball screw becomes higher by the noise of the machine and characteristics of machine vibration.

By using NSK S1, the noise is reduced and softened compared to conventional ball screws. The BSS type will furthermore reduce and soften the noise.

B-2-13.3 Consideration to Ball Screw **Support System**

A ball screw has low radial rigidity because its support span is longer compare to its shaft diameter. It has only small damping capacity, requiring as much support rigidity as possible through design.

A simplified support bearing system to cut costs invites noise and vibration problems. Therefore, the necessity of consideration to the ball screw support system of both shaft ends is increasingly becoming important as the speed of machines is ever-increasing.


If one shaft end must be left unfixed without support bearing due to structural reasons, noise and vibration problems may occur. These problems are related to the natural vibration frequency of the screw shaft on the unsecured end. This problem can be averted by installing an impact damper to the shaft end (Fig. 13.2). Please consult NSK for details.

Stopper Assembly Screw shaft Clearance

B-2-13.2 Consideration to Operational Characteristics

Smooth motion is achieved by using spacer balls on conventional ball return tube type ball screws. By using NSK S1 the smoothness is further improved. The BSS type will achieve the smoothness equivalent to ball screws with NSK S1.

Fig. 13.2 Impact damper (Applied for patent)

B-2-14 Installation of Ball Screw

B-2-14.1 Installation

Follow the flowchart in **Fig. 14.1** for installation procedures.

(1) Centering of the units

Align the centers of housings for the ball nut and the support bearing to which a ball screw is fixed. The centering is critical for life, smooth operation, and positioning accuracy of a ball screw.

We generally recommend the centering accuracy as follows for a precision grade ball screw.

- Inclination of center line: 1/2 000 or less (Target: 1/5 000 or less)
- Eccentricity: 0.020 mm or less

Fig. 14.1 Flowchart of ball screw installation

(2) Centering of ball nut housing

Photo 14.1 shows a centering procedure of the ball nut housing. Insert a jig (test bar) that has close fit clearance to a bore of the ball nut housing. Check vertical and horizontal parallelism of the test bar against the guide way (such as linear guides) with the dial indicator, that is fixed on the guide way bearing, and adjust the position of the housing so that the inclination of the center sets in 1/2 000 or less, and then, fix the housing to the table base.

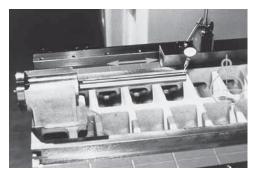


Photo 14.1 Centering of ball nut housing

(3) Centering of the housing of support bearing Photo 14.2 shows a centering procedure of the housing of support bearing. As the same way of the ball nut housing, set the jig (test bar) that has close fit clearance to bore of the housing and adjust the position of the housing so that the aligning inclination sets in 1/2 000 or less, then fix the housing to the table temporarily.

Photo 14.2 Centering of the housing of support bearing

(4) Eccentricity of the housings

Measuring way of eccentricity between the two housings is shown in **Photo 14.3**. Set the table on the guide way (such as linear guides, etc), and fix a dial indicator on it. Check eccentricity of the test bar of support bearing housing against the test bar of ball nut housing. Adjust position of support unit housing so that the eccentricity gets in 0.020 mm or less, then fix the housing of support bearing.



Photo 14.3 Eccentricity of the housings

(5) Installation of ball nut

Photo 14.4 shows a procedure for installation of the ball nut to the housing. Wipe off outside of the ball nut and bore of the housing with thin rags. (Applying a small amount of machine oil with low viscosity to both parts is effective in rust prevention.) Insert the ball nut to the housing while holding the ball screw in horizontal position and fix it. Do not handle the ball screw roughly, like hammering ends of the ball screw, because it may induce failure of the ball screw.

Photo 14.4 Installation of ball nut

(6) Installation of support bearings in ball screw Photo 14.5 shows a procedure for installation of support bearings. Select bearings that have appropriate fitting tolerance to the screw shaft, then install them. We recommend using a special sleeve as shown in the photo not to apply impact to the bearings.

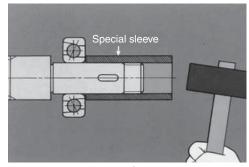


Photo 14.5 Installation of support bearings in ball screw

(7) Installation of bearings in the housing

Photo 14.6 shows the procedure for installing the support bearings to the bearing housing. When fixing the bearing with a lock nut, tighten the lock nut with specified tightening torque while checking run-out of screw shaft end. Take measures against loose lock nut. (Refer to assembly procedure of support bearing unit on page B77.)

For easy installation work of ball screws, NSK provides Support Unit (page B375 to B394) that consists of bearings and Bearing Lock Nuts (page B395) of which surface run-out is made to a specification.

housing

Retaining cover

Photo 14.6 Installation of bearings

Machine

Machine

Ball nut

housing

Photo 14.7 Replenish lubrication grease

(8) Replenish lubrication grease

Photo 14.7 shows the replenishing procedure of lubrication grease. Applying grease prior to its operation is not necessary when the grease is packed into the ball nut. Please confirm it.

If grease is not used, we apply antirust oil to ball screws when shipping. Wipe off the oil and pack grease fully into the ball nut as shown in the photo.

(9) Check motion smoothness

Photo 14.8 shows a checking procedure for motion smoothness. This is to confirm if the table is assembled accurately. Use a torque wrench to measure starting torque of the ball screw for full stroke of the table. Check for abnormality in starting torque as well as unevenness of rotation by feeling.

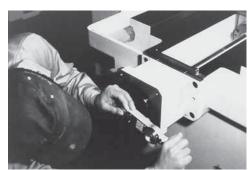


Photo 14.8 Check motion smoothness

(10) Trial operation

Photo 14.9 shows a scene of trial operation. Firstly operate the machine slowly and check noise and vibration, then do the same at medium and high speed. Operate the machine continuously for approximately 2 hours as a running in, and check for abnormality meanwhile. Remove over flown grease from the ball nut after a running in.

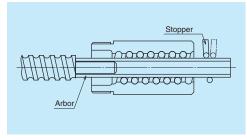


Fig. 14.2 Inserting nut into screwshaft

0.00000

Stopper

Photo 14.9 Trial operation

Packing tape Fig. 14.3 Arbor and shaft end configuration

B-2-14.2 Inserting R Series Nut into **Rolled Screw Shaft**

When delivered, the nut of R series is separated from the screw shaft, and inserted into an arbor shaft. The nut must be inserted to the screw shaft when mounting ball screw.

(1) Consideration to end configuration of screw

The balls may fall out during moving the assembled nut from the arbor to the screw shaft if the sizes and shapes of the arbor and the screw shaft are not appropriate.

If the end of the ball groove can touch the end of the arbor, connect both ends and move the assembled nut from the arbor to the screw shaft (Fig. 14.2).

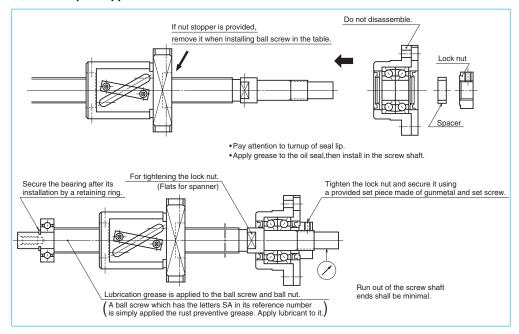
If the end face of the arbor cannot connect to the end face of the screw because of configuration of both ends of screw shaft, wrap a tape outside of ball screw shaft so that the layers of tape is equal with the outside diameter of the arbor (Fig. 14.3).

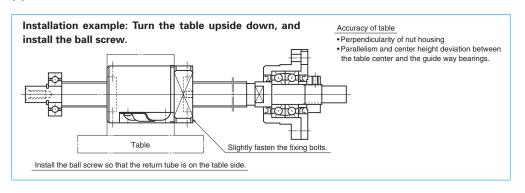
If there is a key way or a nick along the way, fill such gaps prior to moving the ball nut.

(2) Installation of arbor

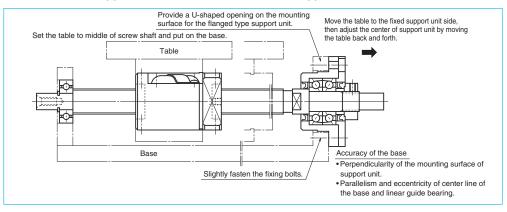
Confirm the correct nut orientation for installation. Remove the stop ring on the side from where the assembled nut is to be removed. Alian the centers of the screw shaft and the arbor while pressing firmly the screw shaft end against the arbor.

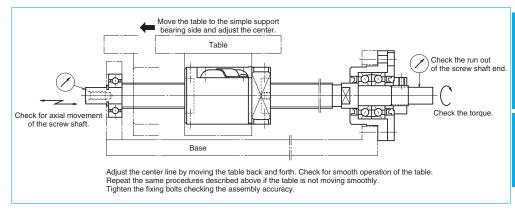
(3) Moving the nut

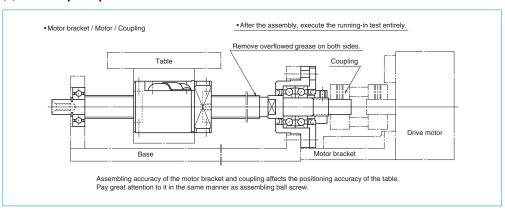

Slide the nut until it lightly touches the shoulder of the ball groove section, and stop it. Turn the ball nut to the direction so that it moves to the ball grooves, while pressing the arbor to the screw shaft. Do not separate the arbor from the screw shaft until the ball groove end appears completely in the ball nut.


B-2-14.3 Installation of Ball Screw and Support Unit

The illustrations below show typical installation procedures for a standard ball screw and a support unit.


(1) Assembly of support unit


(2) Installation of ball nut to the table


(3) Base and the support unit installation on the fixed support side

(4) Base and bearing installation on simple support side, and confirming assembling accuracy.

(5) Assembly completed.

B77 B78

B-2-14.4 Shaft End Machining

You require to machine shaft ends in the following three occasions.

- * Precision ball screws with blank shaft end.
- * Ball screws in R Series with blank shaft end.
- * Additional machining of a completed ball

The following are the summaries of machining of these shaft ends. For details, please contact NSK.

(1) Machining of blank shaft ends of precision ball screws

(a) Cutting screw shaft

Use a cutting whetstone or the like to cut the shaft, leaving stock for turning. Keep the nut in the assembled state to the screw shaft, and open only one side of the plastic wrapping bag, expose only the shaft end section to be machined, and then cut the screw shaft. This prevents foreign matters from entering to the ball screw section. Do the same for other machining.

(b) Precautions in cutting shaft end

Outside of the screw shaft is ground with precision (excluding R Series). There is a center hole in the ends. Use them for centering. Do not rotate the shaft quickly or stop it suddenly, or the nut might move along the shaft. We recommend securing the nut with tape. To machine a very long shaft, apply work rests to the screw shaft surface to suppress vibration (especially caused by critical speed).

(c) Turning by lathe

Cut to the length, turn shaft end steps, turn thread screw, and provide the center hole. Refer to JIS B1192 which sets standards for the shaft end accuracy.

(d) Processing by grinding

Apply the same precautions as for cutting for centering, securing nut, and work rest. Grind sections where the bearings and a "Spann ring" are installed.

(e) Milling processing

Process keyways and tooth seats for lock washers.

(f) Deburring, washing, and rust prevention Wash with clean white kerosene after processing. Apply lubricant for immediate use. For later use, apply rust preventive agent.

Note: Contact NSK if nut is accidentally removed.

(2) Additional machining of R Series ball screw shaft end

(a) Cutting screw shaft

Carry out the same process as "(1) Machining of blank shaft ends of precision ball screws"

- (b) Annealing the shaft end (Heat the section of the shaft end to be machined with an acetylene torch. Then gradually cool it in ambient
- * The area not machined loses hardness if exposed to heat. This may shorten the all screw life. Cool with water the areas where should not be heated to avoid heat conduction.
- (c) The following process is the same as "(1) Machining of blank shaft ends of precision ball screws" above.

B-2-15 Precautions for Designing Ball Screw

B-2-15.1 Safety System

As shown in the illustration on page B80, a stopper is installed in some cases to prevent the nut from overrunning due to malfunction of the safety system of the machine itself, or human error during operation.

The travel stopper should be installed at a place where it will not come into contact with the nut when the nut reaches the designed stroke end. An impact absorbing travel stopper (NSK patent, refer to page B398) is available at NSK.

B-2-15.2 Design Cautions to Assembling Ball Screw

(1) Cutting through the thread screw to the end For some recirculation system, such as the deflector type, end cap type, S1 speficication (High-Load drive ball screws etc.) and a part of end deflector type, one end of the thread screw should be cut through to the end of the major diameter. This is necessary to assemble the ball nut to the screw shaft (Fig. 15.1).

In this case, the shaft end diameter, to where this "cut-through thread" is made, should be 0.2 mm or smaller than the ball groove root diameter "dr". (See the dimension table.) A similar precaution is required when it is absolutely necessary to remove the nut from the screw shaft in order to install the ball screw to the machine. Also, in case using the cut-through end as the shoulder of the support bearing, make certain that a sufficient amount of the effective flat surface is left from the root diameter. If it is insufficient, the bearing cannot be installed perpendicularly to the bearing seat. (Fig. 15.2)

(2) Designing the screw shaft end and the nut mounting area

When installing a ball screw to the machine, avoid a design which makes it necessary to separate the nut from the screw shaft as shown in Fig. 15.3. If separated, the balls may fall out. The separation may also deteriorate the ball screw accuracy, or may damage the ball screw. If separating them is unavoidable, please furnish NSK with the component which is to be installed between the nut and screw shaft. NSK will install the component prior to delivery.

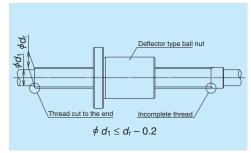


Fig. 15.1 Shaft end of a deflector recirculation system ball screw

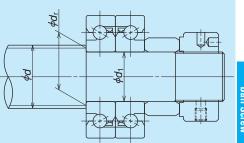


Fig. 15.2 Support bearing and end face (shoulder) for installation

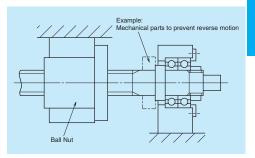


Fig. 15.3 Nut and ball screw are required to be separated when installing in this structure.

(3) Removing the nut from the screw shaft at the time of assembly

If it is unavoidable, use an arbor (Fig. 15.4), keeping the balls in the nut. In this case, the outside diameter of the arbor should be approximately 0.2 mm to 0.4 mm smaller than the ball groove root diameter "d,-"

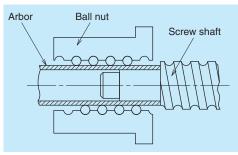
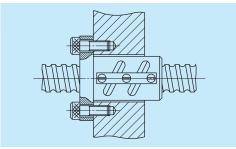



Fig. 15.4 Arbor to install and remove nut

(4) Centering of the ball nut when installing

When installing the nut as shown in Fig. 15.5, provide a space between the housing and the nut body diameter, allowing the centering to be performed.

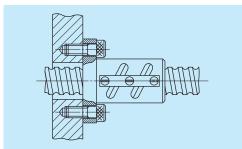


Fig. 15.5 Fixing a ball nut by flange

(5) Preventing the thread screw of nut from loosening

When installing and securing the nut to the housing at the thread screw section, as in the case for RNCT type of R Series ball screws, apply an agent which prevents the nut from loosening.

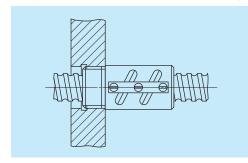


Fig. 15.6 Fixing a ball nut with thread screw

(6) Installation of brush-seal to the nut

If a brush-seal is installed at the thread screw side of the nut similar to the RNCT type which comes with a thread screw, the brush-seal should be secured as shown in Fig. 15.7.

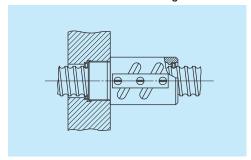


Fig. 15.7 Installation of brush-seal to a ball nut with thread screw

B-2-15.3 Effective Stroke of Ball Screw

When hardened by the induction hardening, the hardness of a ball screw may be slightly low at both ends of the screw section. Consider this low hardness prior to determining the length of effective stroke. Please consult NSK for details.

B-2-15.4 Matching after Delivery

When, after the delivery of a ball screw, you require drill knock pin hole on the screw shaft end, or at the nut mounting area, please inform NSK on the position and size of the hole.

NSK will take a measure and protect designated spots from heat treatment prior to delivery to make subsequent machining easy.

B-2-15.5 "NSK K1™" Lubrication Unit

When using the NSK K1 lubrication unit, be aware of the operating temperature and chemicals that come to contact the unit for keeping the K1's best performance.

Temperature range for use:

Maximum temperature; 50°C

Momentary maximum temperature; 80°C

Chemicals that should not come to contact:

Do not leave the K1 unit in organic solvent, white kerosene such as hexane, thinner which removes oil, and rust preventive oil which contains white kerosene.

Water-type cutting oil, oil-type cutting oil, grease such as mineral-type AS2 and ester-type PS2 do not damage the K1 unit.

B81 B82

B-2-16 Ball Screw Selection Exercise

Drill 1: High-speed transporting system

1. Design conditions

Table mass: $m_1 = 40 \text{ kg}$

Mass of the

transporting item: $m_2 = 20 \text{ kg}$

Maximum stroke: $S_{\text{max}} = 700 \text{ mm}$

Rapid traverse speed : $V_{max} = 1000 \text{ mm/sec}$ (60 m/min) Positioning accuracy: ±0.05/700 mm (0.005 mm/pulse)

±0.005 mm Repeatability:

Required life: $L_{t} = 25\,000\,h\,(5\,\text{years})$

Guide way (rolling): $\mu = 0.01$ (friction coefficient)

Drive motor: AC servo motor

 $(N_{\rm max} = 3\,000\,{\rm min}^{-1})$

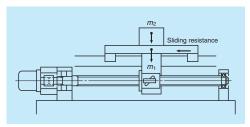


Fig. 16.1 System appearance

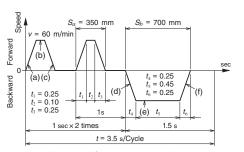


Fig. 16.2 Operating condition

2. Selection of basic factors

(1) Selection of accuracy grade and axial play

According to Table 4.1 "Accuracy grades of ball screw and their application" on page B19, the accuracy grade of ball screws for Cartesian type industrial robots is C5 to Ct10.

From the following conditions in design, the axial play should be 0.005 mm or less.

Repeatability: ±0.005 (mm) Resolution: 0.005 mm/pulse

According to Table 4.2 "Combinations of accuracy grades and axial play" on page B20, you will require the accuracy grade C5 to satisfy the axial play of 0.005 mm or less. Therefore select the accuracy grade C5, and the axial play of 0 mm (Z-preload).

(2) Selection of lead

Calculate the lead l based on maximum speed of AC servo motor and the rapid traverse speed V_{max}.

$$l \ge \frac{V_{\text{max}}}{N_{\text{max}}} = \frac{1\ 000 \times 60}{3\ 000} = 20\ (\text{mm})$$

Select a lead l of 20 mm or larger.

(3) Selection of screw shaft diameter

According to the Table 4.4 "Shaft diameter, lead and stroke of standard ball screw" on page B21, the screw shaft diameter d which has a lead l larger than 20 mm should be in the range of 15 mm to 32 mm. Select the smallest 15 mm.

(4) Selection of stroke

From the Table 4.4 "Screw shaft diameter, lead, and stroke of standard ball screw" on page B21, a ball screw with shaft diameter (d) of 15 mm and lead (1) of 20 mm meets maximum stroke of 700 mm, therefore it is possible to select from the standard ball screws. The primary selection is as follows:

Primary selection:

Shaft diameter: 15 (mm)

Lead: 20 (mm)

Stroke: 700 (mm)

Accuracy grade: C5 7

Axial play:

3. Confirmation of standard ball screw

In consideration of delivery time and price. select from the standard ball screws with finished shaft ends.

Primary candidate: W1507FA-3PG-C5Z20

4. Basic safety check

Let's examine the primary candidate.

(1) Allowable axial load

[1] Calculation of allowable axial load

From Fig. 16.2: Acceleration α_1 at accelerating / decelerating is:

$$\alpha_1 = \frac{V_{\text{max}}}{t_1} = \frac{1\ 000}{0.25} = 4\ 000\ (\text{mm/s}^2) = 4\ (\text{m/s}^2)$$

Axial load F is:

(At the time of acceleration (a)(d))

$$F_1 = \mu (m_1 + m_2) \times g + (m_1 + m_2) \times \alpha_1$$

= 0.01 \times (40 + 20) \times 9.80665 + (40 + 20) \times 4
= 246 (N)

(At the time of constant speed (b)(e))

$$F_2 = \mu (m_1 + m_2) \times g = 0.01 \times (40 + 20) \times 9.80665$$

= 6 (N)

(At the time of deceleration (c)(f))

$$F_3 = -\mu (m_1 + m_2) \times g + (m_1 + m_2) \times \alpha_1$$

= -0.01 \times (40 + 20) \times 9.80665 + (40 + 20) \times 4
= 234 (N)

Thus, the maximum axial load P is 246 N.

[2] Buckling load

W1507FA-3PG-C5Z20 has the support length of 804 mm ("La" as per the dimension table on page B179), and must support maximum axial load (P) of 246 (N). The supporting condition of screw shaft is "Fixed - Simple", and the supporting condition of ball nut is "Fixed". Due to the direction of the load, the whole ball screw supporting condition is "Fixed - Fixed" support (Factor m = 19.9).

From fomula 2) on page B44:

$$d_r \ge \left(\frac{P \cdot L_a^2}{m} \times 10^4\right)^{1/4} = \left(\frac{246 \times 804^2}{19.9} \times 10^4\right)^{1/4}$$

= 5.3 (mm)

W1507FA-3PG-C5Z20 has the dimension (dr) of 12.2 mm as per the dimension chart (page B179) and therefore meets the condition.

Result: Acceptable

(2) Allowable rotational speed

The permissible rotational speed listed in the dimension table is 3 000 min⁻¹. Since the motor maximum rotational speed is 3 000 min⁻¹, the operation is in the range of permissible rotational speed.

Result: Acceptable

(3) Checking life expectation

[1] Mean load F_m and mean rotational speed N_m From the calculation of axial load, rotational speed N_i and the operating time t_i is:

(At the time of acceleration (a)(d))

$$F_1 = 246 (N)$$

$$N_1 = \frac{n}{2} = \frac{3\ 000}{2} = 1\ 500\ (\text{min}^{-1})$$

$$t_a = 2 \times t_1 + t_4 = 0.75$$
 (s)

(At the time of constant speed (b)(e))

$$F_2 = 6 (N)$$

$$N_2 = 3\,000\,(\text{min}^{-1})$$

$$t_b = 2 \times t_2 + t_5 = 0.65$$
 (s)

(At the time of deceleration (c)(f))

$$F_3 = 234 (N)$$

$$N_3 = 1500 \text{ (min}^{-1})$$

$$t_c = 2 \times t_3 + t_6 = 0.75$$
 (s)

Calculation result is shown in Table 16.1

Table 16.1 Axial load and rotational speed

Operating condition	Axial load (N)	Rotational speed (mean) (min ⁻¹)	Operating time (s)		
(a) (d)	$F_1 = 246$	$N_1 = 1500$	$t_a = 0.75$		
(b) (e)	$F_2 = 6$	$N_2 = 3000$	$t_{\rm b} = 0.65$		
(c) (f)	$F_3 = 234$	$N_3 = 1500$	$t_c = 0.75$		

From the formulas 11) and 12) on page B53:

$$F_{m} = \left(\frac{F_{1}^{3} \cdot N_{1} \cdot t_{a} + F_{2}^{3} \cdot N_{2} \cdot t_{b} + F_{3}^{3} \cdot N_{3} \cdot t_{c}}{N_{1} \cdot t_{a} + N_{2} \cdot t_{b} + N_{3} \cdot t_{c}}\right)^{1/2}$$

= 195 (N)

$$N_{\rm m} = \frac{N_1 \cdot t_{\rm a} + N_2 \cdot t_{\rm b} + N_3 \cdot t_{\rm c}}{t}$$

 $= 1 200 (min^{-1})$

B83 B84

[2] Calculation of life expectancy

At the basic dynamic load rating C_a of W1507FA-3PG-C5Z20 (Clearance Z) is 3 870 N (as per the dimension table on page B179), from the formulas 8) and 9) on page B53:

$$L_{t} = \left(\frac{C_{a}}{F_{m} \cdot f_{w}}\right)^{3} \times \frac{1}{60N_{m}} \times 10^{6}$$
$$= \left(\frac{3870}{195 \times 1.2}\right)^{3} \times \frac{1}{60 \times 1200} \times 10^{6}$$
$$= 62800$$

The ball screw satisfies the required life.

Result: Acceptable

5. Check for other requirements

(1) Accuracy and axial play

As per the dimension table on page B180 and **Table 1.2** for the permissible value of lead accuracy on page B38:

According to Table 1.2:

Accuracy grade: C5

 $e_{\rm n} = \pm 0.035/800 \, ({\rm mm})$

 $v_{..} = 0.025 \text{ (mm)}$

This grade satisfies the required positioning accuracy of $\pm 0.05/700$ mm.

The checking of axial play is omitted here since it is explained in "2. Selection of basic factors."

(2) Drive torque

Required specifications are as follows.

Motor rotational speed: 3 000 min⁻¹

Time to reach maximum speed: Less than 0.25 sec

[1] Load (converted to the motor axis)

Using the formula 32) and 33) on page B64, calculate the moment of inertia whereas γ is the material density of the ball screw.

(Screw shaft)

(Moving part)

$$J_{\rm B} = \frac{\pi \cdot \gamma}{32} D^4 \cdot L = \frac{\pi \times 7.8 \times 10^3}{32} \times 1.5^4 \times 80$$

 $= 0.31 (kg \cdot cm^2)$

$$J_{w} = m \times \left(\frac{l}{2\pi}\right)^{2} = 60 \times \left(\frac{2}{2\pi}\right)^{2}$$
$$= 6.1 \text{ (kg} \cdot \text{cm}^{2}\text{)}$$

(Coupling)

 $J_c = 0.25 \text{ (kg} \cdot \text{cm}^2) \cdots \text{Temporary}$

(As a whole)

Moment of inertia of the ball screw J_1 is:

$$J_{L} = J_{B} + J_{W} + J_{C}$$
$$= 0.31 + 6.1 + 0.25$$
$$= 6.7 \times 10^{-4} \text{ (kg} \cdot \text{m}^{2}\text{)}$$

[2] Driving torque

We assume that WBK12-01 compact light load type is used as recommended for W1507FA-3PG-C5Z20, and the moment of inertia of motor (J_M) is 3.1 $(kg \cdot cm^2)$ $(3.1 \times 10^{-4} \text{ kg} \cdot m^2)$.

(At the time of constant speed)

The torque which is necessary to drive the ball screw at a constant speed resisting to external loads is: per formula 30) on page B64

$$T_1 = T_a + T_{pmax} + T_u$$

In this formula, T_a is the drive torque at constant speed, T_{pmax} is the upper limit of the dynamic friction torque of ball screw, and T_u is the friction torque of the support bearings.

From the chart on pages B179 and B386, (T_{pmax}) is 7.8 $(N \cdot cm)$ and (T_{ii}) is 2.1 $(N \cdot cm)$ respectively.

$$T_{\rm a} = \frac{F_{\rm a} \cdot l}{2\pi \eta_1}$$

Using formula 28) on page B63, the drive torque at a constant speed T. is:

$$T_{1} = \frac{F_{a} \cdot l}{2\pi \cdot \eta_{1}} + T_{pmax} + T_{u}$$

$$= \frac{6 \times 2}{2\pi \times 0.9} + 7.8 + 2.1$$

$$= 12 (N \cdot cm) = 0.12 (N \cdot m)$$

(At the time of acceleration)

The drive torque necessary for accelerating the ball screw resisting axial load can be calculated by the formula 31) on page 64.

$$T_2 = T_1 + J \cdot \frac{2\pi \cdot n}{60t_1}$$

$$= T_1 + (J_L + J_M) \cdot \frac{2\pi \cdot n}{60t_1}$$

$$= 0.12 + (6.7 \times 10^4 + 3.1 \times 10^4) \frac{2\pi \times 3000}{60 \times 0.25}$$

$$= 1.35 \text{ (N} \cdot \text{m)}$$

(At the time of deceleration)

Similarly at the time of acceleration.

$$T_{3} = T_{1} - J \cdot \frac{2\pi \cdot n}{60t_{3}}$$

$$= T_{1} - (J_{L} + J_{M}) \cdot \frac{2\pi \cdot n}{60t_{3}}$$

$$= 0.12 - (6.7 \times 10^{-4} + 3.1 \times 10^{-4}) \cdot \frac{2\pi \times 3000}{60 \times 0.25}$$

$$= -1.11 \text{ (N \cdot m)}$$

[3] Selection of motor

Selection conditions are as follows.

Maximum rotational speed: $N_{\rm M} \ge 3~000~({\rm min}^{-1})$ Motor rating torque: $T_{\rm M} \ge T_{\rm rms}~({\rm N}\cdot{\rm m})$

 $(T_{rms}: Effective torque)$

Motor's rotor inertia -- $J_{\rm M} > J_{\rm L}/3$ or more Form above: select an AC servo motor with the following specifications.

Motor specifications:

Rating power output: $W_{\rm M} = 300$ (W)

Maximum rotational speed:

 $N_{\rm M} = 3~000~({\rm min}^{-1})$

Rating torque: $T_M = 1 \text{ (N} \cdot \text{m)} = 1 \times 10^2 \text{ (N} \cdot \text{cm)}$ Rotor inertia: $J_M = 3.1 \times 10^4 \text{ (kg} \cdot \text{m}^2)$

 $= 3.1 (ka \cdot cm^{2})$

[4] Check on effective torque

Effective torque T_{rms} can be calculated as follows:

$$T_{\text{rms}} = \sqrt{\frac{T_2^2 \times t_a + T_1^2 \times t_b + T_3^2 \times t_c}{t}}$$

$$= \sqrt{\frac{1.35^2 \times 0.75 + 0.12^2 \times 0.55 + 1.11^2 \times 0.75}{3.5}}$$

$$= 0.81$$

Thus the condition of " $T_M \ge T_{rms}$ " is cleared.

[5] Check on time to reach maximum speed

The time required to reach the rapid traverse speed can be calculated as follows. Whereas $T_{\text{M}}' = 2 \times T_{\text{M}}$:

$$t_{a} = \frac{(J_{L} + J_{M}) \times 2\pi \times n}{(T_{M}' - T_{1})} \times 1.4$$

$$= \frac{(6.7 \times 10^{-4} + 3.1 \times 10^{-4}) \times 2\pi \times 3000}{(2 \times 1 - 0.12) \times 60} \times 1.4$$

$$= 0.23$$

Thus the ball screw meets the requirement of "0.25 sec or less".

From the above, use W1507FA-3PG-C5Z20

Drill 2: Processing table for special machines

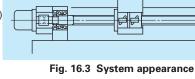
1. Design conditions

Table mass: $m_1 = 1000 \text{ kg}$ Mass of the work: $m_2 = 600 \text{ kg}$ Maximum stroke: $S_{max} = 1000 \text{ mm}$ Maximum speed: $V_{\rm max} = 15\,000\,{\rm mm/min}$ Positioning accuracy: ±0.035/1 000 mm (no load)

* Attitude accuracy of the table and thermal displacement are not included in the accuracy requirement of the ball screw.

Repeatability: ±0.005 mm (no load)

Lost motion: 0.020 mm (no load) Required life expectancy: L = 20000 h


 $(16^{h} \times 250^{days} \times 10^{years} \times 0.5^{rate of operation})$

Guide way (sliding): $\mu = 0.15$

(friction coefficient)

Processing: Milling and drilling Drive motor: AC servo motor

 $(N_{\text{max}} = 2\ 000\ \text{min}^{-1})$

Sliding resistance

Cutting resistance

Table 16.2 Operating conditions

Operation	Axia	l load (N)	Feed speed	Use time
Operation	Cutting resistance	Sliding resistance	(mm/min)	ratio (%)
Rapid traverse	0	2 354	15 000	30
Light/medium cutting	4 000	2 354	500	50
Heavy cutting	8 000	2 354	100	20

* Sliding resistance: $F_r = \mu (m_1 + m_2) g = 0.15 \times (1000 + 600) \times 9.80665 = 2354 (N)$

* Ignore the inertia force at the time of acceleration/deceleration because their time rate is negligibly short.

2. Selection of basic factors

(1) Selection of accuracy grade and axial play

The proper accuracy grade for machining centers should be in the range from C1 to C5 according to "Table 4.1 Accuracy grades of ball screws and their applications" on page B19. Assuming the nut length is 200 mm and margin stroke is 100 mm, the shaft length L_0 is obtained as follows:

 $L_0 = Maximum stroke + nut length + margin$

= 1000 = (200) + (100) = 1300

From "Table 1.2 Tolerance on specified travel and travel variation of the positioning ball screws" on page B38, the accuracy factors which satisfy the required function are:

Accuracy C3 grade

 $e_0 = \pm 0.029/1 600 \text{ (mm)}$

 $v_{..} = 0.018 \text{ (mm)}$

Considering the importance of lost motion, select the Z code (axial play 0 mm and less) for the axial play.

(2) Selection of lead

From the maximum rotational speed of AC servo motor N_{max} and rapid traverse speed of table V_{max} , lead l is:

$$l \ge \frac{V_{\text{max}}}{N_{\text{max}}} = \frac{15\ 000}{2\ 000} = 7.5\ (\text{mm})$$

A larger lead l would be beneficial for a higher feed speed. But from the view of the control system (resolution), the lead l is limited to 8 mm or 10 mm.

(3) Selection of screw shaft diameter

According to Table 4.4 "Screw shaft diameter, lead and stroke of standard ball screw" on page B21, the screw shaft diameter with the lead of 8 mm or 10 mm are in the range of 10 mm to 50 mm. Placing more importance on rigidity than to the volume of lost motion, select a relatively large size in the range of 32 mm to 50 mm.

(4) Selection of stroke

Select 1 000 mm, the maximum stroke as specified in the design condition.

Primary selection:

Standard ball screw

Shaft diameter: 32, 36, 40, 45, 50 mm

Lead: 8, 10 mm 1 000 mm Stroke:

grade: C3 Axial play code: Z

3. Confirmation of standard ball screw

Giving consideration to delivery time and price, select a standard ball screw.

At the primary selection of C3 grade is not found in the standard ball screws. Let us check for application-oriented ball screws whether there is a C3 grade among ball screw.

4. Confirmation of made-to-order ball screw

Because standard ball screws do not meet the accuracy grade requirement, we will consider made-to-order ball screws which are based on standard ball screws but with accuracy grade of C3.

Second selection:

Made-to-order ball screw

Shaft diameter: 32, 36, 40, 45, 50 mm

Lead: 8. 10 mm 1 000 mm Stroke:

Accuracy grade: C3 Axial play: 7

5. Selection of screw shaft diameter. lead, and nut

(1) Dynamic load rating

Obtain required load carrying capacity for each lead through load conditions. From **Table 16.2** "Operating conditions" on page B91, calculate the rotation speed N₂ as shown in **Table 16.3**.

$$N_i \geq \frac{V_i}{I}$$

Table 16.3 Load conditions

Operating condition	Axial load (N)	Rotations per $l=8$	minute (min ⁻¹) $l = 10$	Use time ratio (%)
Rapid traverse	$F_1 = 2354$	$N_1 = 1875$	$N_1 = 1500$	$t_1 = 30$
Light/medium cutting	$F_2 = 6354$	$N_2 = 62.5$	$N_2 = 50$	$t_2 = 50$
Heavy cutting	$F_3 = 10354$	$N_3 = 12.5$	$N_3 = 10$	$t_3 = 20$

By using the formulas 11) and 12) on page B53, calculate the mean load F_m and the mean rotational speed N_m as shown below.

$$F_{m} = \left(\frac{F_{1}^{3} \cdot N_{1} \cdot t_{1} + F_{2}^{3} \cdot N_{2} \cdot t_{2} + F_{3}^{3} \cdot N_{3} \cdot t_{3}}{N_{1} \cdot t_{1} + N_{2} \cdot t_{2} + N_{3} \cdot t_{3}}\right)^{1/3}$$

$$N_{\rm m} = \frac{N_1 \cdot t_{\rm a} + N_2 \cdot t_{\rm b} + N_3 \cdot t_{\rm c}}{t}$$

Table 16.4 Mean load and mean rotational speed

Table Terr Mean lead and II	iouii i otutic	mai opeca
Lead (mm)	8	10
Mean load F _m (N)	3 122	3 122
Mean rotational speed N _m (min ⁻¹)	596	477

B87 B88 Using the formulas 8) and 9) on page B53, calculate the required dynamic load rating.

$$C_a \ge (60 N_m \cdot L_t)^{1/3} \cdot F_m \cdot f_w \times 10^{-2} (N)$$

Whereas required life expectancy $L_1 = 20\ 000$ (h), load coefficient $f_w = 1.2$ (refer to page B53),

$$l = 8 \text{ (mm)} \cdots C_a \ge 33 500 \text{ (N)}$$

$$l = 10 \text{ (mm)} \cdots C_a \ge 31 \text{ 100 (N)}$$

(2) Selection of the nut

Due to the requirement on the lost motion, the nut will be selected as follows emphasizing the importance of system rigidity.

Table 16.5 shows the dynamic load rating of each specification.

- · Standard nut ball screw, tube type
- Model: ZFT or DFT (pages B417 to B436)
- Number of turns of balls: Select from 2.5 turns 2 circuits or 2.5 turns 3 circuits

From **Table 16.5** select item that meets required dynamic load rating C_a as follows:

Third selection: In the range surrounded by the dotted lines in **Table 16.5**

Table 16.5 Dynamic load rating of each specification

Screw shaft	Dyı	namic load	rating <i>C</i> a: (N)
diameter	Lead	8 mm	Lead 10 mm
(mm)	2.5 turns 2 circuits	2.5 turns 3 circuits	2.5 turns 2 circuits 2.5 turns 3 circuits
32	31 700	-	46 300 -
36	_	_	49 300 -
40	34 900	_	52 000
45	_	_	54 200 76 800
50	38 700	54 900	57 700 81 800

(3) Permissible rotational speed

[1] Critical speed

Check if the rapid traverse speed of 15 000 mm/min ($V_{\rm max}$) clears the critical speed. Ball screw rotational speed at each lead N is:

$$l = 8 \text{ (mm)} \cdot \cdot \cdot \cdot N = 1.875 \text{ (min}^{-1})$$

$$l = 10 \text{ (mm)} \cdot \cdot \cdot \cdot N = 1500 \text{ (min}^{-1})$$

From the formula 7) on page B47, screw shaft root diameter to meet critical speed requirement is:

$$d_{\rm r} \geq \frac{n \cdot L_2}{f} \times 10^{-7} \, (\rm mm)$$

In this formula, unsupported length L_{i} is:

$$= 1000 + 100 + 200 = 1300 (mm)$$

Supporting condition of the screw shaft is Fixed - Fixed support, and that of the ball nut is Fixed. Therefore, supporting condition is Fixed - Fixed support (Factor f = 21.9)

$$l = 8 \text{ (mm)} \cdots d_{i} \ge 14.5 \text{ (mm)}$$

$$l = 10 \text{ (mm)} \cdots d_r \ge 11.6 \text{ (mm)}$$

[2] *d* • *n* value

From **Table 3.2** on page B50, as the d·n is 70 000 or less, screw shaft diameters to meet the d·n are:

$$d \le \frac{70\ 000}{N}$$
 (mm)

$$l = 8 \text{ (mm)} \cdots d \leq 37.3 \text{ (mm)}$$

$$l = 10 \text{ (mm)} \cdots d \le 46.7 \text{ (mm)}$$

Based on nut specifications (pages B417 to B436) select an item that meets screw shaft root diameter (d_r) and screw shaft diameter (d).

* Please consult NSK if the d • n value is necessary to exceed 70 000.

Fourth selection: In the range surrounded by the solid-lines in **Table 16.5**

(4) Rigidity of the ball screw system

Set the lost motion of the ball screw system (screw shaft, nut and support bearings) at 80% of the specified value. Then calculate the system rigidity. The criterion lost motion is:

$$20 (\mu m) \times 0.8 = 16 (\mu m)$$

At this time, the one-way elastic deformation ΔL of the major factors of ball screw system shall be less than the half of above criterion.

$$\Delta L \leq 8 \text{ (um)}$$

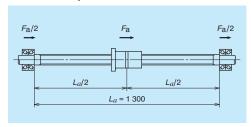


Fig. 16.3 Unsupported length

[1] Rigidity of the screw shaft K_s

Calculate the rigidity at the center of screw shaft where the axial deformation becomes the largest. Because the supporting condition of screw shaft is Fixed - Fixed support, the rigidity as per the formula 21) on page B58:

$$K_{\rm s} = \frac{\pi \cdot d_{\rm r}^2 \cdot E}{L_{\rm a}} \times 10^{-3} \text{ (N/mm)}$$

At here E is the elastic modulus. From the formula 17) on page B57, the elastic deformation of the screw shaft ΔL_s is:

$$\Delta L_{s} = \frac{F_{a}}{K_{s}} = \frac{F_{a} \cdot L_{a}}{\pi \cdot d_{c}^{2} \cdot E} \times 10^{3} \text{ (µm)}$$

The sliding resistance F_a is:

$$F_a = \mu \ (m_1 + m_2) = 0.15 \times (1\ 000 + 600)$$

= 2 354 (N)

Table 16.7 shows the rigidity of screw shaft K_s and the elastic deformation ΔL_s .

[2] Rigidity of the ball nut K_N

Set about 1/3 of the maximum axial load as the preload value F_{a0} .

$$F_{a0} = \frac{F_{max}}{3} = \frac{10\ 354}{3} = 3\ 452 \rightarrow 3\ 500\ (N)$$

From the formula 23) on page B60, the rigidity of the ball nut K_N is:

$$K_{\rm N} = 0.8 \times K \left(\frac{F_{\rm a0}}{\epsilon \cdot C_{\rm a}} \right)^{1/3} = 0.8 \times K \left(\frac{3500}{0.1 \cdot C_{\rm a}} \right)^{1/3}$$
 (N/µm)

K: Theoretical rigidity

From the formula 17) on page B58, elastic deformation of the ball nut $\Delta L_{\rm N}$ is:

$$\Delta L_{\rm N} = \frac{F_{\rm a}}{K_{\rm N}} = \frac{2354}{K_{\rm N}}$$

Table 16.7 shows the rigidity of ball nut K_N and the elastic deformation ΔL_N .

[3] Rigidity of the support bearing K_{B}

The bearings are thrust angular contact ball bearings for ball screw support (TAC Series). We specify the model number of support bearing unit for each shaft diameter as shown in **Table 16.6** (refer to page B399).

Table 16.6 Bearing code

Screw shaft diameter (mm)	Bearing code
32	25TAC62BDF
36	25TAC62BDF
40	30TAC62BDF
45	35TAC72BDF

Refer to page B403 for the rigidity $K_{\rm B}$ of each bearing unit (axial spring modulus). Elastic deformation of bearing $\Delta L_{\rm B}$ is:

$$\Delta L_{\rm B} = \frac{F_{\rm a}}{2K_{\rm o}}$$

Table 16.7 shows the rigidity of support bearing K_0 and the elastic deformation ΔL_0 .

Table 16.7 Rigidity and elestic deformation

	Screw shaft		N			Support bearing		
number	Ks	$\Delta L_{\rm s}$	K_{N}	ΔL_{N}	K _B	$\Delta L_{\scriptscriptstyle \rm B}$	ΔL	
DFT3210-5	347	6.8	839	2.8	1 000	1.2	10.8	
DFT3610-5	460	5.1	907	2.6	1 000	1.2	8.9	Бан
DFT4010-5	589	4.0	973	2.4	1 030	1.1	7.5	Screw
DFT4510-5	772	3.0	1 050	2.2	1 180	1.0	6.2	ž
DFT4510-7.5	112	3.0	1 375	1.7	1 180	1.0	5.7	

Choose the most economical ball screw system which meets the requirement of one-way deformation (ΔL) of 8 um or less.

The selected ball screw:

Nut model number: DFT4010-5
Shaft diameter: 40 (mm)
Lead: 10 (mm)
Dynamic load rating: 52 000 (N)

6. Decision of screw shaft length

DFT4010 ball nut has the length of 193 mm, and thus the unsupported length of screw shaft L_a should be:

 L_a = Maximum stroke + nut length + margin = 1 000 + 193 + 100 = 1 293 \rightarrow 1 300 mm

7. Checking basic safety

(1) Permissible axial load

Calculate the buckling load for conditions shown in Fig. 16.4 with P of 10 354 (N) and L₁ of 1 210 (mm).

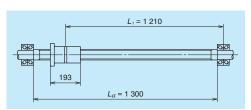


Fig. 16.4 Examination of bucking load

Supporting condition is Fixed - Fixed support, and from the calculation formula 2) on page B44, the screw shaft diameter d, to prevent buckling is

$$d_{r} \ge \left(\frac{P \cdot L_{1}^{2}}{m} \times 10^{-4}\right)^{1/4}$$

$$= \left(\frac{10.354 \times 1210^{2}}{19.9} \times 10^{-4}\right)^{1/4} = 16.6 \text{ (mm)}$$

From the specification of DFT4010-5 ball nut (page B435), the root diameter of screw shaft d. is 34.4 mm and thus meets the above condition.

Result: Acceptable

(2) Permissible rotational speed

[1] Critical speed n

From the critical speed calculation formula 7) on page B47:

$$n = f \cdot \frac{d_r}{L_1^2} \times 10^7 = 21.9 \times \frac{34.4}{1210^2} \times 10^7$$

$$= 5140$$

The maximum rotational speed (N_{max}) of 1 500 min⁻¹ is less than the critical speed, and thus meets the requirement.

Result: Acceptable

[2] *d* • *n* value

The d • n value is:

$$d \cdot n = 40 \times 1500 = 60000$$

From Table 3.2 on page B50, the d·n of tube type ball nut is 70 000 or less, and meets the requirement.

Result: Acceptable

(3) Life L.

The dynamic load rating C_a is 52 000 N (see dimension table on page B435), and from the formulas 8) and 9) on page B53 the life expectancy is:

$$L_t = \left(\frac{C_{\rm a}}{f_{\rm w} \cdot F_{\rm m}}\right)^3 \times 10^6 \times \frac{1}{60 \cdot N_{\rm m}}$$

The above result satisfies the required life of 20 000 (h). Result: Acceptable

8. Check whether the following factors satisfy requirements (1) Checking accuracy

[1] Positioning accuracy

The positioning accuracy of ±0.035/1 000 mm, and therefore, from Table 1.2 "Tolerance of specified travel and travel variation" on page B38 the positioning accuracy is:

Accuracy grade: C3

 $e_0 = \pm 0.029/1 600 \text{ (mm)}$

 $v_{..} = 0.018 \text{ (mm)}$

and thus meets the required positioning accuracy.

[2] Measures against thermal expansion

Provide pre-tension force equivalent to the elongation of 3°C temperature rise, taking in consideration of the load carrying capacity of bearings. Also, adjust the travel compensation for the specified travel equivalent to 3°C temperature rise (refer to page B40).

(a) Thermal elongation : ΔL

From the formula 1) on page B40:

$$\Delta L_{\theta} = \rho \cdot \theta \cdot L_{a} = 12.0 \times 10^{-6} \times 3 \times 1300$$

= 0.047 (mm)

(b) Pre-tension force : F_0

$$F_{\theta} = \Delta L_{\theta} \cdot Ks = \frac{\Delta L_{\theta} \cdot E \cdot \pi \cdot d_{r}^{2}}{\Delta I}$$

$$=\frac{0.047\times2.06\times10^{5}\times\pi\times34.4^{2}}{4\times1~300}$$

 $= 6922 \rightarrow 6900 (N)$

Travel compensation: -0.047/1 300 (mm)

Pre-tension force: 6 900 (N)

Tension (elongation) volume: 0.047 (mm)

[3] Selection of support bearing

Assuming that the ratio of basic dynamic load rating of support bearing (C₃) and pre-tension force $(F_{\rm B})$ is $\varepsilon_{\rm r}$ select a bearing which generally satisfies the following:

$$\varepsilon = F_{\rm e}/C_{\rm B} < 0.20$$

Design the bearing supporting configuration to which pre-tension force is applied in such way that the axial load is supported by the duplex combination or a more multiple condition. Please consult NSK when one bearing must sustain the pre-tension load.

Table 16.8 Comparison of dynamic load rating and pre-tension force

Bearing reference number	C _B (N)	ε
30TAC62BDF	29 200	0.23
30TAC62BDFD	47 500	0.14

Selected support bearing: 30TAC62BDFD

(2) Checking drive torque of motor

(Required specifications)

- Motor rotational speed: 1 500 min⁻¹
- Time to reach maximum speed: 0.16 sec or less (At the time of rapid traverse)

[1] Load (converted to the motor load)

Calculate the moment of inertia of ball screw.

From the formulas 32) and 33) on page B64, moment of inertia of ball screw parts J are calculated the load as follows, whereas y is material density and ball screw shaft length L_o is 1 550 mm.

(Screw shaft)

$$J_{\rm B} = \frac{\pi \cdot \gamma}{32} D^4 \cdot L_{\rm o} = \frac{\pi \times 7.8 \times 10^3}{32} \times 4^4 \times 155$$

 $= 30 (ka \cdot cm^2)$

(Moving part)

$$J_{\rm w} = m \times \left(\frac{l}{2\pi}\right)^2 = 1 \ 600 \times \left(\frac{1}{2\pi}\right)^2$$

 $= 40 (ka \cdot cm^2)$

(Coupling)

$$J_c = 10 \text{ (kg} \cdot \text{cm}^2) \cdots \text{assumed}$$

(Total)

$$J_{L} = J_{B} + J_{w} + J_{c} = 30 + 40 + 10$$

= 80 (kg · cm²) \rightarrow 80 × 10⁻⁴ (kg · m²)

[2] Driving torque

The required torque to drive a ball screw resisting to external loads T₁ can be obtained by the formula 30) on page 63:

$$T_1 = T_\Delta + T_P + T_{II}$$

In this formula, T_a is drive torque at constant speed, T_P is dynamic friction torque, and, T_{II} is friction torque of the support bearings. From the formula 26) on page B62 and the formula 27) on page B63, T₄ and T₉ are:

$$T_A = \frac{Fa \cdot l}{2\pi n_1}$$

$$T_{P} = 0.014 F_{a0} \sqrt{d_{m} \cdot l}$$

$$\eta_{\scriptscriptstyle 1}=0.9$$

Refer to the starting torque value in Table 3 on page B403:

 $T_{\rm II}$ is:

$$T_{11} = 33 + 33 = 66 \, (\text{N} \cdot \text{cm})$$

So, the required drive torque during rapid ... traverse T₁₁ and heavy cutting T₁₃ are: (At the time of rapid traverse)

$$\begin{split} T_{11} &= T_{A1} + T_{P1} + T_{U1} \\ &= \frac{2354 \times 1}{2\pi \times 0.9} + 0.014 \times 3500 \,\sqrt{4.1 \times 1} + 66 \end{split}$$

= 580 (N · cm) \rightarrow 580 \times 10⁻² (N · m)

(At the time of heavy cutting)

$$T_{12} = T_{A2} + T_{P2} + T_{U2}$$

$$= \frac{10\ 354 \times 1}{2\pi \times 0.9} + 0.014 \times 3\ 500\ \sqrt{4.1 \times 1} + 66$$

$$= 1\ 995\ (\text{N} \cdot \text{cm}) \to 1\ 995 \times 10^{-2}\ (\text{N} \cdot \text{m})$$

[3] Selection of the motor

(Selection conditions)

Maximum rotational speed: $N_{\rm M} \ge 1500 \, ({\rm min}^{-1})$

Motor rating torque: $T_M > T_1 (N \cdot m)$

Motor's rotor inertia: $J_{\rm M} > J_{\rm L}/3$ (kg · m²)

Based on the above, select AC servo motor as follows.

Motor specifications

Rating power output: $W_{\rm M} = 1.8$ (kW)

Maximum rotational speed:

 $N_{\rm M} = 1500 \, (\rm min^{-1})$

Rating torque: $T_{\rm M} = 22.5 \, ({\rm N \cdot m})$

 $= 22.5 \times 10^{2} (N \cdot cm)$

Rotor inertia: $J_{\rm M} = 190 \times 10^{-4} \, (\text{kg} \cdot \text{m}^2)$

 $= 190 (kg \cdot cm^2)$

[4] Checking the time to reach maximum speed: Required time to reach rapid traverse speed can be calculated as follows (whereas $T_{\text{M}}' = 2 \times T_{\text{M}}$):

$$t_{a} = \frac{(J_{L} + J_{M}) \times 2\pi \times N}{(T_{M}' - T_{1}) \times 60} \times 1.4$$

$$= \frac{(80 \times 10^{-4} + 190 \times 10^{-4}) \times 2\pi \times 1500}{(2 \times 22.5 - 580 \times 10^{-2}) \times 60} \times 1.4$$

$$= 0.15 \text{ (sec)}$$

Thus the time meets the requirement 0.16 sec or less.

Drill 3: Cartesian type robot Z axis (vertical axis)

1. Design conditions

Mass of the traveling item : m = 300 kgMaximum travel : $S_{\text{max}} = 1500 \text{ mm}$ Rapid traverse speed : $V_{\text{max}} = 10000 \text{ mm/min}$

Repeatability: 0.3 mm Required life: $L_t = 24\,000 \text{ h}$

 $(16^{\text{hours}} \times 300^{\text{days}} \times 5^{\text{years}})$

Screw shaft supporting condition:

Fixed -- Simple support

Nut: Flanged single nut

Guide way (rolling): $\mu = 0.01$ (friction coefficient)

Drive motor: AC servo motor $(N_{\text{max}} = 1 \ 000 \ \text{min}^{-1})$

Environment: Slightly dusty

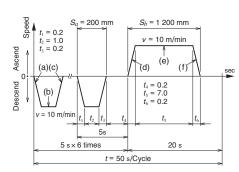


Fig. 16.5 System appearance

Fig. 16.6 Operating condition

2. Selection of basic factors

(1) Selection of accuracy grade

Although this application is not listed in **Table 4.1** "Accuracy grades of ball screw and their application" on page B19, the possibility is to use a ball screw for transfer equipment R series, because the required repeatability is 0.3 mm that is not very high.

(2) Selection of lead

From the maximum rotational speed of AC motor:

$$l \ge \frac{V_{\text{max}}}{N_{\text{max}}} = \frac{10\ 000}{1\ 000} = 10\ (\text{mm})$$

Select a lead 10 mm or over.

(3) Selection of screw shaft diameter

According to the **Table 4.6** "Shaft diameter, lead and standard screw length of R Series" on page B23, the shaft diameters whose lead is 10 mm or over are in the range of 12 mm to 50 mm.

(4) Selection of stroke

From the **Table 4.6** "Screw shaft diameter, lead and standard screw shaft length of R series" on page B23, it is possible to select from R series because the diameter d of 15 mm to 50 mm and lead *l* of 10 mm will meet the required maximum stroke of 1500 mm.

32 (mm)

10 (mm)

Shaft diameter:

Screw length:

Basic dynamic load rating:

Fourth selection: R Series ball screw for transfer equipment

Primary selection: R Series ball screw for transfer equipment

Screw shaft diameter: 15 - 50 (mm) Lead: 10 (mm)

Stroke: 1500 (mm)

3. Confirmation of standard ball screw

Select from a flanged single nuts of R Series ball screws for transfer equipment.

Second selection: R Series ball screw for transfer equipment

Screw shaft diameter: 16, 20, 25, 32, 36 40, 45, 50 (mm)

Lead: 10 (mm) Stroke: 1500 (mm)

4. Decision of screw length

Screw length L is:

 $L_{a} =$ Stroke + nut length + margin + shaft end length

$$= 1500 + 100 + 100 + 200 = 1900 (mm)$$

Normally, the overall screw shaft length $L_{\rm s}$ less than or equal to 70 times of screw shaft diameter d is recommended.

Therefore, screw shaft diameter d is:

$$d \ge \frac{L_s}{70} = \frac{1900}{70} = 27.1 \text{ (mm)}$$

Third selection: R Series ball screw for transfer equipment

Shaft diameter: 32, 36, 40, 45, 50 (mm) Lead: 10 (mm) Stroke: 1500 (mm)

5. Checking basic safety

(1) Allowable axial load

[1] Calculation of allowable axial load Accelerating/decelerating time is:

$$\alpha = \frac{V}{60 t} = \frac{10 \times 10^{3}}{60 \times 0.2} = 833 \text{ (mm/s}^{2})$$
$$= 0.833 \text{ (m/s}^{2})$$
$$t = t_{1} = t_{2} = t_{4} = t_{5}$$

(a), (f)
$$\cdots F_1 = mg - m\alpha$$

$$= 300 \times 9.80665 - 300 \times 0.833$$

$$= 2 690 (N)$$

(b), (e)
$$\cdots F_2 = mg = 2940 (N)$$

(c), (d)
$$\cdots F_3 = mg + m\alpha = 3 \ 190 \ (N)$$

[2] Buckling load

For condition in Fig. 16.7, use values below. $P = 3 190 \text{ N}, L_1 = 1 600 \text{ mm}$

Bearing supporting condition is common Fixed -- Simple support.

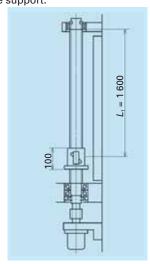


Fig. 16.7 Checking the buckling load

From the formula 2) on page B44:

$$d_{r} \ge \left(\frac{P \cdot L_{1}^{2}}{m} \times 10^{-4}\right)^{1/4}$$
$$= \left(\frac{3.190 \times 1.600^{2}}{10.0} \times 10^{-4}\right)^{1/4} = 16.8 \text{ (mm)}$$

(2) Checking permissible rotational speed

[1] Critical speed

Use values below.

$$n = 1 000 \text{ (min}^{-1}), L_1 = 1 600 \text{ (mm)}$$

From the formula 7) on page B47:

$$d_r \ge \frac{n \cdot L_1^2}{f} \times 10^{-7} = \frac{1000 \times 1600^2}{15.1} \times 10^{-7}$$

= 17 (mm)

[2] *d* • *n* value

From Table 3.2 on page B50:

$$d \le \frac{50\ 000}{n} = \frac{50\ 000}{1\ 000}$$

= 50 (mm)

* Please consult NSK when the d • n value exceeds 50 000.

(3) Checking life (dynamic load rating)

Determine the required load carrying capacity from load conditions of Table 16.9.

Table 16.9 Load conditions

Operating condition	Axial load (N)	Rotational speed (mean) (min ⁻¹)	Use time (s)
(a) _{×6} (f)	$F_1 = 2690$	$N_1 = 500$	$t_{\rm a} = 1.4$
(b) _{×6} (e)	$F_2 = 2940$	$N_2 = 1 000$	$t_{\rm b} = 13.0$
(c) _{×6} (d)	$F_3 = 3 190$	$N_3 = 500$	$t_{c} = 1.4$

Calculate mean load F_m and mean rotational speed N_m from the formulas 11) and 12) on page

Required load carrying capacity is:

$$F_{m} = \left(\frac{F_{1}^{3} \cdot N_{1} \cdot t_{a} + F_{2}^{3} \cdot N_{2} \cdot t_{b} + F_{3}^{3} \cdot N_{3} \cdot t_{c}}{N_{1} \cdot t_{a} + N_{2} \cdot t_{b} + N_{3} \cdot t_{c}}\right)^{1/3}$$

$$= 2940 (N)$$

$$N_{m} = \frac{N_{1} \cdot t_{a} + N_{2} \cdot t_{b} + N_{3} \cdot t_{c}}{t}$$

= 288 (min⁻¹)

From the formulas 8) and 9) on page B53:

$$C_a \ge (60 N_m \cdot L_1)^{1/3} \cdot F_m \cdot f_w \times 10^{-2} \text{ (N)}$$

= $(60 \times 288 \times 24000)^{1/3} \times 2940 \times 1.2 \times 10^{-2}$
= 26 300 (N)

(4) Checking static load rating

$$C_{0a} = F_{max} \times f_{s} = 3 \ 190 \times 2$$

= 6 380 (N)

In consideration of expense, select a ball screw shaft as follows.

Lead:

Stroke:

in brush seals" based on the environmental conditions.

Selected ball screw:

Nut assembly RNFTL3210A5S RS3210A20 Screw shaft

B-2-17 Reference

"NSK Motion & Control (technical journal)" was compiled to introduce NSK products and its technologies. You will find data summaries which are imperative in selecting ball screws in this catalog. If you need detailed technical data, other than described in this catalog, please refer to "NSK Motion & Control" technical journal. For inquiries and orders, please contact NSK branch offices, sales offices, and representatives assigned at various locations.

Table 17.1 NSK Motion & Control (technical journal): Issues relating to ball screws (1980-)

No.	Issued Date	Title
No.4	Jun. 1998	Recent Technical Trends in Ball Screws
No.8	May. 2000	Ball Screw with Rotating Nut and Vibration Damper
No.9	Oct. 2000	WFA Standard-Stock Ball Screws
No.10	Apr. 2001	High Performance Seals for Ball Screws
No.11	Oct. 2001	Development of NSK S1 Series Ball Screws and Linear Guides
No.11	Oct. 2001	Low Inertia Series of Nut Rotatable Ball Screws
No.13	Oct. 2002	Development of HTF Series Ball Screws for High Load Drive Application
No.13	Oct. 2002	High Lead Precision Rolled Ball Screws
No.14	May. 2003	High Speed and Low Noise Ball Screws HMC-B02 Series
No.15	Dec. 2003	Clean Support Units for Ball Screws
No.16	Aug. 2004	Development of High Speed and Low Noise Ball Screws
No.18	Aug. 2005	S3 Ball Screws: Super Low Noise Ball Screws for Automation Equipment
No.19	Sep. 2006	High-Speed and Low-Noise Ball Screw for Standard Stock - Compact FA Series
No.21	Dec. 2007	V1 Series of Ball Screws for Contaminated Environments
		HTF-SRC Series of Ball Screws for High-Speed and High-Load Applications
No.22	Mar. 2011	Technological Trends of Ball Screws for Industrial Machinery
		BSL Series of Ball Screws for Small Lathes
		HTF-SRD Series of Long-Lead Ball Screws for High-Speed and Heavy-Load Applications

B-2-18 Guide to Technical Services

(1) CAD data

■Web page

http://www.jp.nsk.com/app01/en/ctrg/

■CD-ROM

CAT. No. 7110

(3D data: Intermediate format or native,

2D date: DXF)

Catalog No.7110 (CD-ROM) contains precision machine components and rolling bearings.

Standard Ball Screws

•Finished shaft end (Compact FA series, MA type, FA type, SA type, KA type, and RMA type)

•Blank shaft end (MS type, FS type, and SS type)

Standard nut ball screws

• End deflector type

Standard support units

(2) Telephone consultation with NSK engineers

This catalog contains technical explanation for each section. However, some descriptions and explanations may be insufficient due to page limitation, etc. To amend this shortcoming, NSK offers telephone assistance. NSK engineers are pleased to help you. Our local offices are listed in the last part of this catalog. Call local NSK office or representative in your area.

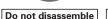
(3) Additional machining (processing) some part of standard ball screws in stock

NSK processes standard ball screw blank shaft end. NSK also cuts linear guide rails to required length for you. Service is available at NSK processing factories throughout the world. Requests are taken by branch offices and agencies.

B97 B98

B-2-19 Precautions When Handling Ball Screws

Ball screws are precision products. They require careful handling as described below.


Lubrication

- (1) Confirm the state of lubrication before use. Insufficient lubrication causes loss of ball screw functions in a short period.
- (2) Do not apply any lubrication if grease is already applied to the ball screws. Remove dust or swarf if they stuck to the greased surface during handling. Wipe the surface with clean white kerosene, and then apply the same type of new lubricant before use. Avoid using different types of grease at the same time.

Consult NSK for special oil lubricant if it is required to your application.

(3) Check the grease after two to three months of operation. Wipe off the old grease if it is excessively contaminated, and apply sufficient volume of a fresh coat of grease. After the initial check, check and replenish the grease approximately every year. Check more often if environment requires. Note: Refer to pages B67 and D13 for lubrication.

Do not reassemble Watch out for falling objects

Handle with care

Do not apply shock

Handling

- (1) Never disassemble the ball screw. It invites dust to enter, and lowers precision, or may cause an
- (2) Once the ball screw is disassembled for some reason, the user should never reassemble the ball screw by himself. Loss of ball screw function is apt to occur if a mistake is made. Please send the ball screw to NSK for repair or re-assembly. It will be reworked at the minimum service charge.
- (3) The ball screw shaft or nut may fall off due to its own weight. Watch out for such falling object. If it falls, the ball groove or ball recirculation component may be damaged and their function might be lost. Make certain to return such item to NSK for check. There will be the minimum charge for this service.
- (4) If the recirculation component, the shaft outside, or the ball groove is scratched or damaged by impact, recirculation operation becomes deficient, and may cause a loss of function.

Note: Refer to page B73 for assembling components.

Rotational speed limitation

Do not overrun

Temperature limitation

Precautions in use

- (1) Ball screws should be used in a clean environment. Use a dust cover to keep dust and swarf from entering into the system. Insufficient dust protection causes not only the ball screw function to deteriorate but also brings about damage to the recirculation components if dust plugs the system. This may result in more serious accident such as a fall of the table.
- (2) For rotational speed in operation, refer to the applicable section in this catalog which describes permissible rotational speeds, or to specification drawing furnished by NSK. Exceeding permissible rotational speed damages recirculation components, and may cause the table to fall. A precaution system such as a safety nut is recommended in vertical use of ball screw. Please consult NSK for safety system.
- (3) Overrunning ball nut (removed from the ball thread) causes the balls to fall out, damages recirculation components, and dent ball groove, resulting in insufficient operation. Continued use under such conditions may cause premature wear, and damages recirculation components. For these reasons, avoid overrun by all means. If overrun occurs, please request NSK to check. There will be a minimum charge for this service.
- (4) Ball screws are designed to be used at a temperature of less than 80°C. Do not operate at temperatures higher than this limit. Use at a higher temperature may damage recirculation and seal components. Please consult NSK if it is necessary to use at a temperature higher than the limit.

When using NSK K1 lubrication unit, the operating temperature should be 50°C or less. (Momentary maximum temperature in use: 80°C)

Note: Please read page B80 before designing.

Store in the correct position

Storage

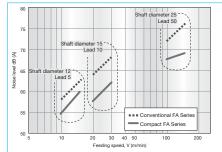
- (1) Store in the original NSK package. Do not unwrap or tear the inner wrapping if it is not necessary. This allows dust to enter and rust to set in, and may deteriorate functions.
- (2) The following position is recommended when storing ball screws.
- ① Keep in the NSK original package, and place it flat.
- 2 Place flatly on supports; store in a clean area.
- 3 Hang vertically in a clean place.

B-3 Ball Screw Dimension Table

1.	Compact FA Series	B103
2.	Finished Shaft End	B143
	MA Type, Miniature, Fine Lead	B145
	FA Type for Small Equipment	B167
	SA Type for Machine Tools	B203
3.	Finished Shaft End	
	KA Type Stainless Steel Product	B259
4.	Blank Shaft End	B285
	MS Type, Miniature, Fine Lead	B287
	FS Type for Small Equipment	B295
	SS Type for Machine Tools	B307
5.	Ball Screws for Transfer Equipment	B335
6.	Accessories	B375

B-3-1 Dimension Table and Reference Number of Standard Ball Screws

B101 B102


B-3- 1.1 Compact FA Series PSS Type, USS Type, and FSS Type

1. Features

In order to respond quickly to a wide range of needs, NSK keeps end-deflector recirculation system ball screws, which offer high-speed and low-noise operation and compact design, in standard inventories as the Compact FA Series. The exceptionally high performance ball screws are ready for use in a variety of fields such as semiconductor manufacturing equipment, LCD manufacturing equipment, chip mounting equipment, measuring apparatus, food and medical equipment, and automotive manufacturing equipment.

Quieter sound

The operating noise level of ball screws has been reduced by 6 dB, about half of what is sensed by the ear.

(Microphone was positioned at a distance of 400 mm for all noise levels)

Fig. 1 Comparison of noise level

Compact

The outside diameter of the ball nut is as much as 30% smaller than those of existing NSK products. This contributes to more compact design of all sorts of equipment and devices such as low-profile positioning stages.

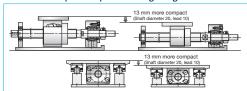


Fig. 2 Comparison of FA Type and Compact FA Series PSS Type

High speed

The permissible rotational speed up to 5 000 min⁻¹. This capability dramatically expands the range of service conditions.

Please refer to the dimension tables for details of the permissible rotational speed.

A grease fitting is provided as a standard equipment

The new ball screw type is equipped with a grease fitting (M5 \times 0.8) as a standard equipment. Two lubrication ports are provided to facilitate easy maintenance.

Storage seal

Compact, thin plastic seal is available. Nut outside diameter is compact compare with the return tube recirculation system.

■Low-profile design

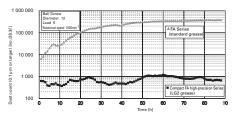

The low-profile support units especially compatible with the compact FA Series are available for a superb space-saving design.

Fig. 3 Comparison of support units

●Low dust generation LG2 grease (USS Type)

The dust count is approximately 1/100 that of the existing FA series. It is suitable for applications in clean environments.

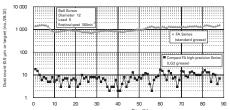


Fig.4 Comparison of dust count

Easy stroke setting (FSS Type)

Flexible stroke setting with fixed-simple support by means of mounting support unit (simple support side) directly onto ball screw thread outside diameter. Proprietary support unit (simple support side) is available from NSK.

2. Order of the dimension table

For each type, it is arranged in order from small diameter to large.

3. Dimension tables

Dimension tables show shapes/sizes as well as specification factors of each shaft diameter/ lead combination. Tables also contain data as follows:

Stroke

Nominal stroke: A reference for your use.

Maximum stroke: The limit stroke that the nut can move. The figure is obtained by subtracting the nut length from the effective

threaded length (L₁).

Lead accuracy

PSS Type, C5 grade; USS Type, C3 grade; FSS Type, Ct7 grade

T: Travel compensation

e_n: Tolerance on specified travel

 v_{ij} : Travel variation

See "Technical Description: Lead Accuracy" (page B37) for the details of the codes.

Fig.5 Flexible stroke setting

Permissible rotational speed

d • n:

Limited by the relative peripheral speed between the screw shaft and the nut.

Critical speed: Limited by the natural

frequency of a ball screw shaft.

Critical speed depends on the supporting condition of screw shaft.

The lower of the two criteria, the d-n and critical speed, will determine the overall permissible rotational speed of the ball screw. For details, see "Technical Description: Permissible Rotational Speed" (page B47).

4. Other

The seal of the ball screw and end deflector are made of synthetic resin. Consult NSK when using our ball screws under extreme environments or in special environments, or if using special lubricant or oil.

The NSK K1 cannot be mounted to the compact FA Series.

For special environments, see pages B70 and D2. For lubrications, see pages B67 and D13.

Note: For details of standard stock products, contact NSK.

Table 1 Combinations of screw shaft diameter and lead

Lead Screw shaft diameter	5	8	10	12	15	20	25	30	40	50	60
6		B105		B105							
8			B107		B107						
10	B109 B129		B109								
12	B111 B131		B111 B135			B111		B111			
15	B113 B133		B113 B137			B115 B137		B115			
20	B117		B117 B139			B119 B139		B119	B121		B121
25	B123		B123 B141			B125 B141	B125 B141	B127		B127	

B103 B104

Screw shaft ø6

Lead 8, 12

Unit: mm

Ball screw specification							
Ball diameter/screw shaft root diameter	1.2 / 4.9						
Ball circle dia.	6.2						
Accuracy grade/axial play	C5 / 0.005 or less						
Factory-packed grease	NSK grease PS2						

Recommended

For drive side (Fixed)
WBK04-01M (square)
WBK04-11M (round)

2- ϕ 3.4 drill thru (equally spaced)
7.5 7.5
Cross-section X-X

	Screw shaft	Lood	Effective	Basic load ratings (N)		Maximum	Nut	Screw shaft dimensions	
Ball screw No.	diameter	Lead	tums of balls	Dynamic	Static	stroke	length		
	d	l		$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$		L	L_{t}	L ₁
PSS0608NAD0150		8	2	550	715	97.5	16	118.5	8.5
PSS0608NBD0150	6	0	4	1 180	1 760	89.5	24	118.5	8.5
PSS0612NAD0150		12	2	550	715	92	20	117	10
PSS0612NBD0150		12	4	1 180	1 760	80	32	117	10

φ 14 φ 27

150

- ⊥ 0.005 E

23

M4×0.5

Notes: 1. Contact NSK if permissible rotational speed is to be exceeded.

⊥0.010|A| -

L_t (quenching range)

127

	Lead accuracy		Dynamic		Permissible	Internal snatial	Standard volume of
Target value	Error		preload torque	Mass	rotational speed		grease replenishing
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	(N·cm)	(kg)	(min ⁻¹) *1	(cm³)	(cm³)
				0.06		0.2	0.1
	20	18	~0.5	0.06	5 000	0.3	0.2
	20	10	0.5	0.06	5 000	0.2	0.1
				0.07		0.3	0.2

- Service temperature range is 0 to 80°C.
 Use of NSK support unit is recommended. Refer to page B375 for details.

Unit: mm

Screw shaft ø8

Lead 10, 15

Unit: mm

Unit: mm

Ball screw specification						
Ball diameter/screw shaft root diameter	1.588 / 6.6					
Ball circle dia.	8.3					
Accuracy grade/axial play	C5 / 0.005 or less					
Factory-packed grease	NSK grease PS2					

Recommended

For drive side (Fixed)
WBK06-01M (square)
WBK06-11M (round)

2- ¢3.4 (equally	drill thru spaced)
	PCD 25
9.5 9.5	
Cross-section X-X	

Ball screw No.	Screw shaft diameter d	Lead <i>l</i>	Effective tums of balls		ratings (N) Static C _{0a}	- Maximum stroke	Nut length L	Screw shaft	dimensions L ₁
PSS0810NAD0150		10	2	910	1 260	86.5	18	109.5	10.5
PSS0810NBD0150	8	10	4	1 950	3 080	76.5	28	109.5	10.5
PSS0815NAD0150	°	15	2	910	1 260	80	22	107	13
PSS0815NBD0150		15	4	1 950	3 080	65	37	107	13

150

- ✓ 0.020 A

Ε

30

<u>-</u> ⊥ 0.005 *E*

M6×0.75

Notes: 1. Contact NSK if permissible rotational speed is to be exceeded.

⊥ 0.010 A =

L_t (quenching range)

	Lead accuracy		Dynamic	Mass	Permissible	Internal spatial	Standard volume of	ē
Target value	Error	Variation	preload torque	IVIASS	rotational speed	volume of nut	grease replenishing	Ĭ
Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	(N·cm)	(kg)	(min ⁻¹) *1	(cm³)	(cm³)	
				0.09		0.4	0.2	
0	20	18	~0.5	0.11	5 000	0.5	0.3	
U	20	10	0.5	0.1	5 000	0.4	0.2	
				0.12		0.6	0.3	

Service temperature range is 0 to 80°C.
 Use of NSK support unit is recommended. Refer to page B375 for details.

4- φ4.5 drill thru φ8 c'bore, 4.5 depth

Plug (oil hole, M5×0.8 tap)

Cross-section X-X

Ball screw specification						
Preload type	Oversize ball preload (P-preload)					
Ball diameter/screw shaft root diameter	2.000 / 8.2					
Ball circle dia.	10.3					
Accuracy grade/axial play	C5 / 0					
Factory-packed grease	NSK grease PS2					

For drive side (Fixed)	For opposite to drive side (Simple)
WBK08-01B (low-profile, square)	WBK08S-01B (low-profile, square)
WBK08-11B (round, high load)	

Recommended support unit

Unit: mm

	Lead accu	racy	Shaft	Dynamic preload	Mass	Permissible rotational speed (min ⁻¹) *2		Standard volume of	
Target v	alue Error	Variation	run-out	torque	111033	Fixed-Simple	volume of nut	grease replenishing	
T	$e_{\scriptscriptstyle p}$	υu	С	(N·cm) *1	(kg)	i ixeu-simple	(cm³)	(cm³)	
	0.020	0.018	0.030	0.7 - 3.3	0.3				
	0.020	0.018	0.045	0.7 - 3.3	0.3		0.8	0.4	
	0.023	0.018	0.060	0.6 - 4.3	0.3	5 000			
	0.025	0.020	0.070	0.6 - 4.3	0.4				
0	0.027	0.020	0.085	0.4 - 4.9	0.5				
	0.020	0.018	0.045	0.7 - 3.3	0.3			0.4	
	0.023	0.018	0.060	0.6 - 4.3	0.4	5 000	0.7		
	0.025	0.020	0.070	0.6 - 4.3	0.4	5 000	0.7		
	0.027	0.020	0.085	0.4 - 4.9	0.5				

- 4. Use of NSK support unit is recommended. Refer to page B375 for details.5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

 	Ø 1 0.005 F	2-thin plastic seal (synthetic plastic) 10.010 A 6 (8.7) 6 (8.7) 7 11 X 3	V C G 322	E ⊥10.005E	ंड <u>ि</u> -
L ₁ (quenching range)	-		- -5- -(8)		-
L _a 3/	- 9 +-			37	-

	Screw shaft Lead		Basic load	ratings (N)	Stro	oke	Nut	Screw shaft dimensions		
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length			
	d	l	C _a	C_{0a}	INOMINAL	L_{t} - L	L	$L_{\rm t}$	La	L。
PSS1005N1D0171					50	83		112	125	171
PSS1005N1D0221					100	133		162	175	221
PSS1005N1D0321	10	5	2 930	4 790	200	233	29	262	275	321
PSS1005N1D0421					300	333		362	375	421
PSS1005N1D0521					400	433		462	475	521
PSS1010N1D0221					100	130		162	175	221
PSS1010N1D0321		10	1 970	0.040	200	230		262	275	321
PSS1010N1D0421		10	1 9/0	3 010	300	330	32	362	375	421
PSS1010N1D0521					400	430		462	475	521

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N-cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

2-thin plastic seal

Lt (quenching range)

√0.018 A

6.8^{-0.1}

⊥[0.005]F]

√0.010 E

✓0.018 A

Ė

10.005 E

Screw shaft ø12 Lead 5, 10, 20, 30

Unit: mm

Ball screw specification										
Preload type	Oversize ball preload (P-preload)									
Ball diameter/screw shaft root diameter	2.000 / 10.2									
Ball circle dia.	12.3									
Accuracy grade/axial play	C5 / 0									
Factory-packed grease	NSK grease PS2									

Recommended support unit

	For drive side (Fixed)	For opposite to drive side (Simple)
W	BK08-01B (low-profile, square)	WBK08S-01B (low-profile, square)
١	VBK08-11B (round, high load)	

	Screw shaft	Lead	Basic load	ratings (N)	Str	oke	Nut	Screv	v shaft	dimen	71 21 21 21 21 21 21 21 21 21 21 21 21 7 21 7 21 7 1 7		
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length						
	d	l	C _a	C_{0a}	INOTHINA	L _t -L	L	$L_{\rm t}$	La	L。	L ₁		
PSS1205N1D0171					50	80		110	125	171			
PSS1205N1D0221					100	130		160	175	221			
PSS1205N1D0321		5	3 200	5 860	200	230	30	260	275	321	_		
PSS1205N1D0421		5	3 200	5 860	300	330	30	360	375	421	′		
PSS1205N1D0521					400	430		460	475	521			
PSS1205N1D0621					500	530		560	575	621			
PSS1210N1D0221					100	117		160	175	221			
PSS1210N1D0321				5 860	200	217	43	260	275	321			
PSS1210N1D0421		10	3 200		300	317		360	375	421	7		
PSS1210N1D0521					400	417		460	475	521			
PSS1210N1D0621	12				500	517		560	575	621			
PSS1220N1D0271					100	158		208	225	271			
PSS1220N1D0371					200	258		460 475 521 560 575 621 208 225 271 308 325 371 408 425 471					
PSS1220N1D0471		20	2 150	3 610	300	358	50	408	425	471	9		
PSS1220N1D0571					400	458		508	525	571			
PSS1220N1D0671					500	558		608	625	671			
PSS1230N1D0271					100	133		203	225	271			
PSS1230N1D0371					200	233		303	325	371			
PSS1230N1D0471		30	2 150	3 610	300	333	70	403	425	471	14		
PSS1230N1D0571					400	433		503	525	571			
PSS1230N1D0671					500	533		603	625	671			

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

Contact NSK if permissible rotational speed is to be exceeded.
 Service temperature range is 0 to 80°C.

								Unit: mm	
Le	ad accura	асу	Shaft	Dynamic preload	Mass	Permissible rotational speed (min ⁻¹) *2		Standard volume of	
Target value	Error	Variation	run-out	torque	IVIASS	Fixed-Simple	volume of nut	grease replenishing	
T	$e_{\scriptscriptstyle m p}$	υu	С	(N⋅cm) *1	(kg)	r ixed-oii ripie	(cm³)	(cm³)	
	0.020	0.018	0.030	0.7 - 3.3	0.3				
	0.020	0.018	0.045	0.7 - 3.3	0.3				
	0.023	0.018	0.060	0.6 - 4.3	0.4	5 000	1.0	0.5	
	0.025	0.020	0.070	0.6 - 4.3	0.5	5 000	1.0	0.5	
	0.027	0.020	0.085	0.6 - 4.3	0.6				
	0.030	0.023	0.085	0.4 - 4.9	0.7				
	0.020	0.018	0.045	0.7 - 3.3	0.4			0.5	
	0.023	0.018	0.060	0.6 - 4.3	0.5				
	0.025	0.020	0.070	0.6 - 4.3	0.5	5 000	1.0		
	0.027	0.020	0.085	0.6 - 4.3	0.6				
0	0.030	0.023	0.085	0.4 - 4.9	0.7				
	0.023	0.018	0.045	1.4 - 4.5	0.4	5 000			
	0.023	0.018	0.060	0.9 - 4.9	0.5	5 000			
	0.027	0.020	0.070	0.9 - 4.9	0.6	5 000	1.2	0.6	
	0.030	0.023	0.085	0.6 - 5.9	0.7	5 000			
	0.030	0.023	0.110	0.6 - 5.9	0.8	4 200			
	0.023	0.018	0.045	1.4 - 4.5	0.5	5 000			
	0.023	0.018	0.060	0.9 - 4.9	0.6	5 000			
	0.027	0.020	0.070	0.9 - 4.9	0.7	5 000	1.5	0.8	
	0.030	0.023	0.085	0.6 - 5.9	0.7	5 000			
	0.030	0.023	0.110	0.6 - 5.9	0.8	4 300			

4. Use of NSK support unit is recommended. Refer to page B375 for details.

5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

B111 B112

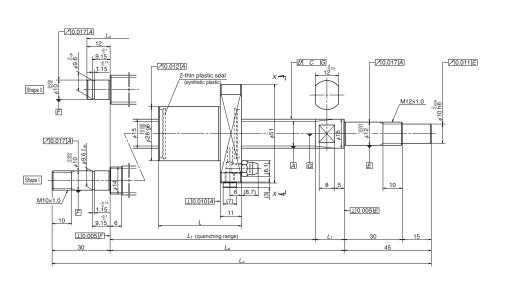
Cross-section X-X

Screw shaft ø15

Lead 5, 10

Unit: mm

Ball screw specification										
Preload type	Oversize ball preload (P-preload)									
Ball diameter/screw shaft root diameter	2.778 / 12.6									
Ball circle dia.	15.5									
Accuracy grade/axial play	C5 / 0									
Factory-packed grease	NSK grease LR3									


Recommended support unit

For drive side	For opposite	e to drive side				
(Fixed)	(Fixed)	(Simple)				
WBK12-01B (low-profile, square)	WBK10-01B (low-profile, square)	WBK12S-01B (low-profile, square)				
WBK12-11 (round)	WBK10-11 (round)					

Unit: mm

Left shaft end	Le	ad accura	эсу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) ^{*2}		Standard volume of										
(opposite	Target value	Error	Variation	run-out	preload torque	IVIGSS	Fixed-	Fixed-	volume of nut	grease replenishing										
driven side)	T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)										
		0.020	0.018	0.035	0.2 - 6.9	0.5	5 000		2.0	1.0										
		0.020	0.018	0.035	0.2 - 6.9	0.5	5 000													
		0.023	0.018	0.045	0.2 - 6.9	0.6	5 000													
П		0.025	0.020	0.050	0.4 - 9.8	0.8	5 000	_												
		0.027	0.020	0.060	0.4 - 9.8	0.9	5 000													
		0.030	0.023	0.075	0.4 - 9.8	1.0	5 000													
		0.035	0.025	0.075	0.4 - 11.8	1.1	3 600													
П	0	0.020	0.018	0.035	0.6 - 7.4	0.6	5 000	_												
П	0	0.023	0.018	0.045	0.6 - 7.4	0.7	5 000	_												
П		0.025	0.020	0.050	0.4 - 9.8	0.8	5 000	_												
Π		0.027	0.020	0.060	0.4 - 9.8	1.0	5 000	_												
П		0.030	0.023	0.075	0.4 - 9.8	1.1	5 000	_	2.0	1.0										
П		0.035	0.025	0.075	0.4 - 11.8	1.2	3 600	_												
I		0.035	0.025	0.095	0.4 - 11.8	1.4	2 700	3 400												
I		0.040	0.027	0.095	0.4 - 11.8	1.5	2 200	3 400												
I		0.046	0.030	0.120	0.4 - 11.8	1.7	1 400	2 300												
					D (

- 4. Use of NSK support unit is recommended. Refer to page B375 for details.5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

	Screw shaft	Lead	Basic load	ratings (N)	Str	oke	Nut	Screw shaft dimensions			ions	
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length					
	d	l	C _a	$C_{\scriptscriptstyle 0a}$	INOITIIIIai	$L_{\rm t}$ - L	L	$L_{\rm t}$	La	L _o	L_1	
PSS1505N1D0211					50	109		139	154	211		
PSS1505N1D0261					100	159		189	204	261		
PSS1505N1D0361					200	259		289	304	361		
PSS1505N1D0461		5	5 460	10 200	300	359	30	389	404	461	15	
PSS1505N1D0561					400	459		489	504	561		
PSS1505N1D0661	15			500	559				661			
PSS1505N1D0761		600 659		689	704	761						
PSS1510N1D0261		i			100	146	689 704 761 189 204 261					
PSS1510N1D0361					200		304	361				
PSS1510N1D0461					300	346		389	404	461		
PSS1510N1D0561					400	446		489	504	561		
PSS1510N1D0661		10	5 460	10 200	500	546	43	589	604	661	15	
PSS1510N1D0761					600	646		689	704	761		
PSS1510N1D0879					700	746		789	804	879		
PSS1510N1D0979					800	846		889	904	979		
PSS1510N1D1179					1 000	1 046		1 089	1 104	1 179		

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N-cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

B113

Shape II

∕0.017]*A*|-

_/0.012*A*

2-thin plastic seal (synthetic plastic)

L₁ (quenching range)

_/0.017 A

- <u>⊥10.005</u> *E*

M12×1.0

Screw shaft ø15

Lead 20, 30

Unit: mm

Ball screw s	pecification			
Preload type	Oversize ball preload (P-preload)			
Ball diameter/screw shaft root diameter	3.175 / 12.2			
Ball circle dia.	15.5			
Accuracy grade/axial play	C5 / 0			
Factory-packed grease	NSK grease LR3			

Recommended support unit

For drive side	For opposite	to drive side
(Fixed)	(Fixed)	(Simple)
WBK12-01B (low-profile, square)	WBK10-01B (low-profile, square)	WBK12S-01B (low-profile, square)
WBK12-11 (round)	WBK10-11 (round)	

30° + 30° Gr

~	4- 45 5 drill thru
	4- φ5.5 drill thru φ9.5 c'bore, 5.5 depth
1(Cx) 1	l (65)
X-1-	<u></u>
	PCD 43
	PCD ***
	11 14-7
i 1 <i>il 1</i> / 1	
)
() ()	
1	
E 12	i N
1((\infty))[[a]	
/ / 🗔	ш
1√30∘ 7	30°
Grease nipple	
(oil hole, 16.5/	16.5
M5×0.8 tap) 3	3
·· - / ··	
Plug /	
(oil hole, M5×0.8 tap)	
Cross-sec	tion X-X

	Screw shaft	Lead	Basic load	ratings (N)	Str	oke	Nut	Screw shaft dimension			ions	
Ball screw No.	diameter	Lead	Dynamic	Static	Nominal	Max.	length					
	d	l	C _a	C_{0a}	INOITIIIai	L _t -L	L	$L_{\rm t}$	La	Lo	L ₁	
PSS1520N1D0261					100	135		186	204	261		
PSS1520N1D0361					200	235		286	304	361		
PSS1520N1D0461					300	335		386	404	461		
PSS1520N1D0561					400	435		486	504	561		
PSS1520N1D0661		20	5 070	8 730	500	535	51	586	604	661	18	
PSS1520N1D0761					600	635		686	704	761		
PSS1520N1D0879					700	735		786	804	879		
PSS1520N1D0979					800	835		886	904	979		
PSS1520N1D1179	15				1 000	1 035		1 086	1 104	1 179		
PSS1530N1D0311	13				100	159		230	254	311		
PSS1530N1D0411					200	259		330	354	411		
PSS1530N1D0511					300	359		430	454	511		
PSS1530N1D0611					400	459		530	554	611		
PSS1530N1D0711		30	5 070	8 730	500	559	71	630	654	711	24	
PSS1530N1D0811					600	659		730	754	811		
PSS1530N1D0929					700	759		830	854	929		
PSS1530N1D1029					.	800	859		930	954	1 029	
PSS1530N1D1229					1 000	1 059		1 130	1 154	1 229		

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

2. Contact NSK if permissible rotational speed is to be exceeded.

3. Service temperature range is 0 to 80°C.

										Unit: mm
Left shaft end	Lead accur		асу	Shaft	Dynamic	Mass	Permissible rotational speed (min ⁻¹) *2			Standard volume of
(opposite	Target value	Error	Variation	run-out	preload torque	IVIGSS	Fixed-	Fixed-	volume of nut	grease replenishing
driven side)	T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.020	0.018	0.035	0.8 - 8.8	0.7	5 000	_		
П		0.023	0.018	0.045	0.8 - 8.8	0.8	5 000	_		
П		0.025	0.020	0.050	0.8 - 10.8	0.9	5 000	_		
П		0.027	0.020	0.060	0.8 - 10.8	1.1	5 000	_		
Π		0.030	0.023	0.075	0.8 - 10.8	1.2	5 000	_	2.8	1.4
П		0.035	0.025	0.075	0.8 - 13.8	1.3	3 700	_		
I		0.035	0.025	0.095	0.8 - 13.8	1.5	2 900	4 200		
I		0.040	0.027	0.095	0.8 - 13.8	1.6	2 200	3 300		
I	0	0.046	0.030	0.120	0.8 - 13.8	1.9	1 500	2 200		
П		0.023	0.018	0.035	1.2 - 9.3	0.8	5 000	_		
П		0.025	0.020	0.050	0.8 - 10.8	1.0	5 000	_		
П		0.027	0.020	0.060	0.8 - 10.8	1.1	5 000	_		
Π		0.030	0.023	0.060	0.8 - 10.8	1.2	5 000	_		
П		0.030	0.023	0.075	0.8 - 13.8	1.4	4 500	_	3.4	1.7
П		0.035	0.025	0.095	0.8 - 13.8	1.5	3 300	_		
I		0.040	0.027	0.095	0.8 - 13.8	1.6	2 600	3 800		
I		0.040	0.027	0.120	0.8 - 13.8	1.8	2 000	3 000		
I		0.046	0.030	0.120	0.8 - 13.8	2.0	1 400	2 000		

4. Use of NSK support unit is recommended. Refer to page B375 for details.

5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

B115 B116 ∕0.017 A

Shape II

Shape I

∕[0.017]**A**]-

1.15%14 10.15%1 10.005 F - ∕ 0.012 E

✓0.017 A

Ė

-<u>∐0.005|</u>E

M15×1.0

Screw shaft ø20

Lead 5, 10

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	3.175 / 17.2
Ball circle dia.	20.5
Accuracy grade/axial play	C5 / 0
Factory-packed grease	NSK grease LR3

Recommended support unit

For drive side	For opposite	to drive side
(Fixed)	(Fixed)	(Simple)
WBK15-01B (low-profile, square)	WBK15-01B (low-profile, square)	WBK15S-01B (low-profile, square)
WBK15-11 (round)	WBK15-11 (round)	

30° - 30° /	4- φ6.6 drill thru φ11 c'bore, 6.5 depth
	PCD 49
	30.5
Grease nipple (oil hole, M5x0.8 tap) 30° 30° 30° 30° 30° 30° 30° 30° 30° 30°	
Plug (oil hole, M5x0.8 tap) Cross-section X-X	

	Screw shaft		Basic load	ratings (N)	Stro	oke	Nut	Scre	w shaft	dimens	ions			
Ball screw No.	diameter	Lead	Dynamic	Static		Max.	length							
	d	l	C _a	C_{0a}	Nominal	L _t -L	L	$L_{\rm t}$	La	Lo	L ₁			
PSS2005N1D0323					150	197		228	250	323				
PSS2005N1D0373					200	247		278	300	373				
PSS2005N1D0473					300	347		378	400	473				
PSS2005N1D0573		5	8 790	18 500	400	447	31	478	500	573	22			
PSS2005N1D0673		5 8790	0 / 30	16 500	500	547	31	578	600	673				
PSS2005N1D0773								600	647		678	700	773	
PSS2005N1D0873					700	747		778	800	873				
PSS2005N1D1000					800	847		878	900	1000				
PSS2010N1D0387	20	20			200	247		292	314	387				
PSS2010N1D0487					300	347		392	414	487				
PSS2010N1D0587					400	447		492	514	587				
PSS2010N1D0687					500	547		592	614	687				
PSS2010N1D0787		10	8 790	18 500	600	647	45	692	714	787	22			
PSS2010N1D0887					700	747		792	814	887				
PSS2010N1D1014						800	847		892	914	1014			
PSS2010N1D1214					1 000	1047		1092	1 114	1214				
PSS2010N1D1414					1 200	1247		1292	1 314	1414				

2-thin plastic seal (synthetic plastic)

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

2. Contact NSK if permissible rotational speed is to be exceeded.

3. Service temperature range is 0 to 80°C.

										Unit: mm
Left shaft end	Le	Lead accuracy		Shaft Dynamic		Mass	Permissible rotational speed (min ⁻¹) *2			Standard volume of
(opposite	Target value	Error	Variation	run-out	preload torque	IVIGSS	Fixed-	Fixed-	volume of nut	grease replenishing
driven side)	T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.023	0.018	0.045	0.6 - 7.4	1.0	5 000	_		
П		0.023	0.018	0.045	0.6 - 7.4	1.1	5 000	_		
П		0.025	0.020	0.050	0.6 - 7.4	1.3	5 000	_		
П		0.027	0.020	0.060	0.4 - 9.8	1.5	5 000	_	3.4	1.7
П		0.030	0.023	0.075	0.4 - 9.8	1.7	5 000	_	3.4	1.7
П		0.035	0.025	0.075	0.4 - 9.8	1.9	5 000	_		
П		0.035	0.025	0.095	0.4 - 9.8	2.2	4 000	_		
I		0.040	0.027	0.095	0.4 - 11.8	2.4	3 200	4 700		
П	0	0.023	0.018	0.045	1.2 - 9.3	1.2	5 000	_		
П		0.025	0.020	0.050	1.2 - 9.3	1.4	5 000	_		
П		0.027	0.020	0.060	0.8 - 10.8	1.7	5 000	_		
П		0.030	0.023	0.075	0.8 - 10.8	1.9	5 000	_		
П		0.035	0.025	0.075	0.8 - 10.8	2.1	5 000	_	3.2	1.6
П		0.035	0.025	0.095	0.8 - 10.8	2.4	4 000	_		
I		0.040	0.027	0.120	0.8 - 13.8	2.6	3 100	4 600		
I		0.046	0.030	0.120	0.8 - 13.8	3.1	2 100	3 100		
I		0.054	0.035	0.160	0.8 - 13.8	3.6	1 500	2 200		

- 4. Use of NSK support unit is recommended. Refer to page B375 for details.
- 5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

B117 B118 ∕0.017 A

Shape II

Shape I

∕[0.017]**A**]-

- ∕ 0.012 E

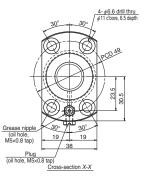
✓0.017 A

Ė

M15×1.0

Screw shaft ø20

Lead 20, 30


Unit: mm

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	3.175 / 17.2
Ball circle dia.	20.5
Accuracy grade/axial play	C5 / 0
Factory-packed grease	NSK grease LR3

Recommended support unit

For drive side	For opposite	to drive side
(Fixed)	(Fixed)	(Simple)
WBK15-01B (low-profile, square)	WBK15-01B (low-profile, square)	WBK15S-01B (low-profile, square)
WBK15-11 (round)	WBK15-11 (round)	

	——————————————————————————————————————					Cilled Mr. O. Const.			
	10.15*81					(UII IIUIE, MOXU.O EIZ) Cross-section X-X	MDK45 44 / IV	M/DV1E 11 /round)	
	⊥[0.005]F] -	L. (augnobing range)	1.	40	20	Cross-section X-X	WBK15-11 (round)	WBK15-11 (round)	
	III0.0031F	£1 (quericining range)		40	_ 20 .				
L	40	L _a	1	_ 60					
	-1-	1	-	-					
-		Lo							

	1		ln	(* 1)	-			0		12	
	Screw shaft	Lead	Basic load		Stro		Nut	Scre	w shaft	dimens	ions
Ball screw No.	diameter		Dynamic Static Nominal Max. length								
	d	l	C _a	C_{0a}	14011111101	$L_{\rm t}$ - L	L	$L_{\rm t}$	La	L _o	L ₁
PSS2020N1D0508					300	359		413	435	508	
PSS2020N1D0608					400	459		513	535	608	
PSS2020N1D0708					500	559		613	635	708	
PSS2020N1D0808			5 900	11 700	600	659		713	735	808	22
PSS2020N1D0908		20 5			700	759	54	813	835	908	
PSS2020N1D1035					800	859		913	935	1 035	
PSS2020N1D1235					1 000	1 059		1 113	1 135	1 235	
PSS2020N1D1435					1 200	1 259		1 313	1 335	1 435	
PSS2020N1D1835	20				1 600	1 659		1 713	1 735	1 835	
PSS2030N1D0408	7 20				200	234		308	335	408	27
PSS2030N1D0508					300	334		408	435	508	
PSS2030N1D0608					400	434		508	535	608	
PSS2030N1D0708					500	534		608	635	708	
PSS2030N1D0808		30	5 900	11 700	600	634	74	708	735	808	
PSS2030N1D0908					700	734		808	835	908	
PSS2030N1D1035					800	834		908	935	1 035	
PSS2030N1D1235					1 000	1 034		1 108	1 135	1 235	
PSS2030N1D1435					1 200	1 234		1 308	1 335	1 435	

2-thin plastic seal (synthetic plastic)

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

2. Contact NSK if permissible rotational speed is to be exceeded.

3. Service temperature range is 0 to 80°C.

Left shaft end	Le	ad accura	эсу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2		Standard volume of
(opposite	Target value	Error	Variation	run-out	preload torque	141000	Fixed-	Fixed-	volume of nut	grease replenishing
driven side)	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.027	0.020	0.060	1.4 - 11.8	1.6	5 000	_		
П		0.030	0.023	0.060	1.4 - 11.8	1.8	5 000	_		
П		0.030	0.023	0.075	1.4 - 11.8	2.0	5 000	_		
П		0.035	0.025	0.095	1.4 - 11.8	2.3	5 000	_		
П		0.040	0.027	0.095	0.8 - 13.8	2.5	3 700	_	3.2	1.6
I		0.040	0.027	0.120	0.8 - 13.8	2.8	3 000	4 500		
I		0.046	0.030	0.120	0.8 - 13.8	3.3	2 000	3 000		
I		0.054	0.035	0.160	0.8 - 13.8	3.8	1 400	2 100		'
I	0	0.065	0.040	0.200	0.8 - 13.8	4.7	800	1 200		
П		0.023	0.018	0.050	1.6 - 9.8	1.4	5 000	_		
П		0.027	0.020	0.060	1.4 - 11.8	1.7	5 000	_		
П		0.030	0.023	0.060	1.4 - 11.8	1.9	5 000	_		
П		0.030	0.023	0.075	1.4 - 11.8	2.1	5 000	_		
П		0.035	0.025	0.095	1.4 - 11.8	2.4	5 000	_	4.6	2.3
П		0.040	0.027	0.095	0.8 - 13.8	2.6	3 900	_		
I		0.040	0.027	0.120	0.8 - 13.8	2.9	3 100	4 600		
I		0.046	0.030	0.120	0.8 - 13.8	3.4	2 100	3 000		
I		0.054	0.035	0.160	0.8 - 13.8	3.9	1 500	2 200		

4. Use of NSK support unit is recommended. Refer to page B375 for details.

5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

B119 B120

∕0.017 A

Shape II

Shape I

∕[0.017]**A**]-

1.15⁻⁸¹⁴ 10.15⁻⁸¹ - ∕ 0.012 E

✓0.017 A

Ė

-<u>∐0.005|</u>E

M15×1.0

Screw shaft ø20

Lead 40, 60

Unit: mm

Ball screw specification									
Preload type	Oversize ball preload (P-preload)								
Ball diameter/screw shaft root diameter	3.175 / 17.2								
Ball circle dia.	20.5								
Accuracy grade/axial play	C5 / 0								
Factory-packed grease	NSK grease LR3								

Recommended support unit

For drive side	For opposite to drive side						
(Fixed)	(Fixed)	(Simple)					
WBK15-01B (low-profile, square)	WBK15-01B (low-profile, square)	WBK15S-01B (low-profile, square)					
WBK15-11 (round)	WBK15-11 (round)						

4- \$6.6 drill thru 4-11 c'bore, 6.5 depth
000
88.55 B
Grease nipple 30° 30°
(oil hole, M5x0.8 tap) 19 19 38
Plug (oil hole, M5x0.8 tap) Cross-section X-X

	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Scre	w shaft	dimens	ions
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length				
	d	l	C _a	C_{0a}	INOITIIIIai	$L_{\rm t}$ - L	L	L_{t}	La	L。	L ₁
PSS2040N1D0658					400	461		553	585	658	
PSS2040N1D0758					500	561		653	685	758	
PSS2040N1D0858					600	661		753	785	858	
PSS2040N1D0958					700	761		853	885	958	
PSS2040N1D1085		40	5 900	11 700	800	861	92	953	985	1 085	32
PSS2040N1D1285					1 000	1 061		1 153	1 185	1 285	
PSS2040N1D1485					1 200	1 261		1 353	1 385	1 485	
PSS2040N1D1885		10		1 600	1 661		1 753	1 785	1 885		
PSS2040N1D2285	20				2 000	2 061		2 153	2 185	2 285	
PSS2060N1D0708	7 20				400	464		593	635	708	
PSS2060N1D0808					500	564		693	735	808	
PSS2060N1D0908					600	664		793	835	908	
PSS2060N1D1008					700	764		893	935	1 008	
PSS2060N1D1135		60	5 900	11 700	800	864	129	993	1 035	1 135	42
PSS2060N1D1335	35				1 000	1 064		1 193	1 235	1 335	
PSS2060N1D1535					1 200	1 264		1 393	1 435	1 535	
PSS2060N1D1935					1 600	1 664		1 793	1 835	1 935	

2-thin plastic seal (synthetic plastic)

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

2 000

2 064

2 193 | 2 235 | 2 335

2. Contact NSK if permissible rotational speed is to be exceeded.

3. Service temperature range is 0 to 80°C.

PSS2060N1D2335

										Unit: mm
Left shaft end	Le	Lead accuracy			Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2		Standard volume of
(opposite	Target value	Error	Variation	run-out	preload torque	IVIGSS	Fixed-	Fixed-		grease replenishing
driven side)	T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.030	0.023	0.075	2.2 - 12.8	2.1	5 000	_		
П		0.035	0.025	0.075	2.2 - 12.8	2.4	5 000	_		
Π		0.035	0.025	0.095	2.2 - 12.8	2.6	5 000	_		
П		0.040	0.027	0.095	1.8 - 14.8	2.8	3 500	_		
I		0.040	0.027	0.120	1.8 - 14.8	3.1	2 800	4 200	5.3	2.7
I		0.046	0.030	0.160	1.8 - 14.8	3.6	1 900	2 800		
I	0	0.054	0.035	0.160	1.8 - 14.8	4.1	1 400	2 000		
I		0.065	0.040	0.200	1.8 - 14.8	5.1	800	1 200		
I	0	0.077	0.046	0.240	1.8 - 14.8	6.0	500	800		
П		0.030	0.023	0.075	2.7 - 13.8	2.4	5 000	_		
Π		0.035	0.025	0.095	2.7 - 13.8	2.6	5 000	_		
П		0.035	0.025	0.095	2.7 - 13.8	2.9	4 200	_		
П		0.040	0.027	0.120	1.8 - 14.8	3.1	3 300	_		
I		0.040	0.027	0.120	1.8 - 14.8	3.4	2 600	3 900	7.0	3.5
I		0.046	0.030	0.160	1.8 - 14.8	3.9	1 800	2 700		
I		0.054	0.035	0.160	1.8 - 14.8	4.4	1 300	1 900		
I		0.065	0.040	0.200	1.8 - 14.8	5.4	800	1 100		
I		0.077	0.046	0.240	1.8 - 14.8	6.3	500	700		

4. Use of NSK support unit is recommended. Refer to page B375 for details.

5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

B121 B122

⊥[0.005]F]-

□0.011|*A*|-

Lt (quenching range)

2-thin plastic seal (synthetic plastic)

∕ 0.016 A

Shape ${\mathbb I}$

Shape I

M20×1.0

∕ 0.016 **A**

-10.022 A

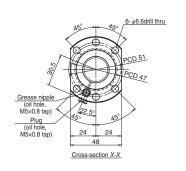
-<u>∐0.005</u>|*E*]

M20×1.0

1 123 | 1 150 | 1 283

1 723 | 1 750 | 1 883

Screw shaft ø25


Lead 5, 10

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	3.175 / 22.2
Ball circle dia.	25.5
Accuracy grade/axial play	C5 / 0
Factory-packed grease	NSK grease LR3

Recommended support unit

For drive side	For opposite to drive side						
(Fixed)	(Fixed)	(Simple)					
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)					
WBK20-11 (round)	WBK20-11 (round)						

	Screw shaft	Lead	Basic load ratings (N)		Str	oke	Nut	Scre	rew shaft dimensions			
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length					
	d	l	C _a	C_{0a}	INOMINAL	$L_{\rm t}$ - L	L	$L_{\rm t}$	La	L _o	L_1	
PSS2505N1D0349					150	191		223	250	349		
PSS2505N1D0399					200	241		273	300	399	27	
PSS2505N1D0499					300	341		373	400	499		
PSS2505N1D0599		5	9 760	23 600	400	441	32	473	500	599		
PSS2505N1D0699		5	9 700	23 000	500	541	32	573	600	699		
PSS2505N1D0899					700 741 773	800	899					
PSS2505N1D0999					800	841		873	900	999		
PSS2505N1D1233	25				1 000	1 041		1 073	1 100	1 233		
PSS2510N1D0549	20				300	367		423	450	549		
PSS2510N1D0649					400	467		523	550	649	27	
PSS2510N1D0749					500	567		623	650	749		
PSS2510N1D0849		10	12 800	32 300	600	667	56	723	750	849		
PSS2510N1D0949		10	12 800	32 300	700	767	96	823	850	949		
PSS2510N1D1049					800	867		923	950	1 049		

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

1 000

1 600

1 067

1 667

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

PSS2510N1D1283

PSS2510N1D1883

Left shaft end	Le	ad accura	асу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2		Standard volume of
(opposite	Target value	Error	Variation	run-out	preload torque	ividəə	Fixed-	Fixed-	volume of nut	grease replenishing
driven side)	T	$e_{\scriptscriptstyle p}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.023	0.018	0.035	1.2 - 9.3	1.5	5 000	_		
П		0.023	0.018	0.035	1.2 - 9.3	1.6	5 000	_		
П		0.025	0.020	0.040	1.2 - 9.3	2.0	5 000	_		
П		0.027	0.020	0.045	1.2 - 9.3	2.3	5 000	_	4.4	2.2
П		0.030	0.023	0.055	0.8 - 10.8	2.7	5 000	_	4.4	2.2
П		0.035	0.025	0.065	0.8 - 10.8	3.4	5 000	_		
П	0.04	0.040	0.027	0.065	0.8 - 10.8	3.7	4 100	_		
I	0	0.046	0.030	0.080	0.8 - 13.8	4.5	2 700	4 000		
П		0.027	0.020	0.045	3.1 - 11.8	2.4	5 000	_		
П		0.030	0.023	0.055	2.2 - 12.8	2.7	5 000	_		
П		0.030	0.023	0.055	2.2 - 12.8	3.1	5 000	_		
П		0.035	0.025	0.065	2.2 - 12.8	3.5	5 000	_	4.7	2.4
П		0.040	0.027	0.065	2.2 - 12.8	3.8	5 000	_	4.7	2.4
П		0.040	0.027	0.080	2.2 - 12.8	4.2	3 600	_		
I		0.046	0.030	0.100	1.8 - 14.8	5.0	2 500	3 700		
I		0.065	0.040	0.130	1.8 - 14.8	7.2	1 000	1 600		

- 4. Use of NSK support unit is recommended. Refer to page B375 for details.
- 5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

B123 B124

Unit: mm

⊥0.005*F*

Lt (quenching range)

2-thin plastic seal (synthetic plastic)

/ 0.016 A

Shape ${\mathbb I}$

Shape I

M20×1.0

∕0.016 A

_/0.012*E*

/0.022 A

-[⊥]0.005[*E*]

M20×1.0

Screw shaft ø25

Lead 20, 25

Unit: mm

Ball screw specification										
Preload type	Oversize ball preload (P-preload)									
Ball diameter/screw shaft root diameter	3.175 / 22.2									
Ball circle dia.	25.5									
Accuracy grade/axial play	C5 / 0									
Factory-packed grease	NSK grease LR3									

Recommended support unit

For drive side	For opposite	to drive side
(Fixed)	(Fixed)	(Simple)
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)
WBK20-11 (round)	WBK20-11 (round)	

6- ø6.6drill thru Grease nipple (oil hole, M5×0.8 tap) Plug (oil hole, M5×0.8 tap) Cross-section X-X

					1		1				
	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Scre	w shaft	dimens	ions
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length				
	d	l	C _a	C_{0a}	INOITIIIIai	L _t -L	L	$L_{\rm t}$	La	Lo	L_1
PSS2520N1D0729					500	550		604	630	729	
PSS2520N1D0829					600	650		704	730	829	
PSS2520N1D0929					700	750		804	830	929	
PSS2520N1D1029		20	6 560	14 600	800	850	54	904	930	1 029	26
PSS2520N1D1263		20	6 560	14 600	1 000	1 050	54	1 104	1 130	1 263	26
PSS2520N1D1463					1 200	1 250		1 304	1 330	1 463	
PSS2520N1D1863					1 600	1 650		1 704	1 730	1 863	
PSS2520N1D2263	25				2 000	2 050		2 104	2 130	2 263	
PSS2525N1D0779	25	25			500	587		650	680	779	
PSS2525N1D0879					600	687	63	750	780	879	30
PSS2525N1D0979					700	787		850	880	979	
PSS2525N1D1079		25	6 560	14 600	800	887		950	980	1 079	
PSS2525N1D1313		∠5	0 360	14 600	1 000	1 087		1 150	1 180	1 313	
PSS2525N1D1513				1 200	1 287		1 350	1 380	1 513		
PSS2525N1D1913					1 600	1 687		1 750	1 780	1 913	
PSS2525N1D2313					2 000	2 087		2 150	2 180	2 313	

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N-cm of torque is added due to thin plastic seals.

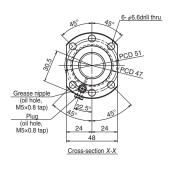
- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

										Unit: mm
Left shaft end		ad accura		Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2		Standard volume of
(opposite	Target value	Error	Variation	run-out	preload torque		Fixed-	Fixed-	volume of nut	grease replenishing
driven side)	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.030	0.023	0.055	2.2 - 12.8	3.1	5 000	_		
П		0.035	0.025	0.065	2.2 - 12.8	3.4	5 000	_		
П		0.040	0.027	0.065	2.2 - 12.8	3.8	4 800	_		
П		0.040	0.027	0.080	2.2 - 12.8	4.2	3 800	_	3.9	2.0
I		0.046	0.030	0.100	1.8 - 14.8	5.0	2 600	3 800	3.9	2.0
I		0.054	0.035	0.100	1.8 - 14.8	5.8	1 800	2 700		
I		0.065	0.040	0.130	1.8 - 14.8	7.3	1 100	1 600		
I	0	0.077	0.046	0.170	1.8 - 14.8	8.8	700	1 000		
П		0.035	0.025	0.055	2.7 - 13.8	3.3	5 000	_		
П		0.035	0.025	0.065	2.7 - 13.8	3.7	5 000	_		
П		0.040	0.027	0.065	2.7 - 13.8	4.1	4 300	_		
П		0.040	0.027	0.080	2.7 - 13.8	4.4	3 400	_	4.3	2.2
I		0.046	0.030	0.100	1.8 - 14.8	5.3	2 300	3 500	4.3	2.2
I		0.054	0.035	0.100	1.8 - 14.8	6.0	1 700	2 600		
I		0.065	0.040	0.130	1.8 - 14.8	7.5	1 000	1 500		
I		0.077	0.046	0.170	1.8 - 14.8	9.1	700	1 000		

- 4. Use of NSK support unit is recommended. Refer to page B375 for details.5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

B125 B126

Screw shaft ø25


Lead 30, 50

Unit: mm

Ball screw s	pecification
Preload type	Oversize ball preload (P-preload)
Ball diameter/screw shaft root diameter	3.175 / 22.2
Ball circle dia.	25.5
Accuracy grade/axial play	C5 / 0
Factory-packed grease	NSK grease LR3

Recommended support unit

For drive side	For opposite	to drive side
(Fixed)	(Fixed)	(Simple)
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)
WBK20-11 (round)	WBK20-11 (round)	

BK20-01 (square) WBK20-01 (square) WBK20S-01 (square) BK20-11 (round) WBK20-11 (round)	(Fixea)	(Fixea)	(Simple)
BK20-11 (round) WBK20-11 (round)	BK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)
BRZO 11 (Touria) WBRZO 11 (Touria)	BK20-11 (round)	WBK20-11 (round)	

	Unit:	mm
tial C+	andard va	lumo of

Left shaft end	Le	ad accura	эсу	Shaft	Dynamic	Mass	Permissible rotation	nal speed (min ⁻¹) *2		Standard volume of
(opposite	Target value	Error	Variation	run-out	preload torque	IVIASS	Fixed-	Fixed-	volume of nut	grease replenishing
driven side)	T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	С	(N·cm) *1	(kg)	Simple	Fixed	(cm³)	(cm³)
П		0.035	0.025	0.055	2.7 - 13.8	3.4	5 000	_		
П		0.035	0.025	0.065	2.7 - 13.8	3.7	5 000	_		
П		0.040	0.027	0.065	2.7 - 13.8	4.1	4 300	_		
П		0.040	0.027	0.080	2.7 - 13.8	4.5	3 400	_	5.5	2.8
I		0.046	0.030	0.100	1.8 - 14.8	5.3	2 300	3 600	5.5	2.8
I		0.054	0.035	0.100	1.8 - 14.8	6.1	1 700	2 600		
I		0.065	0.040	0.130	1.8 - 14.8	7.6	1 000	1 500		
I	0	0.077	0.046	0.170	1.8 - 14.8	9.1	700	1 000		
П		0.035	0.025	0.065	5.4 - 17.6	3.8	5 000	_		
П		0.035	0.025	0.065	5.4 - 17.6	4.1	4 800	_		
П		0.040	0.027	0.080	5.4 - 17.6	4.5	3 800	_		
П		0.040	0.027	0.080	5.4 - 17.6	4.9	3 100	_	7.7	3.9
I		0.046	0.030	0.100	4.1 - 19.6	5.8	2 200	3 400	7.7	3.9
I		0.054	0.035	0.100	4.1 - 19.6	6.5	1 600	2 500		
I		0.065	0.040	0.130	4.1 - 19.6	8.0	900	1 500		
I		0.077	0.046	0.170	4.1 - 19.6	9.6	600	1 000		

- 4. Use of NSK support unit is recommended. Refer to page B375 for details.5. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

19	15.35 1.35-6 ¹⁴ 2-thin plastic seal X 15.35 (synthetic plastic) 2-thin plastic seal X 15.35 (synthetic plastic) 15.35 (synthetic plastic) 15.35 (synthetic plastic)	M20x1.0 50 12.10 E
10.005	L ₁ (quenching range)	L ₁ 53 27
53	L _a	80
 -	L _o	-

(High helix, Ultra high helix lead)

	Screw shaft	Lead	Basic load	ratings (N)	Stro	oke	Nut	Scre	w shaft	dimens	ions
Ball screw No.	diameter	Leau	Dynamic	Static	Nominal	Max.	length				
	d	l	C _a	C_{0a}	INOITIIIIai	$L_{\rm t}$ - L	L	$L_{\rm t}$	La	L _o	L ₁
PSS2530N1D0779					500	576		650	680	779	
PSS2530N1D0879					600	676		750	780	879	
PSS2530N1D0979					700	776		850	880	979	
PSS2530N1D1079		30	6 560	14 600	800	876	74	950	980	1 079	30
PSS2530N1D1313		30	0 300	6 560 14 600	1 000	1 076	/4	1 150	1 180	1 313	30
PSS2530N1D1513		50			1 200	1 276		1 350	1 380	1 513	
PSS2530N1D1913					1 600	1 676		1 750	1 780	1 913	
PSS2530N1D2313	25				2 000	2 076		2 150	2 180	2 313	
PSS2550N1D0829	23			6 560 14 600	500	576		690	730	829	40
PSS2550N1D0929					600	676		790	830	929	
PSS2550N1D1029					700	776		890	930	1 029	
PSS2550N1D1129			6 560		800	876	114	990	1 030	1 129	
PSS2550N1D1363			50 6 560		1 000	1 076	114	1 190	1 230	1 363	
PSS2550N1D1563					1 200	1 276		1 390	1 430	1 563	
PSS2550N1D1963					1 600	1 676		1 790	1 830	1 963	
PSS2550N1D2363					2 000	2 076		2 190	2 230	2 363	

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

B127

Grease nipple
(oil hole, M5×0.8 tap)

Plug
(oil hole, M5×0.8 tap)

Cross-section X-X

Screw shaft ø10

Lead 5

Unit: mm

Ball screw specification										
Preload type	Oversize ball preload (P-preload)									
Ball diameter/screw shaft root diameter	2.000 / 8.2									
Ball circle dia.	10.3									
Accuracy grade/axial play	C3 / 0									
Factory-packed grease	NSK grease LR2									

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK08-01B (low-profile, square)	WBK08S-01B (low-profile, square)
WBK08-11 (round)	WBK08S-01C (square, clean)
WBK08-01C (square, clean)	
WBK08-11C (round, clean)	

Unit: mm

l	_ead accuracy	1	Shaft run-out	Dynamic	Mass	Permissible rotational	Internal spatial	Standard volume of
Target value	Error	Variation		preload torque	IVId55	speed (min ⁻¹) *2	volume of nut	grease replenishing
Τ	$e_{\scriptscriptstyle m p}$	$V_{\scriptscriptstyle \rm u}$	С	(N·cm) *1	(kg)	Fixed-Simple	(cm³)	(cm³)
	0.010	0.008	0.035	0.2-1.8	0.3			
0	0.012	0.008	0.045	0.2-2.0	0.3	5 000	0.8	0.4
	0.015	0.010	0.070	0.2–3.0	0.5			

4. Use of NSK support unit is recommended. See page B375 for details.

$\frac{9}{L_0}$ $\frac{L_0}{L_0}$	70.014/A 10.014/A 10.003/F	2-thin plastic seal (synthetic plastic) X = 10.008 A = 6 (8.7) © 11	A G 4	M8×1	
L_0	9	La	7-7	37	
		Lo		_	

	Screw shaft		Basic load ratings (N)		Stroke		Screw shaft dimensions		
Ball screw No.	diameter	Lead	Dynamic	Static		Max.			
	d	l	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	Nominal	L_{t} - L	L_{t}	L _a	L _o
USS1005N1D0221					100	133	162	175	221
USS1005N1D0321	10	5	2 930	4 790	200	233	262	275	321
USS1005N1D0521				400	433	462	475	521	

Notes: 1. Indicates ball screw preload control value. Approximately 0.5 N-cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

Plug (oil hole, M5×0.8 tap)

Screw shaft ø12

Lead 5

Unit: mm

Ball screw specification								
Preload type	Oversize ball preload (P-preload)							
Ball diameter/screw shaft root diameter	2.000 / 10.2							
Ball circle dia.	12.3							
Accuracy grade/axial play	C3 / 0							
Factory-packed grease	NSK grease LR2							

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK08-01B (low-profile, square)	WBK08S-01B (low-profile, square
WBK08-11 (round)	WBK08S-01C (square, clean)
WBK08-01C (square, clean)	
WBK08-11C (round, clean)	

Unit:	mm	
OHIL.	111111	

	Lead accuracy	/	Shaft run-out	Dynamic	Mass	Permissible rotational	Internal spatial	Standard volume of	8
Target valu	e Error	Variation	Shart run-out	preload torque	IVId55	speed (min ⁻¹) *2	volume of nut	grease replenishing	١
T	$e_{\scriptscriptstyle \mathrm{p}}$	$V_{\scriptscriptstyle m u}$	C	(N·cm) *1	(kg)	Fixed-Simple	(cm³)	(cm³)	
	0.010	0.008	0.035	0.2-1.8	0.3				
0	0.012	0.008	0.045	0.2-2.0	0.3	5 000	1.0	0.5	
	0.016	0.012	0.070	0.2-3.0	0.7				H

4. Use of NSK support unit is recommended. See page B375 for de	etails.
---	---------

30 - 1	M8×1.0 0008E
L ₁ (quenching range) , 7 , 8	27 10
- 9 - La	37
- Lo	

	Screw shaft	w shaft		Basic load ratings (N)		Stroke		Screw shaft dimensions		
Ball screw No.	diameter	Lead	Dynamic	Static	NIiI	Max.				
	d	l	C _a	$C_{\scriptscriptstyle 0a}$	Nominal	L _t -L	$L_{\rm t}$	L _a	L _o	
USS1205N1D0221					100	130	160	175	221	
USS1205N1D0321	12	5	3 200	5 860	200	230	260	275	321	
USS1205N1D0621					500	530	560	575	621	

Notes: 1. Indicates ball screw preload control value. Approximately 0.5 N·cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

Screw shaft ø15

Lead 5

Unit: mm

Ball screw specification									
Preload type	Oversize ball preload (P-preload)								
Ball diameter/screw shaft root diameter	2.778 / 12.6								
Ball circle dia.	15.5								
Accuracy grade/axial play	C3 / 0								
Factory-packed grease	NSK grease LR2								

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01B (low-profile, square)	WBK12S-01B (low-profile, square)
WBK12-11 (round)	WBK12S-01C (square, clean)
WBK12-01C (square, clean)	
WBK12-11C (round, clean)	

Unit: mm

L	_ead accuracy	/	Shaft run-out	Dynamic	Mass	Permissible rotational	Internal spatial	Standard volume of
Target value	Error	Variation		preload torque	IVId55	speed (min ⁻¹) *2	volume of nut	grease replenishing
Τ	$e_{\scriptscriptstyle p}$	$V_{\scriptscriptstyle m u}$	С	(N·cm) *1	(kg)	Fixed-Simple	(cm³)	(cm³)
	0.010	0.008	0.025	0.2-5.0	0.5	5 000		
0	0.012	0.008	0.035	0.2-5.0	0.6	5 000	2.0	1.0
0	0.015	0.010	0.045	0.2-6.0	0.9	5 000	2.0	1.0
	0.018	0.013	0.060	0.2-8.0	1.1	3 600		

4 Llas of NCV support unit is recommended	Con page D27E for details
Use of NSK support unit is recommended	i. See page 6375 for details.

E	
L _t (quenching range) 15	30 15
	45
L ₀	

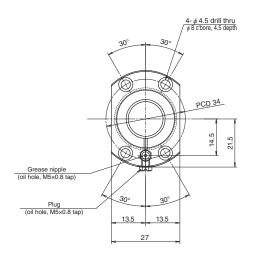
	Screw shaft	Lood	Basic load	Basic load ratings (N)		Stroke		Screw shaft dimensions		
Ball screw No.	diameter	diameter Lead		Static	Nominal	Max.				
	d	l	C _a	$C_{\scriptscriptstyle 0a}$	INOMINAL	L_{t} - L	$L_{\rm t}$	La	L _o	
USS1505N1D0261					100	159	189	204	261	
USS1505N1D0361	15	5	5 460	10 200	200	259	289	304	361	
USS1505N1D0561	15	5	5 400	5 400 10 200	400	459	489	504	561	
USS1505N1D0761					600	659	689	704	761	

Notes: 1. Indicates ball screw preload control value. Approximately 0.5 N·cm of torque is added due to thin plastic seals.

- 2. Contact NSK if permissible rotational speed is to be exceeded.
- 3. Service temperature range is 0 to 80°C.

B133

Screw shaft ø12


Lead 10

Unit: mm

Ball screw s	pecification			
Ball diameter/screw shaft root diameter	2.000 / 10.2			
Accuracy grade/axial play	Ct7 / 0.010 or less			
Factory-packed grease	NSK grease LR3			

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK08-01B (low-profile, square)	WBK12SF-01B (low-profile, square)

Unit: mm

Lead accuracy			Clarita musa a cut	N 4	Internal spatial	Standard volume of	
Target value	Error	Variation	Shaft run-out	Mass	volume of nut	grease replenishing	
T	$e_{\scriptscriptstyle p}$	V ₃₀₀	Α	(kg)	(cm³)	(cm³)	
	0.120		0.080	0.5			
0	0.195	0.052	0.120	0.7	1.0	0.5	
	0.310		0.180	1.0			

^{4.} Permissible rotational speed varies when using cut screw shaft. It is necessary to calculate two items below, and whichever smaller is the permissible rotational speed.

2-thin plastic seal (synthetic plastic) 2-thin plastic seal (synthetic plastic) 2-thin plastic seal (synthetic plastic) 4	0 -02 10 -02 10 -02 -02 -02 -02 -03 -03 -03 -03 -03 -03 -03 -03 -03 -03	Z10.025	A M8×1.0	- 8000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L _t (quenching range)	15	27	10	
$\frac{L_{\mathrm{a}}}{L_{\mathrm{0}}}$	-	37	-	
			-	

	Screw shaft	Lead	Basic load ratings (N)		Screw shaft dimensions			
Ball screw No.	diameter	Leau	Dynamic	Static				
	d	l	C _a	$C_{\scriptscriptstyle 0a}$	L_{t}	La	L _o	
FSS1210N1D0400					348	363	400	
FSS1210N1D0600	12	10	3 200	5 860	548	563	600	
FSS1210N1D0900					848	863	900	

Notes:1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

- 2. Service temperature range is 0 to 80°C.
- 3. Use of NSK support unit is recommended. See page B375 for details.

^{*}Critical speed which is the resonance vibration of the shaft (page B47).

^{*}Maximum rotational speed 5 000 min⁻¹

/0.020|A

/ 0.025A

Ė

-⊥10.006*E*

30

45

10

/ 0.014 E

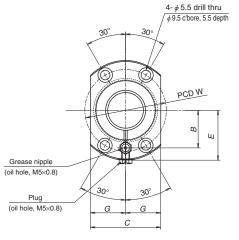
M12×1.0

-U A G

A

Screw shaft ø15

Lead 10, 20


Unit: mm

Unit: mm

Ball screw s	pecification	l		
Lead	10	20		
Ball diameter/screw shaft root diameter	2.278 / 12.6	3.175 / 12.2		
Accuracy grade/axial play	Ct7 / 0.01	Ct7 / 0.010 or less		
Factory-packed grease	NSK gre	ase LR3		

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)			
WBK12-01B (low-profile, square)	WBK15SF-01B (low-profile, square)			

	Screw shaft	Lead	Basic load ratings (N)		Screw shaft dimensions			
Ball screw No.	diameter	Leau	Dynamic	Static				
	d	l	C _a	$C_{\scriptscriptstyle \mathrm{Oa}}$	$L_{\rm t}$	L _a	L _o	L ₁
FSS1510N1D0500		10 5 460	5 460	10 200	440	455	500	15
FSS1510N1D1000					940	955	1 000	
FSS1510N1D1450	15			1 390	1 405	1 450		
FSS1520N1D0500	15				437	455	500	
FSS1520N1D1000		20	20 5 070	8 730	937	955	1 000	18
FSS1520N1D1450					1 387	1 405	1 450	

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

2-thin plastic seal (synthetic plastic)

⊥|0.014|*A*

Lt (quenching range)

 $X \rightarrow$

2. Service temperature range is 0 to 80°C.

3. Use of NSK support unit is recommended. See page B375 for details.

	Nut dimensions				Nut dimensions				Lead accuracy			Shaft run-out	Mass	Internal spatial	Standard volume of	00
								Target value	Error	Variation	Shart run-out	IVIASS	volume of nut	grease replenishing	ľ	
L	D_1	D_2	W	В	С	Ε	G	T	$e_{\scriptscriptstyle p}$	V ₃₀₀	Α	(kg)	(cm³)	(cm³)		
									0.155		0.070	0.9				
43	28	51	39	18	31	25	15.5		0.310	0.310		0.125	1.7	2.0	1.0	
								0	0.490	0.052	0.200	2.3			H	
									0.155	0.052	0.070	1.0				
51	32	55	43	20	33	27	16.5		0.310		0.125	1.7	2.8	1.4		
									0.490		0.200	2.3				

4. Permissible rotational speed varies when using cut screw shaft. It is necessary to calculate two items below, and whichever smaller is the permissible rotational speed.

*Critical speed which is the resonance vibration of the shaft (page B47).

*Maximum rotational speed 5 000 min⁻¹

/0.025 A

/0.025 A / 0.014 E

15

Ė

⊢⊥0.006*E*

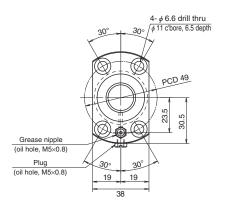
60

10 7

M15×1.0 = 90

Screw shaft ø20

Lead 10, 20


Unit: mm

Unit: mm

Ball screw specification							
Ball diameter/screw shaft root diameter	3.175 / 17.2						
Accuracy grade/axial play	Ct7 / 0.010 or less						
Factory-packed grease	NSK grease LR3						

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK15-01B (low-profile, square)	WBK20SF-01B (low-profile, square)

	Screw shaft	Lead	Basic load ratings (N)		Screw shaft dimensions			
Ball screw No.	diameter		Dynamic	Static				
	d	l	$C_{\rm a}$	C_{0a}	L _t	La	L。	
FSS2010N1D0600					518	540	600	
FSS2010N1D1000		10	8 790	18 500	918	940	1 000	
FSS2010N1D1450	20				1 368	1 390	1 450	
FSS2020N1D0600	20				518	540	600	
FSS2020N1D1000		20	5 900	1 1700	918	940	1 000	
FSS2020N1D1450					1 368	1 390	1 450	

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

2-thin plastic seal /(synthetic plastic)

⊥|0.018|*A*|

L_t (quenching range)

U A G

- 2. Service temperature range is 0 to 80°C.
- 3. Use of NSK support unit is recommended. See page B375 for details.

Nut length		Lead accuracy		Shaft run-out	Mass	Internal spatial	Standard volume of
	Target value	Error	Variation	Shart run-out	IVIdSS	volume of nut	grease replenishing
L	T	$e_{\scriptscriptstyle p}$	V ₃₀₀	Α	(kg)	(cm³)	(cm³)
45		0.195	0.052	0.085	1.7		1.6
		0.310		0.125	2.6	3.2	
	0	0.490		0.200	3.6		
54	U	0.195	0.052	0.085	1.8		
		0.310		0.125	2.7		
		0.490		0.200	3.8		

- 4. Permissible rotational speed varies when using cut screw shaft. It is necessary to calculate two items below, and whichever smaller is the permissible rotational speed.
- *Critical speed which is the resonance vibration of the shaft (page B47).
- *Maximum rotational speed 5 000 min⁻¹

/0.025 A

2-thin plastic seal (synthetic plastic)

Lt (quenching range)

(Fine, Medium, High helix lead)

/0.030 A

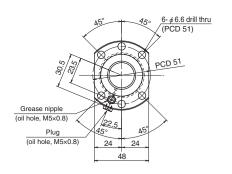
16

⊥0.006*E*

12 10

∕0.014E

M20 × 1.0


Screw shaft ø25

Lead 10, 20, 25 Unit: mm

Ball screw s	pecification
Ball diameter/screw shaft root diameter	3.175 / 22.2
Accuracy grade/axial play	Ct7 / 0.010 or less
Factory-packed grease	NSK grease LR3

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK20-01 (square)	WBK25SF-01 (square)

Unit: mm

	Screw shaft	Lead	Basic load	Basic load ratings (N)		Screw shaft dimensions				
Ball screw No.	diameter	Leau	Dynamic	Static						
	d	l	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle \mathrm{Oa}}$	L_{t}	La	L _o	$L_{\scriptscriptstyle 1}$		
FSS2510N1D0600				2 800 32 300	493	520	600			
FSS2510N1D1000		10	12 800		893	920	1 000	27		
FSS2510N1D1450					1 343	1 370	1 450			
FSS2520N1D0600				6 560 1 4600	494	520	600	26		
FSS2520N1D1000	25	20	6 560		894	920	1 000			
FSS2520N1D1450					1 344	1 370	1 450			
FSS2525N1D0600					490	520	600	30		
FSS2525N1D1000		25	6 560	1 4600	890	920	1 000			
FSS2525N1D1450					1 340	1 370	1 450			

 $\mathcal{U} A G$

Notes: 1. Indicates ball screw preload control value. Approximately 2.0 N·cm of torque is added due to thin plastic seals.

- 2. Service temperature range is 0 to 80°C.
- 3. Use of NSK support unit is recommended. See page B375 for details.

Nut length		Lead accuracy		Clarita anna anna	N4	Internal spatial	Standard volume of grease replenishing
	Target value	Error	Variation	Shaft run-out Ma	Mass	volume of nut	
L	T	$e_{\scriptscriptstyle p}$	V ₃₀₀	Α	(kg)	(cm³)	(cm³)
		0.155		0.065	2.6		
56		0.310		0.090	4.0	4.7	2.4
		0.490		0.130	5.8		
]	0.155		0.065	2.6	3.9	2.0
54	0	0.310	0.052	0.090	4.0		
		0.490		0.130	5.8		
		0.155		0.065	2.6		
63		0.310		0.090	4.1	4.3	2.2
		0.490		0.130	5.8		

4. Permissible rotational speed varies when using cut screw shaft. It is necessary to calculate two items below, and whichever smaller is the permissible rotational speed.

*Critical speed which is the resonance vibration of the shaft (page B47).

*Maximum rotational speed 5 000 min⁻¹

B-3-1.2 Finished Shaft End MA type, FA type, SA type

1. Order of the dimension tables

The tables begin with the smallest shaft diameter of each MA, FA, and SA type ball screws, and proceeds to the larger sizes. If ball screws have the same shaft diameter, those with smaller leads appear first. Page numbers of shaft diameter and lead combinations are shown in Table 1.

2. Dimension tables

Dimension tables show shapes/sizes as well as specification factors of each shaft diameter/ lead combination. Tables also contain data as follows:

Stroke

Nominal stroke: A reference for your use.

Maximum stroke: The limit stroke that the nut can move. The figure is obtained by subtracting the nut length from the effective threaded length

Lead accuracy

Lead accuracy is either C3 or C5 grades

 (L_1) .

T: Travel compensation

 $e_{\rm P}$: Tolerance on specified travel

 υ_u : Travel variation

See "Technical Description: Lead Accuracy"

Table 1 Combinations of screw shaft diameter and lead

Lead (mm) Screw shaft diameter (mm)	1	1.5	2	2.5	4	5	6
4	B145						
6	B147						
8	B149	B151	B153				
10			B155	B157	B167		
12			B159	B161		B169	
14						B173	
15							
16			B163	B165		B181	
20					B203	B205	
25					B207	B209	B211
28						B215	B219
20						B217	B221
32						B223	B227
						B225	B229
36							
40						B241	
45						<u> </u>	
50							

(page B37) for the details of the codes.

Permissible rotational speed

d • n: Limited by the relative peripheral speed between the

screw shaft and the nut.

Critical speed: Limited by the natural frequency of a ball screw shaft. Critical speed depends on the supporting condition of

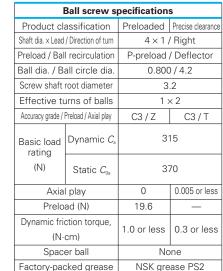
The lower of the two criteria, the d·n and critical speed, will determine the overall permissible rotational speed of the ball screw. For details, see "Technical Description: Permissible Rotational Speed" (page B47).

screw shaft.

3. Other

The seal of the ball screw, ball recirculating deflector, and end cap are made of synthetic resin. Consult NSK when using our ball screws under extreme environments or in special environments, or if using special lubricant or oil. For special environments, see pages B70 and D2. For lubricants, see pages B67 and D13.

Note: For details of standard stock products, contact NSK.


8	10	12	16	20	25	32	40	50
D17E	B171							
B175	B177			B179				
	ווט		B183	פוום		B185		
	B187		B100	B189		B100	B191	
	B213			B193	B195			B197
B231	B233				B199	B201		
	B235							
	B237							
	B239							
B243	B245	B249						
	B247	B251						
	B253							
	B255							
	B257							

B143 B144

Screw shaft ø4

Lead 1

Unit: mm

PCD 15

4-2.9 drill thru 30° 14 View X-X

Recommended support unit

For drive side (Fixed)	
WBK06-01A (square)	
WBK06-11 (round)	

Unit: mm

B146

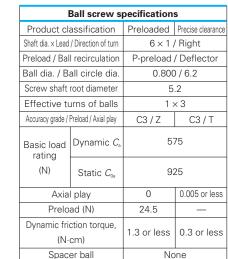
Office from								
Scre	ew shaft le	ngth	Lead accuracy		Shaft run- out ** Mass f f (kg)		Permissible rotational speed N (min-1) Supporting condition	
$L_{\rm t}$	La	L。	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	ĹĴ	(Kg)	Fixed - Free
44	55	85	0	0.008	0.008	0.015	0.024	3 000
64	75	105	0	0.008	0.008	0.020	0.026	3 000
94	105	135	0	0.008	0.008	0.025	0.028	3 000

C0.2 4	C0.2 C0.3 C0.3 C0.3 F R0.2 max. E 7 M6x0.75
$\underset{\leqslant}{}$ L_{t} (hardened)	4 (7) 22.5 7.5
< L _a	30
_ L _o	

Ball scr	Stroke		
Ball SCI	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	NOTTIITIAI	(L _t —Nut length)
W0400MA-1PY-C3Z1	20	32	
W0400MA-3PY-C3Z1	W0400MA-4Y-C3T1	40	52
W0401MA-1PY-C3Z1	W0401MA-2Y-C3T1	70	82

Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.


3. Ball nut does not have seal.

4. Contact NSK if the permissible rotational speed is to be exceeded.

Screw shaft ø6

Lead 1

Unit: mm

4-φ3.4 drill thru

. y 011 ann ann a
30° 30° PCD 18
16
View X-X

Recommended support unit

Factory-packed grease

For drive side (Fixed)	
WBK06-01A (square)	
WBK06-11 (round)	

NSK grease PS2

	Unit: mm							
Scre	ew shaft le	ngth	Lead accuracy		Lout ** Mass		Permissible rotational speed N (min-1) Supporting condition	
$L_{\rm t}$	La	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Free
65	75	105	0	0.008	0.008	0.015	0.039	3 000
95	105	135	0	0.008	0.008	0.020	0.045	3 000
125	135	165	0	0.010	0.008	0.025	0.051	3 000

$L_{a} = \frac{L_{1} \left(\frac{1}{10000000} \right)}{L_{2}} = \frac{L_{2} \cdot \frac{1}{10000000}}{100000000000000000000000$		C0.2 M2.5×0.45 Depth 5	11.5 3.5 L _t (hardened)	A G (3)	- C0.2 C0.3	C0.3
	L _o	<u>-</u>		> <\' / s	1	

Ball scr	Stroke		
Ddii SCi	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	INOMINAL	(L _t —Nut length)
W0600MA-1PY-C3Z1	W0600MA-2Y-C3T1	40	50
W0601MA-1PY-C3Z1	W0601MA-2Y-C3T1	70	80
W0601MA-3PY-C3Z1	W0601MA-4Y-C3T1	100	110

Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.

3. Ball nut does not have seal.

4. Contact NSK if the permissible rotational speed is to be exceeded.

B147 B148

Lead 1

Unit: mm

l	Ball screw s _l	pecification	s		
Product cl	assification	Preloaded	Precise clearance		
Shaft dia. x Lead	/ Direction of turn	8 × 1 ,	/ Right		
Preload / Bal	I recirculation	P-preload	/ Deflector		
Ball dia. / B	all circle dia.	0.800) / 8.2		
Screw shaft	root diameter	7	.2		
Effective to	urns of balls	1 :	× 3		
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T		
Basic load	$\begin{array}{c c} \text{Basic load} & \text{Dynamic } C_{\text{a}} \\ \text{rating} & \\ \text{(N)} & \text{Static } C_{\text{0a}} \end{array}$		670		
			1 290		
Axial play		0	0.005 or less		
Prelo	ad (N)	29.4	_		
Dynamic friction torque,		1.8 or less	0 E ar laga		
(N·cm)		1.8 or less	0.5 or less		
Spac	er ball	No	ne		

4-φ3.4 drill thru
30° 30°
PCD 21
18

<u>4-φ3.4 umii umu</u>
30° 30° PCD 21
< 18 >
View X-X

Recommend	led sup	port	unit

NSK grease PS2

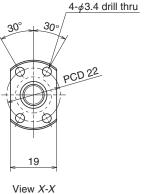
Factory-packed grease

For drive side (Fixed)	For opposite to drive side (Simple)	
WBK08-01A (square)	WBK08S-01 (square)	
WBK08-11 (round)		

Unit: mm

Screw shaft length			Lead accuracy			Shaft run- out **	Mass	Permissible rotational speed N (min-1) Supporting condition
L _t	La	L _o	T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
80	92	138	0	0.008	0.008	0.025	0.073	3 000
110	122	168	0	0.010	0.008	0.030	0.084	3 000
140	152	198	0	0.010	0.008	0.030	0.095	3 000
190	202	248	0	0.010	0.008	0.035	0.11	3 000

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	R0.2 I	X-1 .008 A	# * G	10-0		0.005 E
	<u>. </u>	Lt (hardened)		4 (8)	27	10
	9	La		7 5 7	37	
		Lo			I	
'	-					1


Ball scr	Stroke		
Ball SCI	Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	(L _t —Nut le	
W0800MA-1PY-C3Z1	W0800MA-2Y-C3T1	40	64
W0801MA-1PY-C3Z1	W0801MA-2Y-C3T1	70	94
W0801MA-3PY-C3Z1	W0801MA-4Y-C3T1	100	124
W0802MA-1PY-C3Z1	W0802MA-2Y-C3T1	150	174

Notes: 1. We recommend NSK support unit. See page B375 for details.
 Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.
 Ball nut does not have seal.
 Contact NSK if the permissible rotational speed is to be exceeded.

B149 B150

Lead 1.5

Unit: mm

$4-\phi 3.4$ drill thru				Onit. mm	
⊥ 30°√	Ball screw specifications				
300	Product cla	assification	Preloaded	Precise clearance	
	Shaft dia. x Lead	/ Direction of turn	8 × 1.5 / Right		
-20	Preload / Bal	I recirculation	P-preload	/ Deflector	
PCD 22	Ball dia. / B	all circle dia.	1.000	0 / 8.3	
	Screw shaft	root diameter	7.0		
	Effective turns of balls		1×3		
	Accuracy grade / Preload / Axial play		C3 / Z	C3 / T	
19	Basic load rating (N) Static C_{0a}		1 0	080	
N X-X			1 9	980	
·····	Axial play		0	0.005 or less	
	Preload (N)		49.0	_	
	Dynamic friction torque, (N·cm)		2.0 or less	0.5 or less	

Recommended support unit

None

NSK grease PS2

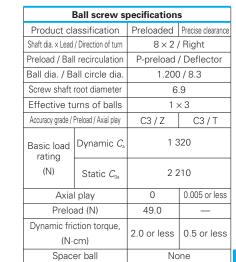
Spacer ball

Factory-packed grease

For drive side (Fixed)	For opposite to drive side (Simple)
WBK08-01A (square)	WBK08S-01 (square)
WBK08-11 (round)	

	Offic. It is						OTHE. THEFT	
Screw shaft length			Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition	
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
80	92	138	0	0.008	0.008	0.025	0.082	3 000
110	122	168	0	0.010	0.008	0.030	0.093	3 000
140	152	198	0	0.010	0.008	0.030	0.10	3 000
190	202	248	0	0.010	0.008	0.035	0.12	3 000

C0.2 C0.5 F 0.0025 F	Seals (two places) Note: The seals	* * G
9	L _a	37
< ><	L _o	* *
<	L ₀	


Ball screw No.		Stroke	
		Nominal	Maximum
Preloaded (MPFD)	Precise clearance (MSFD)		(L _t —Nut length)
W0800MA-3PY-C3Z1.5	W0800MA-4Y-C3T1.5	40	58
W0801MA-5PY-C3Z1.5	W0801MA-6Y-C3T1.5	70	88
W0801MA-7PY-C3Z1.5	W0801MA-8Y-C3T1.5	100	118
W0802MA-3PY-C3Z1.5	W0802MA-4Y-C3T1.5	150	168

Notes: 1. We recommend NSK support unit. See page B375 for details.
2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.
3. Contact NSK if the permissible rotational speed is to be exceeded.

B151 B152

Lead 2

Unit: mm

	4-φ3.4 drill thru
30° 30°	CD 23
20	
View X-X	

Recommended support unit

NSK grease PS2

Factory-packed grease

For drive side (Fixed)	For opposite to drive side (Simple)	
WBK08-01A (square)	WBK08S-01 (square)	
WBK08-11 (round)		

Unit: mm

								OTHE THIT
Scre	Screw shaft length			Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle \! p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
80	92	138	0	0.008	0.008	0.025	0.09	3 000
110	122	168	0	0.010	0.008	0.030	0.10	3 000
140	152	198	0	0.010	0.008	0.030	0.11	3 000
190	202	248	0	0.010	0.008	0.035	0.13	3 000

C0.5 R0.2 max.	Seals (two places) X A G Lt (hardened)	C0.2 C0.5 C0.5 R0.2 max. 4 (8) 27 10
9	La	37
 		* 0,
<	Lo	→

Ball screw No.		Stroke		
		Nominal	Maximum	
Preloaded (MPFD)	Precise clearance (MSFD)	NOMINAL	(L _t —Nut length)	
W0800MA-5PY-C3Z2	W0800MA-6Y-C3T2	40	54	
W0801MA-9PY-C3Z2	W0801MA-10Y-C3T2	70	84	
W0801MA-11PY-C3Z2	W0801MA-12Y-C3T2	100	114	
W0802MA-5PY-C3Z2	W0802MA-6Y-C3T2	150	164	

Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

View X-X

4-φ4.5 drill thru

	Unit: mm
Ball screw specifications	

•						
Product cla	assification	Preloaded Precise clearan				
Shaft dia. x Lead	/ Direction of turn	10 × 2 / Right				
Preload / Bal	l recirculation	P-preload	/ Deflector			
Ball dia. / Ba	all circle dia.	1.200	/ 10.3			
Screw shaft	root diameter	8.9				
Effective to	irns of balls	1×3				
Accuracy grade /	Preload / Axial play	C3 / Z C3 / T				
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	1 490				
(N)	Static C	2.850				

			,	
Screw shaft	root diameter	8.9		
Effective to	urns of balls	1 >	< 3	
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T	
Basic load	Dynamic C _a	1 490		
(N)	Static C _{Oa}	2 850		
Axia	l play	0	0.005 or less	
Prelo	ad (N)	58.8	_	
Dynamic friction torque, (N·cm)		0.1 – 2.4 0.5 or less		
Spac	er ball	No	ne	

Recommended support unit

Factory-packed grease

For drive side (Fixed)	For opposite to drive side (Simple)	NA.
WBK08-01A (square)	WBK08S-01 (square)	
WBK08-11 (round)		

NSK grease PS2

Unit: mm

								•
Scre	Screw shaft length			Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	υu		(kg)	Fixed - Simple support
100	112	158	0	0.008	0.008	0.020	0.13	3 000
150	162	208	0	0.010	0.008	0.030	0.16	3 000
200	212	258	0	0.010	0.008	0.030	0.19	3 000
250	262	308	0	0.012	0.008	0.030	0.22	3 000

(0.007 A) (0.007 A) (0.007 A) (0.002 Max) (0.0025 F) (0.00025 F)	Seals (two places) X 1 0.008 A	## * G A G	C0.2	0.007 A 0.005 E 0.005
9	La			37
<	Lo		*	>

Pall agr	Ball screw No.				
Ball Scr	Nominal	Maximum			
Preloaded (MPFD)	Precise clearance (MSFD)	rtorrina	(L _t —Nut length)		
W1001MA-1PY-C3Z2	W1001MA-2Y-C3T2	50	72		
W1001MA-3PY-C3Z2	W1001MA-4Y-C3T2	100	122		
W1002MA-1PY-C3Z2	W1002MA-2Y-C3T2	150	172		
W1002MA-3PY-C3Z2	W1002MA-4Y-C3T2	200	222		

Notes: 1. We recommend NSK support unit. See page B375 for details.
2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.
3. Contact NSK if the permissible rotational speed is to be exceeded.

0.2 – 2.9 0.5 or less

NSK grease PS2

I	Ball screw s	pecification	S	
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. × Lead / Direction of turn		10 × 2.5	5 / Right	
Preload / Ball recirculation		P-preload	/ Deflector	
Ball dia. / B	all circle dia.	1.588	/ 10.4	
Screw shaft	Screw shaft root diameter		.6	
Effective turns of balls		1×3		
Accuracy grade /	Preload / Axial play	C3/Z C3/T		
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	2 130		
(N)	Static C _{0a}	3 640		
Axia	l play	0 0.005 or les		
Prelo	ad (N)	98.1	_	

23 View X-X

 $4-\phi 4.5$ drill thru

Recommended support unit

Dynamic friction torque,

(N·cm) Spacer ball Factory-packed grease

For drive side (Fixed)	For opposite to drive side (Simple)	
WBK08-01A (square)	WBK08S-01 (square)	
WBK08-11 (round)		

Offic. III							Offic. Hilli	
Screw shaft length		Lead accuracy		Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
L_{t}	La	L。	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
100	112	158	0	0.008	0.008	0.020	0.14	3 000
150	162	208	0	0.010	0.008	0.030	0.17	3 000
200	212	258	0	0.010	0.008	0.030	0.20	3 000
250	262	308	0	0.012	0.008	0.030	0.23	3 000

9 L _a 37	C0.2 C0.5 R0.2 ma	<u></u>	Seals (two places) X - 1 0.008 A - 27	## *G A G	C0.2	0.007 A 0.005 E 0.005
**	<				7 1	
Lo	<u>9</u>		La		37	7
			L_{o}			

Pall cor	Ball screw No.				
Preloaded (MPFD)	Precise clearance (MSFD)	Nominal	Maximum (L,—Nut length)		
W1001MA-5PY-C3Z2.5	W1001MA-6Y-C3T2.5	50 68			
W1001MA-7PY-C3Z2.5	W1001MA-8Y-C3T2.5	100	118		
W1002MA-5PY-C3Z2.5	W1002MA-6Y-C3T2.5	150	168		
W1002MA-7PY-C3Z2.5	W1002MA-8Y-C3T2.5	200	218		

Notes: 1. We recommend NSK support unit. See page B375 for details.
2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.
3. Contact NSK if the permissible rotational speed is to be exceeded.

Unit	: mn

ı	Ball screw specifications									
Product cl	assification	Preloaded	Precise clearance							
Shaft dia. x Lead	/ Direction of turn	12 × 2	/ Right							
Preload / Bal	I recirculation	P-preload	/ Deflector							
Ball dia. / B	all circle dia.	1.200 / 12.3								
Screw shaft	root diameter	10.9								
Effective turns of balls		1 × 3								
Accuracy grade /	Preload / Axial play	C3/Z C3/T								
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	1 6	660							
(N)	Static C _{0a}	3 6	320							
Axia	l play	0 0.005 or								
Prelo	ad (N)	98.1 —								
Dynamic fri	ction torque,	0.4 – 3.4	1.0 or less							

24 View X-X

 $4-\phi 4.5$ drill thru

(N)	Static C _{0a}	3 6	320	
Axia	l play	0	0.0	
Prelo	ad (N)	98.1		
Dynamic fri	ction torque,	0.4 – 3.4	1.0	
(N-	cm)	0.4 - 3.4		
Space	er ball	None		

Factory-packed grease

Recommended support unit

NSK grease PS2

For drive side (Fixed)	For opposite to drive side (Simple)	
WBK10-01A (square)	WBK10S-01 (square)	
WBK10-11 (round)		

	Unit: mm								
Screw shaft length			Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition		
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support	
110	125	180	0	0.010	0.008	0.020	0.20	3 000	
160	175	230	0	0.010	0.008	0.030	0.24	3 000	
210	225	280	0	0.012	0.008	0.030	0.28	3 000	
260	275	330	0	0.012	0.008	0.040	0.32	3 000	
310	325	380	0	0.012	0.008	0.040	0.36	3 000	

0.007 A 0.007 A 0.007 A 0.000 C 0.0	Seals (two places) X = 1 10.008 A X = 1 23 5 Lt (hardened)	12 ⁰ 2 12 ⁰ 2 A G (5)	0.007 A 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	© 0.005 E Ç0.5
10	La		45	
<u> </u>	Lo		>	

Pall as	rew No.	St	roke
Preloaded (MPFD)	Precise clearance (MSFD)	Nominal	Maximum (L _t —Nut length)
W1201MA-1PY-C3Z2	W1201MA-2Y-C3T2	50	82
W1201MA-3PY-C3Z2	W1201MA-4Y-C3T2	100	132
W1202MA-1PY-C3Z2	W1202MA-2Y-C3T2	150	182
W1202MA-3PY-C3Z2	W1202MA-4Y-C3T2	200	232
W1203MA-1PY-C3Z2	W1203MA-2Y-C3T2	250	282

Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

√ 0.007 A

C0.2

R0.2 max.

φ7.6

C0.5

⊥ 0.003 F

7.9

10

F

∕ 0.010 A

Seals (two places)

⊥ 0.008 A →

27

32

Lt (hardened)

11 * * G

A G □ 0.005 E

C0.5

√ 0.007 A

R0.2 max.

E/ 10

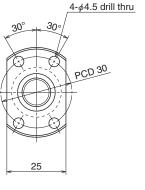
< ⊥ 0.003 E

30

M10×1

45

-0.009 **∳8h6**


C0.5

15

Screw shaft ø12

Lead 2.5

Unit: mm

4-φ4.5 drill thru
30° 30° PCD 30
< 20 →
View X-X

ı	Ball screw s _l	pecification	S	
Product classification		Preloaded Precise clearance		
Shaft dia. × Lead / Direction of turn		12 × 2.5	5 / Right	
Preload / Bal	I recirculation	P-preload	/ Deflector	
Ball dia. / B	all circle dia.	1.588	/ 12.4	
Screw shaft root diameter		10).6	
Effective to	ive turns of balls 1 × 3		< 3	
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	2 3	360	
(N)	Static C _{0a}	4 5	540	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	98.1	_	
· '	ction torque, cm)	0.4 – 3.4	1.0 or less	
Spac	er ball	No	ne	
Factory-pag	cked grease	NSK gre	ase PS2	

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK10-01A (square)	WBK10S-01 (square)
WBK10-11 (round)	

Unit: mm

								Uliit. Illill
Scre	ew shaft le	ngth	L€	ead accura	СУ	Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
L_{t}	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
110	125	180	0	0.010	0.008	0.020	0.21	3 000
160	175	230	0	0.010	0.008	0.030	0.25	3 000
210	225	280	0	0.012	0.008	0.030	0.29	3 000
260	275	330	0	0.012	0.008	0.040	0.33	3 000
310	325	380	0	0.012	0.008	0.040	0.37	3 000

Ball scr	ou No	St	roke
Preloaded (MPFD)	Precise clearance (MSFD)	Nominal	Maximum (L _t —Nut length)
W1201MA-5PY-C3Z2.5	W1201MA-6Y-C3T2.5	50	78
W1201MA-7PY-C3Z2.5	W1201MA-8Y-C3T2.5	100	128
W1202MA-5PY-C3Z2.5	W1202MA-6Y-C3T2.5	150	178
W1202MA-7PY-C3Z2.5	W1202MA-8Y-C3T2.5	200	228
W1203MA-3PY-C3Z2.5	W1203MA-4Y-C3T2.5	250	278

Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Use of NSK grease PS2 is recommended. Apply to screw shaft surface when replenishing. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

29

View X-X

 $4-\phi 5.5$ drill thru

M6×1

(oil hole)

	Ball screw s	pecification	s
Product cl	assification	Preloaded	Precise clearance
Shaft dia. x Lead	/ Direction of turn	16 × 2	/ Right
Preload / Bal	I recirculation	P-preload	/ Deflector
Ball dia. / B	all circle dia.	1.588	/ 16.4
Screw shaft	root diameter	14	1.6
Effective to	urns of balls	1:	× 4
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T
Dania land	Dynamic C	3.5	510

Accuracy grade Basic load rating (N) 8 450 Static C_{0a} 0 0.005 or less Axial play

147 Preload (N) Dynamic friction torque, 0.5 - 4.91.5 or less (N·cm) Spacer ball None

Factory-packed grease NSK grease PS2 Internal spatial volume of nut (cm3) 1.6 Standard volume of grease replenishing (cm3) 8.0

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Unit: mm

Cara	w shaft le	an ath	La	مط مممالت	2014	Shaft run-	N 4	Permissible rotation	nal speed N (min-1)
Sciev	W SHAIL I	engtri	Le	ad accura	асу	out **	Mass (kg)	Supporting	condition
L_{t}	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
139	154	221	0	0.010	0.008	0.020	0.41	3 000	3 000
189	204	271	0	0.010	0.008	0.020	0.48	3 000	3 000
239	254	321	0	0.012	0.008	0.030	0.55	3 000	3 000
289	304	371	0	0.012	0.008	0.030	0.62	3 000	3 000
389	404	471	0	0.013	0.010	0.035	0.77	3 000	3 000

22 L _a 45	(0.007 A) (0.007	2 95 95 95 95 95 95 95 95 95 95 95 95 95	Seals (two places) X 1 1 1 1 1 1 1 1 1 1 1 1	## * G A G	CO.2 (CO.2 (C))))))))))))))))))))) CO.2 (CO.2 (CO.2 (CO.2 (CO.2 (CO.2 (CO.2 (C	.2 /	0.000 L
	22		L _a		*	45	

Pall cor	ew No.	St	roke
Preloaded (MPFD)	Precise clearance (MSFD)	Nominal	Maximum (L,—Nut length)
W1601MA-1PY-C3Z2	W1601MA-2Y-C3T2	50	99
W1601MA-3PY-C3Z2	W1601MA-4Y-C3T2	100	149
W1602MA-1PY-C3Z2	W1602MA-2Y-C3T2	150	199
W1602MA-3PY-C3Z2	W1602MA-4Y-C3T2	200	249
W1603MA-1PY-C3Z2	W1603MA-2Y-C3T2	300	349

Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Use of NSK grease PS2 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

29 View X-X 4-φ5.5 drill thru

M61

(oil hole)

_				
				ı
				٦
				П

I	Ball screw sp	pecifications			
Product cl	assification	Preloaded Precise clears			
Shaft dia. x Lead	/ Direction of turn	16 × 2.5 / Right			
Preload / Bal	I recirculation	P-preload	/ Deflector		
Ball dia. / B	all circle dia.	1.588	/ 16.4		
Screw shaft	root diameter	14	1.6		
Effective to	urns of balls	1:	× 4		
Accuracy grade /	Preload / Axial play	C3 / Z	C3 / T		
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	3 510			
(N)	Static C _{0a}	8 450			
Axia	l play	0	0.005 or less		
Prelo	ad (N)	147	_		
Dynamic friction torque, (N·cm)		0.5 – 4.9	1.5 or less		
Spacer ball		None			
Factory-pag	cked grease	NSK grease PS2			
Internal spatial vo	olume of nut (cm³)	1.6			

Recommended support unit

Standard volume of grease replenishing (cm³)

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Unit: mm

8.0

									Offic. Hilli
Cara	v shaft le	th	ا			Shaft run-		Permissible rotation	nal speed N (min-1)
Screv	W SHAIL IE	engtn	Le	ad accura	асу	out **	Mass (kg)	Supporting	condition
L_{t}	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	U	(Ng)	Fixed - Simple support	Fixed - Fixed
139	154	221	0	0.010	0.008	0.020	0.42	3 000	3 000
189	204	271	0	0.010	0.008	0.020	0.49	3 000	3 000
239	254	321	0	0.012	0.008	0.030	0.57	3 000	3 000
289	304	371	0	0.012	0.008	0.030	0.64	3 000	3 000
389	404	471	0	0.013	0.010	0.035	0.79	3 000	3 000

M5×0.8 Depth 12	(C0.5) (C0.2) (R0.2) (R	10.010 A 90802-70808 A 10 M 10	Seals (two places) X 1 1 1 1 1 1 1 1 1 1 1 1	# * G A G	35 m	2 C0.5 C0.5 C0.5 M12×1 L0.003 E 30 15	C0.5
	22		La		><	45	-
	<		Lo				*

Ball scr	Stroke		
	ew No.	Nominal	Maximum
Preloaded (MPFD)	Precise clearance (MSFD)		(L _t —Nut length)
W1601MA-5PY-C3Z2.5	W1601MA-6Y-C3T2.5	50	95
W1601MA-7PY-C3Z2.5	W1601MA-8Y-C3T2.5	100	145
W1602MA-5PY-C3Z2.5	W1602MA-6Y-C3T2.5	150	195
W1602MA-7PY-C3Z2.5	W1602MA-8Y-C3T2.5	200	245
W1603MA-3PY-C3Z2.5	W1603MA-4Y-C3T2.5	300	345

Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Use of NSK grease PS2 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

B165

28

View X-X

M6×1 (oil hole) 4-φ4.5 drill thru c'bore φ8×4.5

Screw shaft ø10

Lead 4

Unit: mm

E	Ball screw s _l	pecifications			
Product cla	assification	Preloaded	Precise clearance		
Shaft dia. x Lead	/ Direction of turn	10 × 4 / Right			
Preload / Ball	recirculation	P-preload /	Return tube		
Ball dia. / Ba	all circle dia.	2.000	/ 10.3		
Screw shaft	root diameter	8	.2		
Effective to	ırns of balls	2.5	×1		
Accuracy grade / F	Preload / Axial play	C3 / Z	C3 / T		
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	1 730	2 740		
(N)	Static C _{0a}	2 230	4 450		
Axial	play	0	0.005 or less		
Prelo	ad (N)	98.1	_		
1 '	Dynamic friction torque, (N·cm)		1.0 or less		
Space	Spacer ball		None		
Factory-pac	ked grease	NSK grease PS2			
Internal spatial vo	olume of nut (cm³)	0	.8		

Recommended support unit

0.4

Standard volume of grease replenishing (cm3)

For drive side (Fixed)	For opposite to drive side (Simple)
WBK10-01A (square)	WBK10S-01 (square)
WBK10-11 (round)	

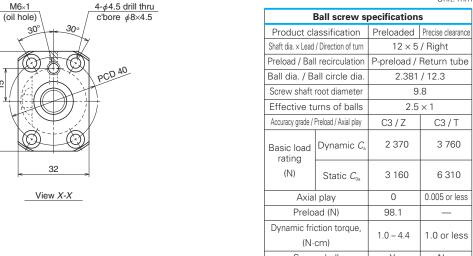
Unit: mm

Scre	ew shaft le	ngth	Le	ead accura	су	Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition
L _t	L _a	L _o	Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
110	125	180	0	0.010	0.008	0.020	0.26	3 000
160	175	230	0	0.010	0.008	0.030	0.28	3 000
210	225	280	0	0.012	0.008	0.030	0.31	3 000
260	275	330	0	0.012	0.008	0.040	0.34	3 000
310	325	380	0	0.012	0.008	0.040	0.37	3 000
360	375	430	0	0.013	0.010	0.050	0.39	3 000

0.007 A 8 9 C0.2 R0.2 F 0.003 F	-	Seals (two places) X 1 0.008 A	## * G A G	1	70.2 R0.2 R0.2 M10×1 10,0003 E 30	20.5 C0.5
10		La		><	45	
<		Lo				

Pall cor	Ball screw No.		
		Nominal	Maximum
Preloaded (PFT)	Precise clearance (SFT)		(L _t —Nut length)
W1001FA-1P-C3Z4	W1001FA-2-C3T4	50	76
W1001FA-3P-C3Z4	W1001FA-4-C3T4	100	126
W1002FA-1P-C3Z4	W1002FA-2-C3T4	150	176
W1002FA-3P-C3Z4	W1002FA-4-C3T4	200	226
W1003FA-1P-C3Z4	W1003FA-2-C3T4	250	276
W1003FA-3P-C3Z4	W1003FA-4-C3T4	300	326

Notes: 1. We recommend NSK support unit. See page B375 for details.


Use of NSK grease PS2 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

B167

Lead 5

Unit: mm

Shaft dia. x Lead	/ Direction of turn	12 × 5 / Right		
Preload / Bal	I recirculation	P-preload / Return tube		
Ball dia. / B	all circle dia.	2.381	/ 12.3	
Screw shaft	root diameter	9.	.8	
Effective to	urns of balls	2.5	×1	
Accuracy grade /	Preload / Axial play	C3 / Z	C3/T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	2 370	3 760	
(N)	Static C _{0a}	3 160	6 310	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	98.1		
Dynamic friction torque, (N·cm)		1.0 – 4.4	1.0 or less	
Spac	er ball	Yes	None	
Factory-pag	cked grease	NSK grease PS2		
Internal spatial vo	olume of nut (cm³)	1.	.2	

Recommended support unit

Standard volume of grease replenishing (cm3)

For drive side (Fixed)	For opposite to drive side (Simple)
WBK10-01A (square)	WBK10S-01 (square)
WBK10-11 (round)	

Unit: mm

0.6

								OTHE THIT
Screw shaft length			Lead accuracy		Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1) Supporting condition	
$L_{\rm t}$	L _a	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	1 11	(kg)	Fixed - Simple support
110	125	180	0	0.010	0.008	0.020	0.35	3 000
160	175	230	0	0.010	0.008	0.030	0.38	3 000
210	225	280	0	0.012	0.008	0.030	0.42	3 000
260	275	330	0	0.012	0.008	0.040	0.46	3 000
310	325	380	0	0.012	0.008	0.040	0.50	3 000
410	425	480	0	0.015	0.010	0.050	0.58	3 000
510	525	580	0	0.016	0.012	0.065	0.66	3 000

(0.007 A) (0.007	Seals (two places) X			00A 0.005 E
10	L _a	-> < -	45	*
	L _o		Ac.	

Ball scr	Stroke		
Ddil SCI	Nominal	Maximum	
Preloaded (PFT)	(PFT) Precise clearance (SFT)		(L _t —Nut length)
W1201FA-1P-C3Z5	W1201FA-2-C3T5	50	70
W1201FA-3P-C3Z5	W1201FA-4-C3T5	100	120
W1202FA-1P-C3Z5	W1202FA-2-C3T5	150	170
W1202FA-3P-C3Z5	W1202FA-4-C3T5	200	220
W1203FA-1P-C3Z5	W1203FA-2-C3T5	250	270
W1204FA-1P-C3Z5	W1204FA-2-C3T5	350	370
W1205FA-1P-C3Z5	W1205FA-2-C3T5	450	470

Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Use of NSK grease PS2 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if permissible rotational speed is to be exceeded.

B169 B170

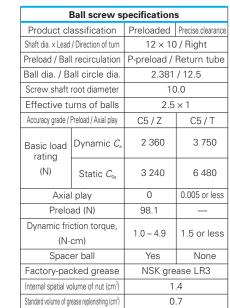
32

View X-X

 $4-\phi 4.5$ drill thru

c'bore $\phi 8 \times 4.5$

M6×1


(oil hole)

15

Screw shaft ø12

Lead 10

Unit: mm

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK10-01A (square)	WBK10S-01 (square)
WBK10-11 (round)	

Unit: mm

Scre	Screw shaft length			Lead accuracy		Shaft run- out **	Mass	Permissible rotational speed N (min-1) Supporting condition
L _t	La	L _o	Т	$e_{\scriptscriptstyle p}$	υu		(kg)	Fixed - Simple support
160	175	230	0	0.020	0.018	0.035	0.43	3 000
210	225	280	0	0.023	0.018	0.035	0.47	3 000
310	325	380	0	0.023	0.018	0.050	0.56	3 000
410	425	480	0	0.027	0.020	0.060	0.64	3 000
510	525	580	0	0.030	0.023	0.075	0.72	3 000

(0.010 A) (0.012	Seals (two places) X 10.010 A 10 50 L ₁ (hardened)	A G (5)	R0.2 max. E 10 M10×1	φ 8h6
10	L _a	 ' ' >	45	
< >><	Lo		 <	→

Ball scr	Stroke		
Preloaded (LPFT)	Nominal	Maximum (<i>L</i> _t —Nut length)	
W1201FA-5P-C5Z10	W1201FA-6-C5T10	100	110
W1202FA-5P-C5Z10	W1202FA-6-C5T10	150	160
W1203FA-3P-C5Z10	W1203FA-4-C5T10	250	260
W1204FA-3P-C5Z10	W1204FA-4-C5T10	350	360
W1205FA-3P-C5Z10	W1205FA-4-C5T10	450	460

Notes: 1. We recommend NSK support unit. See page B375 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

B171

View X-X

 $4-\phi 5.5$ drill thru

c'bore *ϕ*9.5×5.5

M6×1

(oil hole)

Screw shaft ø14

Lead 5

Unit: mm

ı	Ball screw s	pecification	s	
Product cl	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	14 × 5 / Right		
Preload / Bal	I recirculation	P-preload /	Return tube	
Ball dia. / B	all circle dia.	3.175	/ 14.5	
Screw shaft	root diameter	11	1.2	
Effective to	urns of balls	2.5	× 1	
Accuracy grade / Preload / Axial play		C3 / Z	C3 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	4 280	6 790	
(N)	Static C _{0a}	5 840	11 700	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	147	_	
,	Dynamic friction torque, (N·cm)		2.0 or less	
Spac	er ball	Yes	None	
Factory-packed grease		NSK grease LR3		
Internal spatial vo	olume of nut (cm³)	2	.2	
Standard volume of gr	rease replenishing (cm³)	1	.1	

Recommended support unit

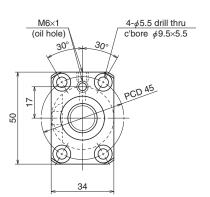
For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Unit: mm

Carous shaft langth		Load accuracy		Shaft run-		Permissible rotational speed N (min-1)			
Screw shaft length		engui	Lead accuracy		out **	Mass (kg)	Supporting	g condition	
L_{t}	La	L。	Т	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
189	204	271	0	0.010	0.008	0.020	0.52	3 000	3 000
239	254	321	0	0.012	0.008	0.030	0.57	3 000	3 000
339	354	421	0	0.013	0.010	0.035	0.67	3 000	3 000
439	454	521	0	0.015	0.010	0.045	0.77	3 000	3 000
539	554	621	0	0.016	0.012	0.045	0.87	3 000	3 000
689	704	771	0	0.018	0.013	0.055	1.0	3 000	3 000

M5×0.8 Depth 12 Depth	ax. \(\begin{align*} & \$\left(\text{\$\left(\text	X = 1	CO.2 CO.5 CO.5 SCOT CO.5 CO.5
ļ<	Lo		>

Rall scr	Stroke			
Bdil Sci	Nominal	Maximum		
Preloaded (PFT)	Precise clearance (SFT)	rvorriiriai	(L _t —Nut length)	
W1401FA-1P-C3Z5	W1401FA-2-C3T5	100	149	
W1402FA-1P-C3Z5	W1402FA-2-C3T5	150	199	
W1403FA-1P-C3Z5	W1403FA-2-C3T5	250	299	
W1404FA-1P-C3Z5	W1404FA-2-C3T5	350	399	
W1405FA-1P-C3Z5	W1405FA-2-C3T5	450	499	
W1406FA-1P-C3Z5	W1406FA-2-C3T5	600	649	


Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Unit: mm

Lead 8

Recommended support unit

View X-X

For drive side (Fixed)	For opposite to drive side (Simple)			
WBK12-01A (square)	WBK12S-01 (square)			
WBK12-11 (round)				

I	Ball screw s	pecification	s	
Product cla	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	14×8	/ Right	
Preload / Bal	I recirculation	P-preload /	Return tube	
Ball dia. / Ba	all circle dia.	3.175	/ 14.5	
Screw shaft	root diameter	11	.2	
Effective to	irns of balls	2.5	×1	
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	4 280	6 790	
(N)	Static C _{0a}	5 840	11 700	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	147	_	
'	ction torque, cm)	1.5 – 7.8	2.4 or less	
Space	er ball	Yes	None	
Factory-pag	ked grease	NSK grease LR3		
Internal spatial vo	olume of nut (cm³)	2.1		
Standard volume of gr	ease replenishing (cm³)	1	.1	

Screw shaft length		Lead accuracy			Shaft run- out ** Mas	Mass	Permissible rotational speed N (min		
					,		(kg)	Supporting	g condition
$L_{\rm t}$	La	L。	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		Fixed - Simple support	Fixed - Fixed	
189	204	271	0	0.020	0.018	0.025	0.56	3 000	3 000
239	254	321	0	0.023	0.018	0.035	0.61	3 000	3 000
289	304	371	0	0.023	0.018	0.035	0.67	3 000	3 000
339	354	421	0	0.025	0.020	0.040	0.72	3 000	3 000
389	404	471	0	0.025	0.020	0.040	0.78	3 000	3 000
439	454	521	0	0.027	0.020	0.050	0.83	3 000	3 000
489	504	571	0	0.027	0.020	0.050	0.88	3 000	3 000
539	554	621	0	0.030	0.023	0.050	0.94	3 000	3 000
589	604	671	0	0.030	0.023	0.065	0.99	3 000	3 000
639	654	721	0	0.035	0.025	0.065	1.0	3 000	3 000
689	704	771	0	0.035	0.025	0.065	1.1	3 000	3 000
789	804	871	0	0.035	0.025	0.085	1.2	2 800	3 000

(0.014 A) (0.014 A)	Seals (two places) 0.015 A	A G	CO.2 CO.5 CO.5 HO.2 M12x1 LIO.004 E LI
22	La		45
<	Lo		-

Pall agr	Stroke				
Ball Scr	Ball screw No.				
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	(L _t —Nut length)		
W1401FA-3P-C5Z8	W1401FA-4-C5T8	100	143		
W1402FA-3P-C5Z8	W1402FA-4-C5T8	150	193		
W1402FA-5P-C5Z8	W1402FA-6-C5T8	200	243		
W1403FA-3P-C5Z8	W1403FA-4-C5T8	250	293		
W1403FA-5P-C5Z8	W1403FA-6-C5T8	300	343		
W1404FA-3P-C5Z8	W1404FA-4-C5T8	350	393		
W1404FA-5P-C5Z8	W1404FA-6-C5T8	400	443		
W1405FA-3P-C5Z8	W1405FA-4-C5T8	450	493		
W1405FA-5P-C5Z8	W1405FA-6-C5T8	500	543		
W1406FA-3P-C5Z8	W1406FA-4-C5T8	550	593		
W1406FA-5P-C5Z8	W1406FA-6-C5T8	600	643		
W1407FA-1P-C5Z8	W1407FA-2-C5T8	700	743		

- Notes: 1. We recommend NSK support unit. See page B375 for details.
 2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space.

 See page D16 for details.
 - Contact NSK if the permissible rotational speed is to be exceeded.

22

30

45

15

34

View X-X

For drive side

(Fixed)

WBK12-01A (square)

WBK12-11 (round)

Screw shaft length

Recommended support unit

871

971

1 171

0

0

0

0.040

0.046

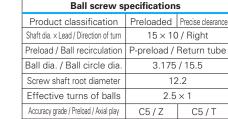
 $4-\phi 5.5$ drill thru

c'bore *ϕ*9.5×5.5

For opposite to drive side

(Simple)

WBK12S-01 (square)


Lead accuracy

M6×1

(oil hole)

Screw shaft ø15

Unit: mm Lead 10

12.2 2.5×1 C5 / T 4 450 7 070 Basic load Dynamic C. rating

(N) Static C_{0a} 6 380 12 800 0 0.005 or less Axial play 147 Preload (N)

Dynamic friction torque, 1.5 - 7.82.4 or less (N-cm) Spacer ball Yes None NSK grease LR3 Factory-packed grease

Mass

(kg)

1.4

1.5

1.8

3 000

2 400

1 590

Internal spatial volume of nut (cm3)

Standard volume of grease replenishing (cm3

Shaft run-

out **

2.3

1.2

Unit: mm Permissible rotational speed N (min-1)

3 000

3 000

2 2 5 0

Supporting	g condition	F
Simple support	Fixed - Fixed	

L_{t}	$L_{\rm a}$	L_{\circ}	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$			Fixed - Simple support	Fixed - Fixed
189	204	271	0	0.020	0.018	0.025	0.61	3 000	3 000
239	254	321	0	0.023	0.018	0.035	0.67	3 000	3 000
289	304	371	0	0.023	0.018	0.035	0.74	3 000	3 000
339	354	421	0	0.025	0.020	0.040	0.80	3 000	3 000
389	404	471	0	0.025	0.020	0.040	0.86	3 000	3 000
439	454	521	0	0.027	0.020	0.050	0.93	3 000	3 000
489	504	571	0	0.027	0.020	0.050	1.0	3 000	3 000
539	554	621	0	0.030	0.023	0.050	1.1	3 000	3 000
589	604	671	0	0.030	0.023	0.065	1.1	3 000	3 000
639	654	721	0	0.035	0.025	0.065	1.2	3 000	3 000
689	704	771	0	0.035	0.025	0.065	1.2	3 000	3 000

0.035 | 0.025 | 0.085

0.027

0.030

0.085

0.110

Seals (two places) √ 0.014 A ✓ 0.015 A 11 * * G √ 0.014 A → ✓ 0.009 E -0.009 ≠ 10h6 °°°9 C0.5 C0.5 R0.2 R0.2 max. max. G 1.15 À 10 ⊥ 0.011 A 9.15 M12×1 M5×0.8 Depth 12 40 ⊥ 0.004 E 51 ⊥ 0.004 F→

Lt (hardened)

Rall so	Ball screw No.					
Ddil SCI						
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	(L _t —Nut length)			
W1501FA-1P-C5Z10	W1501FA-2-C5T10	100	138			
W1502FA-1P-C5Z10	W1502FA-2-C5T10	150	188			
W1502FA-3P-C5Z10	W1502FA-4-C5T10	200	238			
W1503FA-1P-C5Z10	W1503FA-2-C5T10	250	288			
W1503FA-3P-C5Z10	W1503FA-4-C5T10	300	338			
W1504FA-1P-C5Z10	W1504FA-2-C5T10	350	388			
W1504FA-3P-C5Z10	W1504FA-4-C5T10	400	438			
W1505FA-1P-C5Z10	W1505FA-2-C5T10	450	488			
W1505FA-3P-C5Z10	W1505FA-4-C5T10	500	538			
W1506FA-1P-C5Z10	W1506FA-2-C5T10	550	588			
W1506FA-3P-C5Z10	W1506FA-4-C5T10	600	638			
W1507FA-1P-C5Z10	W1507FA-2-C5T10	700	738			
W1508FA-1P-C5Z10	W1508FA-2-C5T10	800	838			
W1510FA-1P-C5Z10	W1510FA-2-C5T10	1 000	1 038			

Notes: 1. We recommend NSK support unit. See page B375 for details.

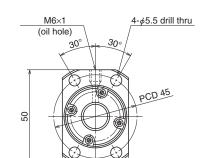
2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

B177 B178

789

889


1 089

804

904

1 104

Unit: mm Lead 20

View X-X

36

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Ball screw sp	pecification	s	
assification	Preloaded	Precise clearanc	
/ Direction of turn	15 × 20 / Right		
I recirculation	P-preload	/ End cap	
all circle dia.	3.175	/ 15.5	
root diameter	12	2.2	
urns of balls	1.7	× 1	
Preload / Axial play	C5 / Z	C5 / T	
Dynamic $C_{\scriptscriptstyle a}$	3 870	5 070	
Static C _{Oa}	5 820	8 730	
l play	0	0.005 or less	
ad (N)	147	_	
ction torque, cm)	1.5 – 7.8	2.4 or less	
er ball	Yes	None	
cked grease	NSK grease LR3		
olume of nut (cm³)	1.9		
rease replenishing (cm³)	1	.0	
	assification / Direction of turn I recirculation all circle dia. root diameter urns of balls Preload / Axial play Dynamic C _a Static C _{oa} I play ad (N) ction torque, cm) er ball cked grease olume of nut (cm³)	/ Direction of turn 15×20 I recirculation P-preload all circle dia. 3.175 root diameter 12 urns of balls 1.7 Preload / Axial play $C5 / Z$ Dynamic C_a 3870 Static C_{oa} 5820 I play 0 ad (N) 147 ction torque, cm) $1.5 - 7.8$ er ball Yes cked grease NSK gresolume of nut (cm³) 1	

Uni						Unit: mm			
Screw shaft length		Lo	ad aggur	dagguragy			Permissible rotational speed N (min-1)		
Screv	crew shart length		Lead accuracy			out **	Mass (kg)	Supporting	g condition
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(Rg)	Fixed - Simple support	Fixed - Fixed
186	204	271	0	0.020	0.018	0.025	0.61	3 000	3 000
236	254	321	0	0.023	0.018	0.035	0.68	3 000	3 000
286	304	371	0	0.023	0.018	0.035	0.75	3 000	3 000
336	354	421	0	0.025	0.020	0.040	0.81	3 000	3 000
386	404	471	0	0.025	0.020	0.040	0.88	3 000	3 000
436	454	521	0	0.027	0.020	0.050	0.95	3 000	3 000
486	504	571	0	0.027	0.020	0.050	1.0	3 000	3 000
536	554	621	0	0.030	0.023	0.050	1.1	3 000	3 000
586	604	671	0	0.030	0.023	0.065	1.1	3 000	3 000
636	654	721	0	0.035	0.025	0.065	1.2	3 000	3 000
686	704	771	0	0.035	0.025	0.065	1.3	3 000	3 000
786	804	871	0	0.035	0.025	0.085	1.4	3 000	3 000
886	904	971	0	0.040	0.027	0.085	1.5	2 400	3 000
1 086	1 104	1 171	0	0.046	0.030	0.110	1.8	1 590	2 240

22 <u>L_a</u> 45	M5×0.8 Depth 12	0.014 A 0.014 A 0.014 A 0.004 A 0.014 A 0.004 A 0.014 A 0.004 A 0.0	10.0	011 A 10 11 45 (Aradened)	X 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	## * G	5)	R0.2 max. E 10 M12×	9401 <i>\$</i>	✓ 0.009 E
		22		La				45	>	
€ Lo				L	0				-	

Ball scr	Stroke		
Ddii SCi	ew No.	Nominal	Maximum
Preloaded (UPFC)	Precise clearance (USFC)	Norminal	(L _t —Nut length)
W1501FA-3PG-C5Z20	W1501FA-4G-C5T20	100	141
W1502FA-5PG-C5Z20	W1502FA-6G-C5T20	150	191
W1502FA-7PG-C5Z20	W1502FA-8G-C5T20	200	241
W1503FA-5PG-C5Z20	W1503FA-6G-C5T20	250	291
W1503FA-7PG-C5Z20	W1503FA-8G-C5T20	300	341
W1504FA-5PG-C5Z20	W1504FA-6G-C5T20	350	391
W1504FA-7PG-C5Z20	W1504FA-8G-C5T20	400	441
W1505FA-5PG-C5Z20	W1505FA-6G-C5T20	450	491
W1505FA-7PG-C5Z20	W1505FA-8G-C5T20	500	541
W1506FA-5PG-C5Z20	W1506FA-6G-C5T20	550	591
W1506FA-7PG-C5Z20	W1506FA-8G-C5T20	600	641
W1507FA-3PG-C5Z20	W1507FA-4G-C5T20	700	741
W1508FA-3PG-C5Z20	W1508FA-4G-C5T20	800	841
W1510FA-3PG-C5Z20	W1510FA-4G-C5T20	1 000	1 041

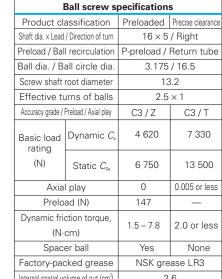
- Notes: 1. We recommend NSK support unit. See page B375 for details.
 - 2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.
 - 3. Contact NSK if the permissible rotational speed is to be exceeded.

40

View X-X

 $4-\phi 5.5$ drill thru

c'bore φ9.5×5.5


M6×1

(oil hole)

Screw shaft ø16

Lead 10

Unit: mm

Internal spatial volume of nut (cm3) 2.6 Standard volume of grease replenishing (cm²) 1.3

Recommended support unit

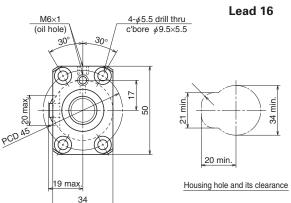
For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Unit: mm

Caro	w shaft le	onath	10	ad accur	201/			Permissible rotational speed N (min-1)		
Scie	vv Silait i	engui	Le	au accur	асу	out **	Mass (kg)	Supporting	g condition	
$L_{\rm t}$	La	L _o	Т	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed	
189	204	271	0	0.010	0.008	0.020	0.70	3 000	3 000	
289	304	371	0	0.012	0.008	0.030	0.83	3 000	3 000	
389	404	471	0	0.013	0.010	0.035	0.97	3 000	3 000	
489	504	571	0	0.015	0.010	0.045	1.1	3 000	3 000	
689	704	771	0	0.018	0.013	0.055	1.4	3 000	3 000	
889	904	971	0	0.021	0.015	0.075	1.6	2 570	3 000	

(C0.5) (C	Seals (two places) 0.010 A 6 X 6 X 9 Q 9 Q 1 1 1 1 X 42 L (hardened)	** G 12 0.010 A 0.006 E 0.006]
22	<u>L</u> a	45	
<	L_{0}	→	

Ball scr	Stroke		
Preloaded (PFT)	Precise clearance (SFT)	Nominal	Maximum (<i>L</i> _t —Nut length)
W1601FA-1P-C3Z5	W1601FA-2-C3T5	100	147
W1602FA-1P-C3Z5	W1602FA-2-C3T5	200	247
W1603FA-1P-C3Z5	W1603FA-2-C3T5	300	347
W1604FA-1P-C3Z5	W1604FA-2-C3T5	400	447
W1606FA-1P-C3Z5	W1606FA-2-C3T5	600	647
W1608FA-1P-C3Z5	W1608FA-2-C3T5	800	847


Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Unit: mm

Screw shaft ø16

View X-X

Recommended support unit

	* *
For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Ball screw specifications Product classification | Preloaded | Precise clearance 16×16 / Right Shaft dia. x Lead / Direction of turn Preload / Ball recirculation | P-preload / Return tube Ball dia. / Ball circle dia. 3.175 / 16.75 13.4 Screw shaft root diameter Effective turns of balls 1.5×1 Accuracy grade / Preload / Axial play C5 / Z C5 / T 3 600 4 710 Dynamic C_a Basic load rating (N) 5 410 8 110 Static C_{0a} Axial play 0 0.005 or less 147 Preload (N) _ Dynamic friction torque, 1.5 - 7.82.4 or less (N·cm) Yes Spacer ball None NSK grease LR3

Factory-packed grease Internal spatial volume of nut (cm³)

Standard volume of grease replenishing (cm3)

Unit: mm

2.1

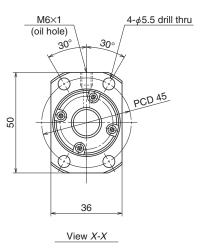
1.1

									Unit: mm
Soro	w shaft le	anath	Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)		
30161	v Shart it		Le		асу	out **	Mass (kg)	Supporting	g condition
$L_{\rm t}$	L _a	L _o	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(ivg)	Fixed - Simple support	Fixed - Fixed
184	204	271	0	0.020	0.018	0.025	0.69	3 000	3 000
234	254	321	0	0.023	0.018	0.035	0.77	3 000	3 000
284	304	371	0	0.023	0.018	0.035	0.84	3 000	3 000
334	354	421	0	0.025	0.020	0.040	0.92	3 000	3 000
384	404	471	0	0.025	0.020	0.040	0.99	3 000	3 000
434	454	521	0	0.027	0.020	0.050	1.1	3 000	3 000
484	504	571	0	0.027	0.020	0.050	1.1	3 000	3 000
534	554	621	0	0.030	0.023	0.050	1.2	3 000	3 000
584	604	671	0	0.030	0.023	0.065	1.3	3 000	3 000
634	654	721	0	0.035	0.025	0.065	1.4	3 000	3 000
684	704	771	0	0.035	0.025	0.065	1.4	3 000	3 000
784	804	871	0	0.035	0.025	0.085	1.6	3 000	3 000
884	904	971	0	0.040	0.027	0.085	1.7	2 690	3 000
1 084	1 104	1 171	0	0.046	0.030	0.110	2.0	1 770	2 480

3. Contact NSK if permissible rotational speed is to be exceeded.

		Sea	ıls (two places)		0		
CO. 8 Property of the control of the	80 90 00 00 00	015 A	8 ×				99 00.5 C0.5
	22		La	>	*******	45	•
	* **		L _o		*		
							•

D. II	Stroke			
Ball scr	Ball screw No.			
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	(L _t —Nut length)	
W1601FA-3P-C5Z16	W1601FA-4-C5T16	100	128	
W1602FA-3P-C5Z16	W1602FA-4-C5T16	150	178	
W1602FA-5P-C5Z16	W1602FA-6-C5T16	200	228	
W1603FA-3P-C5Z16	W1603FA-4-C5T16	250	278	
W1603FA-5P-C5Z16	W1603FA-6-C5T16	300	328	
W1604FA-3P-C5Z16	W1604FA-4-C5T16	350	378	
W1604FA-5P-C5Z16	W1604FA-6-C5T16	400	428	
W1605FA-1P-C5Z16	W1605FA-2-C5T16	450	478	
W1605FA-3P-C5Z16	W1605FA-4-C5T16	500	528	
W1606FA-3P-C5Z16	W1606FA-4-C5T16	550	578	
W1606FA-5P-C5Z16	W1606FA-6-C5T16	600	628	
W1607FA-1P-C5Z16	W1607FA-2-C5T16	700	728	
W1608FA-3P-C5Z16	W1608FA-4-C5T16	800	828	
W1610FA-1P-C5Z16	W1610FA-2-C5T16	1 000	1 028	


Notes: 1. We recommend NSK support unit. See page B375 for details.

B183 B184

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

Lead 32

Unit: mm

ı	Ball screw specifications						
Product cl	assification	Preloaded	Precise clearance				
Shaft dia. x Lead	/ Direction of turn	16 × 32	2 / Right				
Preload / Bal	I recirculation	P-preload	/ End cap				
Ball dia. / B	all circle dia.	3.175	/ 16.75				
Screw shaft	root diameter	13	3.4				
Effective to	urns of balls	0.7	×2				
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T				
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	4 (000				
(N)	Static C _{0a}	6 690					
Axia	l play	0	0.005 or less				
Prelo	ad (N)	118	_				
•	ction torque, cm)	1.5 – 9.8	2.4 or less				
Spac	er ball	None					
Factory-pag	cked grease	NSK grease LR3					
Internal spatial vo	olume of nut (cm³)	2.0					
Standard volume of gr	ease replenishing (cm³)	1.0					

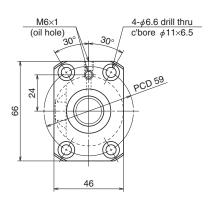
Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK12S-01 (square)
WBK12-11 (round)	

Unit: mm

	Offic. Hill										
Screw shaft length		Lood coorrect			Shaft run- out **	Mass (kg)	Permissible rotational speed N (min-1)				
		Lead accuracy		Supporting condition							
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support	Fixed - Fixed		
382	404	471	0	0.025	0.020	0.040	0.90	3 000	3 000		
582	604	671	0	0.030	0.023	0.065	1.2	3 000	3 000		
882	904	971	0	0.040	0.027	0.085	1.7	2 630	3 000		
1 282	1 304	1 371	0	0.054	0.035	0.150	2.3	1 240	1 740		

M5×0.8 Depth 12 9.15	0.015 A 5 0.2 max. 13.5 10 11 34 L _t (hardene	→	C0.2 C0.2 C	C0.5 C0.5	9 [
* *** **		L _o	><		
1				٦	


Ball scr	Stroke		
	Nominal	Maximum	
Preloaded (UPFC)	Precise clearance (USFC)	1401111111111	(L _t —Nut length)
W1603FA-7PGX-C5Z32	W1603FA-8GX-C5T32	300	348
W1605FA-5PGX-C5Z32	W1605FA-6GX-C5T32	500	548
W1608FA-5PGX-C5Z32	W1608FA-6GX-C5T32	800	848
W1612FA-1PGX-C5Z32	W1612FA-2GX-C5T32	1 200	1 248

Notes: 1. We recommend NSK support unit. See page B375 for details.

- Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.
- 3. Ball nut does not have seal.
- 4. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 10

Unit: mm

View X-X

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK15-01A (square)	WBK15S-01 (square)
WBK15-11 (round)	

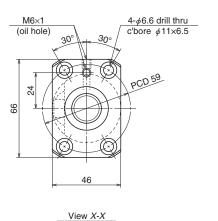
	Ball screw sp	pecification	s	
Product cl	assification	Preloaded Precise clearance		
Shaft dia. x Lead	/ Direction of turn	20 × 10	/ Right	
Preload / Bal	I recirculation	P-preload /	Return tube	
Ball dia. / B	all circle dia.	3.969	9 / 21	
Screw shaft	root diameter	16	6.9	
Effective to	urns of balls	2.5	×1	
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T	
Basic load rating (N)	Dynamic $C_{\scriptscriptstyle a}$	6 880	10 900	
	Static C _{0a}	10 800	21 700	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	196	_	
'	ction torque, cm)	2.0 – 11.8	2.9 or less	
Spac	er ball	Yes	None	
Factory-page	cked grease	NSK gre	ase LR3	
Internal spatial v	olume of nut (cm³)	4	.7	
Standard volume of g	rease replenishing (cm³)	2	.4	

Unit: mm

	Unit: mm											
Screw shaft length		Lead accuracy			Shaft run-		Permissible rotational speed N (min-1)					
		Ĺ	au accur	асу	out **	Mass (kg)	Supporting	g condition				
$L_{\rm t}$	La	Lo	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg/	Fixed - Simple support	Fixed - Fixed			
289	314	399	0	0.023	0.018	0.035	1.4	3 000	3 000			
389	414	499	0	0.025	0.020	0.040	1.6	3 000	3 000			
489	514	599	0	0.027	0.020	0.050	1.9	3 000	3 000			
589	614	699	0	0.030	0.023	0.065	2.1	3 000	3 000			
689	714	799	0	0.035	0.025	0.065	2.3	3 000	3 000			
789	814	899	0	0.035	0.025	0.085	2.5	3 000	3 000			
889	914	999	0	0.040	0.027	0.085	2.8	3 000	3 000			
989	1 014	1 099	0	0.040	0.027	0.110	3.0	2 680	3 000			
1 089	1 114	1 199	0	0.046	0.030	0.110	3.2	2 210	3 000			
1 189	1 214	1 299	0	0.046	0.030	0.150	3.4	1 840	2 570			
1 289	1 314	1 399	0	0.054	0.035	0.150	3.7	1 570	2 190			

M6×1.0 Depth 15	0.014 A CO.3 RO.2 r 10.15	0.015 A 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Seals (two	6 X 1	# * G A G	17 17 19 (5)	25 0	C0.5	Ø 0.009 E
	25		L	-a			60		
	<			Lo					

Palloon	Stroke			
Ddll SCI	Ball screw No.			
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	(L _t —Nut length)	
W2002FA-1P-C5Z10	W2002FA-2-C5T10	200	235	
W2003FA-1P-C5Z10	W2003FA-2-C5T10	300	335	
W2004FA-1P-C5Z10	W2004FA-2-C5T10	400	435	
W2005FA-1P-C5Z10	W2005FA-2-C5T10	500	535	
W2006FA-1P-C5Z10	W2006FA-2-C5T10	600	635	
W2007FA-1P-C5Z10	W2007FA-2-C5T10	700	735	
W2008FA-1P-C5Z10	W2008FA-2-C5T10	800	835	
W2009FA-1P-C5Z10	W2009FA-2-C5T10	900	935	
W2010FA-1P-C5Z10	W2010FA-2-C5T10	1 000	1 035	
W2011FA-1P-C5Z10	W2011FA-2-C5T10	1 100	1 135	
W2012FA-1P-C5Z10	W2012FA-2-C5T10	1 200	1 235	


Notes: 1. We recommend NSK support unit. See page B375 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 20

Unit: mm

Recommended support unit

	• • • • • • • • • • • • • • • • • • • •
For drive side (Fixed)	For opposite to drive side (Simple)
WBK15-01A (square)	WBK15S-01 (square)
WBK15-11 (round)	

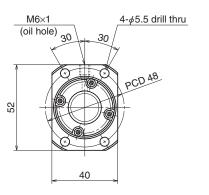
	Ball screw s	pecification	s	
Product cl	assification	Preloaded Precise cleara		
Shaft dia. x Lead	/ Direction of turn	20 × 20) / Right	
Preload / Bal	I recirculation	P-preload /	Return tube	
Ball dia. / B	all circle dia.	3.969	9 / 21	
Screw shaft	root diameter	16	6.9	
Effective to	urns of balls	1.5	×1	
Accuracy grade /	Preload / Axial play	C5 / Z	C53 / T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	5 370	7 040	
(N)	Static C _{0a}	8 450	12 700	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	196	_	
,	ction torque, cm)	2.0 – 11.8	2.9 or less	
Spacer ball		Yes	None	
Factory-page	cked grease	NSK gre	ase LR3	
Internal spatial v	olume of nut (cm³)	4	.2	
Standard volume of g	rease replenishing (cm³)	2	.1	

Unit: mm 👺

٠.										
	Screw shaft length		1 1			Shaft run- out ** Mass		Permissible rotational speed N (min-1)		
			Le	Lead accuracy			Mass	Supporting	g condition	
	$L_{\rm t}$	La	Lo	Т	$e_{\scriptscriptstyle m p}$	υu		(kg)	Fixed - Simple support	Fixed - Fixed
	310	335	420	0	0.023	0.018	0.040	1.6	3 000	3 000
	410	435	520	0	0.027	0.020	0.050	1.8	3 000	3 000
	510	535	620	0	0.030	0.023	0.050	2.0	3 000	3 000
	610	635	720	0	0.030	0.023	0.065	2.3	3 000	3 000
	710	735	820	0	0.035	0.025	0.085	2.5	3 000	3 000
	810	835	920	0	0.040	0.027	0.085	2.7	3 000	3 000
	910	935	1 020	0	0.040	0.027	0.110	3.0	3 000	3 000
	1 010	1 035	1 120	0	0.046	0.030	0.110	3.2	2 590	3 000
	1 110	1 135	1 220	0	0.046	0.030	0.110	3.4	2 140	2 970
	1 210	1 235	1 320	0	0.046	0.030	0.150	3.7	1 790	2 500
	1 510	1 535	1 620	0	0.054	0.035	0.180	4.4	1 140	1 610

0.014 A 0.015	Seals (two places)	(2)	R0.2 R0.2 M15×1 M15×1 M15×1 R0.004 E]
25	$L_{\rm t}$ (hardened) $L_{\rm a}$	10 (15)	40 20	
	Lo			

Pall age	Pall caraw No		
Ddil SCI	Ball screw No.		Maximum
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	(L _t —Nut length)
W2003FA-3P-C5Z20	W2003FA-4-C5T20	200	247
W2004FA-3P-C5Z20	W2004FA-4-C5T20	300	347
W2005FA-3P-C5Z20	W2005FA-4-C5T20	400	447
W2006FA-3P-C5Z20	W2006FA-4-C5T20	500	547
W2007FA-3P-C5Z20	W2007FA-4-C5T20	600	647
W2008FA-3P-C5Z20	W2008FA-4-C5T20	700	747
W2009FA-3P-C5Z20	W2009FA-4-C5T20	800	847
W2010FA-3P-C5Z20	W2010FA-4-C5T20	900	947
W2011FA-3P-C5Z20	W2011FA-4-C5T20	1 000	1 047
W2012FA-3P-C5Z20	W2012FA-4-C5T20	1 100	1 147
W2015FA-1P-C5Z20	W2015FA-2-C5T20	1 400	1 447


Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 40

Unit: mm

View X-X

Ball screw specifications				
Product classification		Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	20 × 40	/ Right	
Preload / Bal	I recirculation	P-preload	/ End cap	
Ball dia. / Ba	all circle dia.	3.175	/ 20.75	
Screw shaft	root diameter	17	7.4	
Effective to	urns of balls	0.7	× 2	
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T	
Basic load rating			4 490	
(N)	Static C _{0a}	8 640		
Axia	l play	0	0.005 or less	
Prelo	ad (N)	148	_	
Dynamic friction torque, (N·cm)		2.0 – 11.8	2.9 or less	
Spacer ball		None		
Factory-packed grease		NSK gre	ase LR3	
Internal spatial vo	olume of nut (cm³)	2.8		
Standard volume of gr	rease replenishing (cm³)	1	.4	

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK15-01A (square)	WBK15S-01 (square)
WBK15-11 (round)	

Unit: mm

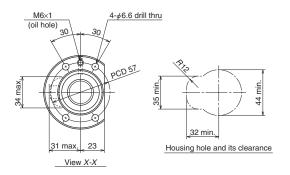
									Offit. IIIIII
Cara	v shaft le	nath	Lo	ad accura	201	Shaft run-		Permissible rotational speed N (min-1)	
Sciev	N SHAIL I	engui	Le	au accura	асу	out **	Mass (kg)	Supporting	condition
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
506	535	620	0	0.030	0.023	0.050	1.7	3 000	3 000
706	735	820	0	0.035	0.025	0.085	2.2	3 000	3 000
906	935	1 020	0	0.040	0.027	0.110	2.7	3 000	3 000
1 106	1 135	1 220	0	0.046	0.030	0.110	3.1	2 170	3 000
1 306	1 335	1 420	0	0.054	0.035	0.150	3.6	1 550	2 160
1 706	1 735	1 820	0	0.065	0.040	0.230	4.6	910	1 270

C0.5 C0.3 C0.3 C0.3 C0.3 C0.3 C0.3 C0.3 C0.3	0.2 max.		2000 4000 4000 4000 4000 4000 4000 4000	✓ 0.009 E
25	L _a	 	60]
<	Lo			

Ball scr	Stroke		
	Nominal	Maximum	
Preloaded (UPFC)	Precise clearance (USFC)	rvorriiriai	(L _t —Nut length)
W2005FA-5PGX-C5Z40	W2005FA-6GX-C5T40	400	465
W2007FA-5PGX-C5Z40	W2007FA-6GX-C5T40	600	665
W2009FA-5PGX-C5Z40	W2009FA-6GX-C5T40	800	865
W2011FA-5PGX-C5Z40	W2011FA-6GX-C5T40	1 000	1 065
W2013FA-1PGX-C5Z40	W2013FA-2GX-C5T40	1 200	1 265
W2017FA-1PGX-C5Z40	W2017FA-2GX-C5T40	1 600	1 665

Notes: 1. We recommend NSK support unit. See page B375 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.


3. Ball nut does not have seal.

4. Contact NSK if the permissible rotational speed is to be exceeded.

B191 B192

Lead 20

Unit: mm

Ball screw specifications				
Product cla	assification	Preloaded	Precise clearance	
Shaft dia. x Lead	/ Direction of turn	25 × 20	/ Right	
Preload / Bal	I recirculation	P-preload /	Return tube	
Ball dia. / B	all circle dia.	4.762	/ 26.25	
Screw shaft	root diameter	21	.3	
Effective to	urns of balls	2.5	×1	
Accuracy grade /	Preload / Axial play	C5 / Z	C5/T	
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	9 900	15 700	
(N)	Static C _{0a}	16 400	32 800	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	343	_	
Dynamic friction torque, (N·cm)		3.9 – 24.5	4.9 or less	
Spacer ball		Yes	None	
Factory-packed grease		NSK gre	ase LR3	
Internal spatial volume of nut (cm³)		1	2	
Standard volume of or	ease replenishing (cm³)		3	

Recommended support unit

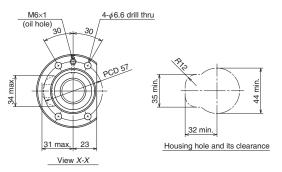
For drive side	For opposite to drive side				
(Fixed)	(Fixed)	(Simple)			
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)			
WBK20-11 (round)	WBK20S-11 (round)				

Unit: mm

Caray	v shaft le	anath	Lo	ad accura	201	Shaft run-		Permissible rotational speed N (min-1)	
30161	v Silait it	engui	Le	au accura	асу	out **	Mass (kg)	Supporting	g condition
$L_{\rm t}$	La	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support	Fixed - Fixed
750	780	913	0	0.035	0.025	0.055	4.0	2 800	2 800
950	980	1 113	0	0.040	0.027	0.070	4.7	2 800	2 800
1 150	1 180	1 313	0	0.046	0.030	0.090	5.4	2 560	2 800
1 350	1 380	1 513	0	0.054	0.035	0.090	6.2	1 840	2 550
1 550	1 580	1 713	0	0.054	0.035	0.120	6.9	1 390	1 940
1 750	1 780	1 913	0	0.065	0.040	0.120	7.6	1 080	1 520
2 150	2 180	2 313	0	0.077	0.046	0.160	9.1	710	1 000

C0.5 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	X + * G	70.018 A 1. 92	0.010 <i>E</i>
53	. La		80	
<	Lo		-	

Poll cor	Stroke		
	Ball screw No.		
Preloaded (LPFT)	Precise clearance (LSFT)		(L _t —Nut length)
W2507FA-1P-C5Z20	W2507FA-2-C5T20	600	654
W2509FA-1P-C5Z20	W2509FA-2-C5T20	800	854
W2511FA-1P-C5Z20	W2511FA-2-C5T20	1 000	1 054
W2513FA-1P-C5Z20	W2513FA-2-C5T20	1 200	1 254
W2515FA-1P-C5Z20	W2515FA-2-C5T20	1 400	1 454
W2517FA-1P-C5Z20	W2517FA-2-C5T20	1 600	1 654
W2521FA-1P-C5Z20	W2521FA-2-C5T20	2 000	2 054


Notes: 1. We recommend NSK support unit. See page B375 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 25

Unit: mm

Ball screw specifications					
Product cl	assification	Preloaded	Precise clearance		
Shaft dia. x Lead	/ Direction of turn	25 × 25	/ Right		
Preload / Bal	I recirculation	P-preload /	Return tube		
Ball dia. / B	all circle dia.	4.762	/ 26.25		
Screw shaft	root diameter	21	.3		
Effective to	urns of balls	1.5	× 1		
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T		
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	7 730	10 100		
(N)	Static C _{0a}	12 700	19 100		
Axia	l play	0	0.005 or less		
Prelo	ad (N)	294	_		
Dynamic friction torque, (N·cm)		3.9 – 24.5	4.9		
Spacer ball		Yes	None		
Factory-packed grease		NSK gre	ase LR3		
Internal spatial volume of nut (cm³)		7	.5		
Standard volume of gr	rease replenishing (cm³)	3	.8		

Recommended support unit

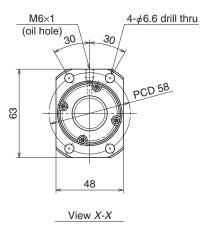
For drive side	For opposite to drive side			
(Fixed)	(Fixed)	(Simple)		
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)		
WBK20-11 (round)	WBK20S-11 (round)			

Unit: mm

Saray	w shaft le	onath	Lo	ad accura	201	Shaft run-		Permissible rotational speed N (min-1)	
30161	/V SHALL I	engui	L	au accura	асу	out **	Mass (kg)	Supporting	g condition
$L_{\rm t}$	La	L。	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support	Fixed - Fixed
750	780	913	0	0.035	0.025	0.055	4.0	2 800	2 800
950	980	1 113	0	0.040	0.027	0.070	4.7	2 800	2 800
1 150	1 180	1 313	0	0.046	0.030	0.090	5.4	2 540	2 800
1 350	1 380	1 513	0	0.054	0.035	0.090	6.2	1 830	2 540
1 550	1 580	1 713	0	0.054	0.035	0.120	7.0	1 380	1 930
1 750	1 780	1 913	0	0.065	0.040	0.120	7.7	1 080	1 510
2 150	2 180	2 313	0	0.077	0.046	0.160	9.1	710	1 000

C0.5 000 000 000 000 000 000 000 000 000	R0.2 max.	A G (10)	CO.3 CO.5 CO.5 RO.2 max. E 16 M20×1	Ø 0.010 E]
53	L _a		80	
	L	0	-	

Pall cor	Stroke			
Ball Scr	Ball screw No.		Maximum	
Preloaded (LPFT)	Precise clearance (LSFT)	Nominal	(L _t —Nut length)	
W2507FA-3P-C5Z25	W2507FA-4-C5T25	600	660	
W2509FA-3P-C5Z25	W2509FA-4-C5T25	800	860	
W2511FA-3P-C5Z25	W2511FA-4-C5T25	1 000	1 060	
W2513FA-3P-C5Z25	W2513FA-4-C5T25	1 200	1 260	
W2515FA-3P-C5Z25	W2515FA-4-C5T25	1 400	1 460	
W2517FA-3P-C5Z25	W2517FA-4-C5T25	1 600	1 660	
W2521FA-3P-C5Z25	W2521FA-4-C5T25	2 000	2 060	


Notes: 1. We recommend NSK support unit. See page B375 for details.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space.
 See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 50

Unit: mm

	Ball screw specifications				
Product cl	assification	Preloaded	Precise clearance		
Shaft dia. x Lead	/ Direction of turn	25 × 50	/ Right		
Preload / Bal	I recirculation	P-preload	/ End cap		
Ball dia. / B	all circle dia.	3.969	9 / 26		
Screw shaft	root diameter	21	.9		
Effective to	urns of balls	0.7	×2		
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T		
Basic load rating			6 690		
(N)	Static C _{0a}	13 500			
Axia	l play	0	0.005 or less		
Prelo	ad (N)	196	_		
Dynamic friction torque, (N·cm)		2.9 – 21.5	4.9 or less		
Spacer ball		None			
Factory-packed grease		NSK grease LR3			
Internal spatial volume of nut (cm³)		4.2			
Standard volume of g	rease replenishing (cm³)	2	.1		

Recommended support unit

For drive side	For opposite to drive side			
(Fixed)	(Fixed)	(Simple)		
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)		
WBK20-11 (round)	WBK20S-11 (round)			

Office Hill									
Soro	w shaft le	anath	Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)		
30161	/v Silait it		Le			out **	Mass (kg)	Supporting	g condition
$L_{\rm t}$	La	L。	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support	Fixed - Fixed
844	880	1 013	0	0.040	0.027	0.070	4.1	2 800	2 800
1 144	1 180	1 313	0	0.046	0.030	0.090	5.3	2 550	2 800
1 644	1 680	1 813	0	0.065	0.040	0.120	7.2	1 230	1 710
2 144	2 180	2 313	0	0.077	0.046	0.160	9.1	720	1 010

C0.5 0.013 A C0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00	□ □ 0.011 A → 25 12 13 50	×	(0)	R0.2 max. E 16 M20x	9121 CO.5	0.010 E
	L _t (hardened)		16 (20)	<u>53</u> →	< 27 >	
< 53	L _a			80	>	
*		Lo			>	

Ball scr	Stroke		
Preloaded (UPFC)	Precise clearance (USFC)	Nominal	Maximum (<i>L</i> _t —Nut length)
W2508FA-1PGX-C5Z50	W2508FA-2GX-C5T50	700	794
W2511FA-5PGX-C5Z50	W2511FA-6GX-C5T50	1 000	1 094
W2516FA-1PGX-C5Z50	W2516FA-2GX-C5T50	1 500	1 594
W2521FA-5PGX-C5Z50	W2521FA-6GX-C5T50	2 000	2 094

Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Ball nut does not have seal.

4. Contact NSK if the permissible rotational speed is to be exceeded.

B197 B198

View X-X

Screw shaft ø32

Lead 25

Unit: mm

M6×1	4-φ9 drill thru	
(oil hole)		
(oii noie)	L.	
7 11 7	17	
	/	
(D) (S)	- 67	7/2
) PUD	 ` ` `
42 max.	43 min.	12 High
5 1	17 5	T
4	√ 4	ν ν
	1	
		35 min.
34 max. 26	∫ H	ousing hole and its clearance

	Ball screw specifications				
Product cla	assification	Preloaded	Precise clearance		
Shaft dia. x Lead	/ Direction of turn	32 × 25	/ Right		
Preload / Bal	I recirculation	P-preload /	Return tube		
Ball dia. / B	all circle dia.	4.762	/ 33.25		
Screw shaft	root diameter	28	3.3		
Effective to	urns of balls	2.5	× 1		
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T		
Basic load rating	Dynamic C _a	11 300	17 900		
(N)	Static C _{0a}	20 900	41 800		
Axia	l play	0	0.005 or less		
Prelo	ad (N)	441	_		
Dynamic friction torque, (N·cm)		6.8 – 31.5	7.8 or less		
Spacer ball		Yes	None		
Factory-packed grease		NSK grease LR3			
Internal spatial volume of nut (cm³)		17.5			
Standard volume of gr	ease replenishing (cm³)	8	.8		

Recommended support unit

For drive side	For opposite to drive side				
(Fixed)	(Fixed)	(Simple)			
WBK25-01W (square)	WBK25-01W (square)	WBK25S-01W (square)			
WBK25-11 (round)	WBK25-11 (round)				

Unit: mm

Screw shaft length		Lead accuracy			Shaft run-		Permissible rotational speed N (min-1)		
30161	v Siidil it	ziigiii	Le	au accur	асу	out **	Mass (kg)	Supporting	g condition
L_{t}	L _a	L。	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg/	Fixed - Simple support	Fixed - Fixed
1 180	1 219	1 376	0	0.046	0.030	0.090	9.3	2 180	2 180
1 680	1 719	1 876	0	0.065	0.040	0.120	12.3	1 580	2 180
2 180	2 219	2 376	0	0.077	0.046	0.160	15.4	930	1 300
2 780	2 819	2 976	0	0.093	0.054	0.200	19.1	560	800

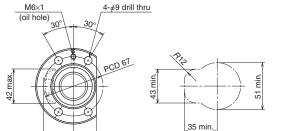
M25×1.5 / 20 F 1.35	70.3 max.	5 10 ±	C0.5	5×1.5 33
* ***		L-0	**	

Ball scr	Stroke		
Ddil Sci	Nominal	Maximum	
Preloaded (LPFT)	Precise clearance (LSFT)	INOTTIITIAI	(L _t —Nut length)
W3211FA-1P-C5Z25	W3211FA-2-C5T25	1 000	1 063
W3216FA-1P-C5Z25	W3216FA-2-C5T25	1 500	1 563
W3221FA-1P-C5Z25	W3221FA-2-C5T25	2 000	2 063
W3227FA-1P-C5Z25	W3227FA-2-C5T25	2 600	2 663

Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.


B199

View X-X

Screw shaft ø32

Lead 32

Unit: mm

Housing hole and its clearance

ı	Ball screw s	pecification	s	
Product cla	assification	Preloaded Precise clearance		
Shaft dia. x Lead	/ Direction of turn	32 × 32	? / Right	
Preload / Bal	I recirculation	P-preload /	Return tube	
Ball dia. / B	all circle dia.	4.762	/ 33.25	
Screw shaft	root diameter	28	3.3	
Effective to	urns of balls	1.5	×1	
Accuracy grade /	Preload / Axial play	C5 / Z	C5 / T	
Basic load rating	Dynamic <i>C</i> _a	8 800	11 500	
(N)	Static C _{0a}	16 600	24 800	
Axia	l play	0	0.005 or less	
Prelo	ad (N)	392	_	
,	ction torque, cm)	6.9 – 31.5	7.8 or less	
Spacer ball		Yes	None	
Factory-packed grease		NSK grease LR3		
Internal spatial vo	olume of nut (cm³)	1	4	
Standard volume of gr	ease replenishing (cm³)	-	7	

Recommended support unit

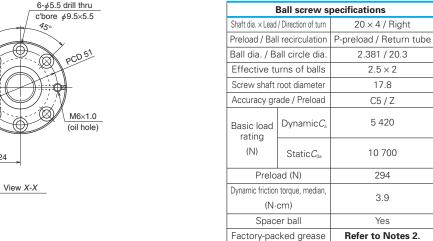
For drive side	For opposite to drive side				
(Fixed)	(Fixed)	(Simple)			
WBK25-01W (square)	WBK25-01W (square)	WBK25S-01W (square)			
WBK25-11 (round)	WBK25-11 (round)				

Unit: mm

									01.11.11
Screw shaft length		Lead accuracy			Shaft run-		Permissible rotational speed N (min-1)		
Screv	N Shart is	engui	Lea	au accura	асу	out **	Mass (kg)	Supporting condition	
L_{t}	L _a	L。	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(Kg)	Fixed - Simple support	Fixed - Fixed
1 180	1 219	1 376	0	0.046	0.030	0.090	9.3	2 180	2 180
1 680	1 719	1 876	0	0.065	0.040	0.120	12.3	1 570	2 180
2 180	2 219	2 376	0	0.077	0.046	0.160	15.4	920	1 290
2 780	2 819	2 976	0	0.093	0.054	0.200	19.1	560	790

C1 M25×1.5	\$25.000 125.00	R0.3 max.	Seals (two places) Li 0.013 A 82 15 1 109 Li (hardened)	X -	(12)	2 E 20 M25×	94 000 000 000 000 000 000 000 000 000 0
	62		L _t (narderied)		12 (27)	62 95	33
	· · ·		L _o		*		-

Ball scr	Stroke			
	Nominal	Maximum		
Preloaded (LPFT)	Precise clearance (LSFT)		$(L_t$ —Nut length)	
W3211FA-3P-C5Z32	W3211FA-4-C5T32	1 000	1 071	
W3216FA-3P-C5Z32	W3216FA-4-C5T32	1 500	1 571	
W3221FA-3P-C5Z32	W3221FA-4-C5T32	2 000	2 071	
W3227FA-3P-C5Z32	W3227FA-4-C5T32	2 600	2 671	


Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 4

Unit: mm

6-¢5.5 drill thru 24

Recommended support unit

Internal spatial volume of nut (cm3)

Standard volume of grease replenishing (cm³)

For drive side (Fixed)	For opposite to drive side (Simple)	OA
WBK15-01A (square)	WBK15S-01 (square)	
WBK15-11 (round)		

2.7

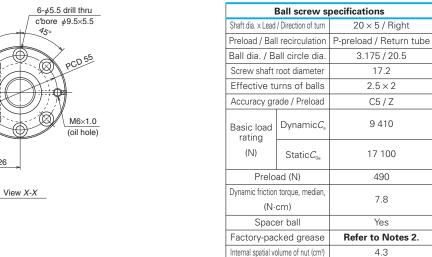
1.4

Unit: mm

						Offic. Hilli	
Load accuracy			Shaft run-		Permissible rotational speed N (min-1)		
L	Lead accuracy		out **	Mass (kg)	Supporting condition		
Τ	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(Ng)	Fixed - Simple support	Fixed - Fixed	
-0.005	0.023	0.018	0.045	1.1	3 000	3 000	
-0.007	0.023	0.018	0.045	1.2	3 000	3 000	
-0.009	0.025	0.020	0.055	1.5	3 000	3 000	
-0.011	0.027	0.020	0.070	1.7	3 000	3 000	
-0.014	0.030	0.023	0.085	1.9	3 000	3 000	
-0.016	0.035	0.025	0.085	2.1	3 000	3 000	

C0.5 C0.3 C0.5 C0.3 R0.2 ma R0.2 ma 1.15 M6×1 Depth 15 10.15	x.	10.011 A 11 X 49	A G	8 9	70.3 77.4 77.4 77.4 77.4 M15×1	1.0° CO.5 CO	0.5
		Lt (hardened)		25	40	20	
25		L _a L _o		>	60		

	Str	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum	Screw shart length			
	Nominal	(L _t —Nut length)	$L_{\rm t}$	La	L _o	
W2002SA-1P-C5Z4	150	176	225	250	335	
W2002SA-2P-C5Z4	200	226	275	300	385	
W2003SA-1P-C5Z4	300	326	375	400	485	
W2004SA-1P-C5Z4	400	426	475	500	585	
W2005SA-1P-C5Z4	500	526	575	600	685	
W2006SA-1P-C5Z4	600	626	675	700	785	


Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 5

Unit: mm

6-∮5.5 drill thru
c'bore φ9.5×5.5
45° 45°
PCD 55
(Q) POD
M6×1.0
(oil hole)
, ,
<u>26</u>

Recommended support unit

Standard volume of grease replenishing (cm³)

For drive side (Fixed)	For opposite to drive side (Simple)	SA
WBK15-01A (square)	WBK15S-01 (square)	
WBK15-11 (round)		

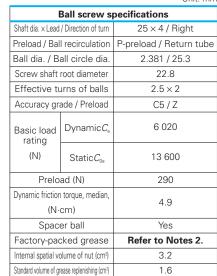
Unit: mm

2.2

1	ead accurad	2)./	Shaft run-		Permissible rotatio	nal speed N (min-1)
			out **	Mass	Supporting	g condition
Τ	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
-0.005	0.023	0.018	0.045	1.3	3 000	3 000
-0.007	0.023	0.018	0.045	1.4	3 000	3 000
-0.009	0.025	0.020	0.055	1.6	3 000	3 000
-0.011	0.027	0.020	0.070	1.8	3 000	3 000
-0.014	0.030	0.023	0.085	2.0	3 000	3 000
-0.019	0.035	0.025	0.110	2.5	3 000	3 000

(0.014 A	0.015 A	Seals (two places) X Light Seals (two places)	## * G	8 9	70.018 70.018 70.018 70.018 70.018 70.018 70.018 70.018	φ 12h6	<u>0.012</u> E 0.5
		Lt (hardened)		25	40	20	
25		La		-	60		
		Lo				-	

	Stroke		Screw shaft length		
Ball screw No.	Nisasiasi	Maximum	3016	ew Shart lei	igui
	Nominal	(L _t —Nut length)	$L_{\rm t}$	L_{a}	L _o
W2002SA-3P-C5Z5	150	169	225	250	335
W2002SA-4P-C5Z5	200	219	275	300	385
W2003SA-2P-C5Z5	300	319	375	400	485
W2004SA-2P-C5Z5	400	419	475	500	585
W2005SA-2P-C5Z5	500	519	575	600	685
W2007SA-1P-C5Z5	700	719	775	800	885


Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 4

Unit: mm

ſ	6-\phi 5.5 drill thru c'bore \phi 9.5\times 5.5
A5°	PCD 57 M6×1.0 (oil hole)
26	

View X-X

Recommended support unit

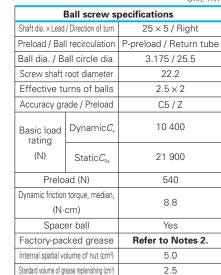
For drive side	For opposite	to drive side	
(Fixed)	(Fixed)	(Simple)	٤
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	ľ
WBK20-11 (round)	WBK20S-11 (round)		

Unit: mm

Left side		ad accura	101/	Shaft run-		Permissible rotatio	nal speed N (min-1)
shaft	Le	au accure		out **	Mass	Supporting	condition
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>11</i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.005	0.023	0.018	0.035	1.6	2 800	_
П	-0.006	0.023	0.018	0.035	1.8	2 800	_
П	-0.009	0.025	0.020	0.040	2.2	2 800	_
П	-0.011	0.027	0.020	0.050	2.5	2 800	_
I	-0.014	0.030	0.023	0.060	3.0	2 800	2 800
I	-0.018	0.035	0.025	0.075	3.7	2 800	2 800

Shape II	1.35 °° 14	A G 10 14	C0.3 C0. 80 C0.3 R0.2 M20×1 +10.005 E	φ15h6
⊥.0.00	F→ L₁ (hardened)	30	53 2	27
53	L _a	<u>'</u>	80	
-	L _o		'	→

	Stroke		Screw shaft length		
Ball screw No.	Nominal Maximum				
	Norminal	(L _t —Nut length)	$L_{\rm t}$	$L_{\rm a}$	L。
W2502SA-1P-C5Z4	150	172	220	250	349
W2502SA-2P-C5Z4	200	222	270	300	399
W2503SA-1P-C5Z4	300	322	370	400	499
W2504SA-1P-C5Z4	400	422	470	500	599
W2505SA-1P-C5Z4	500	522	570	600	733
W2507SA-1P-C5Z4	700	722	770	800	933


Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 7

Unit: mm

6- ϕ 5.5 d c'bore ϕ	
A5° 45°	CD 61
	M6×1.0 (oil hole)
28	

View X-X

Recommended support unit

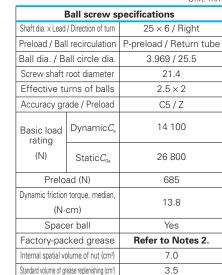
For drive side	For opposite to drive side			
(Fixed)	(Fixed)	(Simple)	ę	
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	1	
WBK20-11 (round)	WBK20S-11 (round)			

Unit: mm

Left side	Lo	ad accura	Shaft run-Permissible rotational speed N (r		nal speed N (min-1)			
shaft	Le	au accura	iCy	out **	Mass	Supporting	condition	
end	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed	
П	-0.005	0.023	0.018	0.035	1.8	2 800	_	
П	-0.006	0.023	0.018	0.035	2.0	2 800	_	
П	-0.009	0.025	0.020	0.040	2.3	2 800	_	
П	-0.011	0.027	0.020	0.050	2.7	2 800	_	
I	-0.014	0.030	0.023	0.060	3.1	2 800	2 800	
Ι	-0.016	0.035	0.025	0.075	3.4	2 800	2 800	
I	-0.018	0.035	0.025	0.075	3.8	2 800	2 800	
I	-0.023	0.040	0.027	0.090	4.5	2 800	2 800	
I	-0.028	0.046	0.030	0.120	5.2	2 480	2 800	

Shape II	Seals (two places) X 10.015 A	223 22 22 10 14	C0.3 R0.2 max. 16 M20x1	CO.5 CO.5
⊥[0.005]F	L _t (hardened)	30	53	27
53	L _a		80	
	L _o			

	Str	oke	- Screw shaft length		
Ball screw No.	Nominal	Maximum			
	Nominal	(L _t —Nut length)	$L_{\rm t}$	$L_{\rm a}$	L。
W2502SA-3P-C5Z5	150	165	220	250	349
W2502SA-4P-C5Z5	200	215	270	300	399
W2503SA-2P-C5Z5	300	315	370	400	499
W2504SA-2P-C5Z5	400	415	470	500	599
W2505SA-2P-C5Z5	500	515	570	600	733
W2506SA-1P-C5Z5	600	615	670	700	833
W2507SA-2P-C5Z5	700	715	770	800	933
W2509SA-1P-C5Z5	900	915	970	1 000	1 133
W2511SA-1P-C5Z5	1 000	1 115	1 170	1 200	1 333


Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the the permissible rotational speed is to be exceeded.

Lead 6

Unit: mm

6-\$5.5 drill thru cbore \$9.5×5.5 45° PCD 64 M6×1.0 (oil hole)

View X-X

Recommended	support unit
-------------	--------------

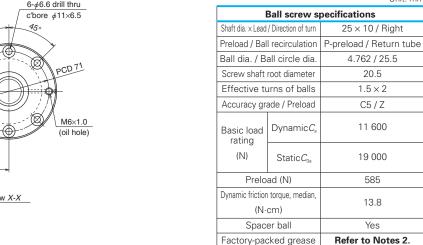
For drive side	For opposite to drive side		
(Fixed)	(Fixed)	(Simple)	ę
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	-
WBK20-11 (round)	WBK20S-11 (round)		

Unit: mm

	and annura	2) (Shaft run-		Terrilissible rotational speed in trilin			nal speed N (min-1)
L	ead accurad	ЗУ	out **	Mass	Supporting condition			
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed		
-0.009	0.025	0.020	0.050	2.5	2 800	2 800		
-0.014	0.030	0.023	0.060	3.2	2 800	2 800		
-0.018	0.035	0.025	0.075	3.9	2 800	2 800		
-0.028	0.046	0.030	0.120	5.2	2 410	2 800		

C0.5 (C0.3 (C)) (C0.3 (C	X-1 20 20 20 20 20 20 20 20 20 20	A G 10 14	C0.3 C0.5 R0.2 max. L0.005 E	C0.5
-	L _t (hardened)	30	53 27	-
53	L _a		80	-

	Str	oke	Screw shaft length		
Ball screw No.	Nisasiasi	Maximum			
	Nominal	(L _t —Nut length)	$L_{\rm t}$	La	L _o
W2503SA-3P-C5Z6	250	308	370	400	533
W2505SA-3P-C5Z6	450	508	570	600	733
W2507SA-3P-C5Z6	650	708	770	800	933
W2511SA-2P-C5Z6	1 050	1 108	1 170	1 200	1 333


Notes: 1. We recommend NSK support unit. See page B375 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 10

Unit: mm

6-\psi 6.6 drill thru
c'bore φ11×6.5
A5° 45° PCD 71 M6×1.0 (oil hole)

١	/iew	X-X	

Recommended	support	unit
-------------	---------	------

Internal spatial volume of nut (cm³)

Standard volume of grease replenishing (cm3)

For drive side	For opposite to drive side				
(Fixed)	(Fixed)	(Simple)	ę		
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	-		
WBK20-11 (round)	WBK20S-11 (round)				

9.5

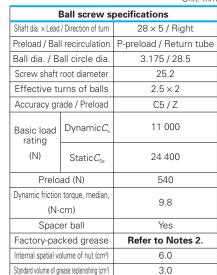
4.8

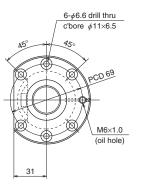
Unit: mm

Lead accuracy			Shaft run-	N 4	Permissible rotational speed N (min-1) Supporting condition	
			out **	Mass		
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
-0.009	0.025	0.020	0.050	3.2	2 800	2 800
-0.014	0.030	0.023	0.060	3.8	2 800	2 800
-0.018	0.035	0.025	0.075	4.5	2 800	2 800
-0.023	0.040	0.027	0.090	5.2	2 800	2 800
-0.028	0.046	0.030	0.120	5.9	2 340	2 800
-0.035	0.054	0.035	0.150	6.9	1 470	2 050

C0.5 10.007 A 10.005 F 10.0005 F 10.	Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω	Seals (two places) X — 1 Li 0.013 A	# * G 2035 222 22 22 22 22 22 22 22 22 22 22 22 2	C0.3 C0	4 15h6
	<	L _t (hardened)	30	53	27
53	•	La		80	→
<		Lo			→

	Str	oke	Screw shaft length			
Ball screw No.	N	Maximum	Jorew Shart length			
	Nominal	(L _t —Nut length)	$L_{\rm t}$	$L_{\rm a}$	L _o	
W2503SA-4P-C5Z10	250	289	370	400	533	
W2505SA-4P-C5Z10	450	489	570	600	733	
W2507SA-4P-C5Z10	650	689	770	800	933	
W2509SA-2P-C5Z10	850	889	970	1 000	1 133	
W2511SA-3P-C5Z10	1 050	1 089	1 170	1 200	1 333	
W2514SA-1P-C5Z10	1 350	1 389	1 470	1 500	1 633	


Notes: 1. We recommend NSK support unit. See page B375 for details.


2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 5

Unit: mm

View X-X

Recommended support unit

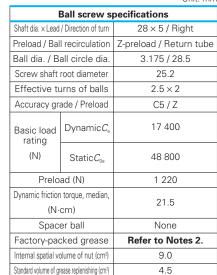
For drive side	For opposite to drive side				
(Fixed)	(Fixed)	(Simple)	ę		
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	-		
WBK20-11 (round)	WBK20S-11 (round)				

Unit: mm

Left side	Load accuracy		Shaft run-		Permissible rotational speed N (min-1)		
shaft	Le	Lead accuracy	out ** Mass		Supporting	condition	
end	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.006	0.023	0.018	0.035	2.5	2 500	_
П	-0.009	0.025	0.020	0.040	2.9	2 500	_
П	-0.011	0.027	0.020	0.050	3.3	2 500	_
I	-0.014	0.030	0.023	0.060	3.8	2 500	2 500
I	-0.018	0.035	0.025	0.075	4.7	2 500	2 500
I	-0.024	0.040	0.027	0.090	5.6	2 500	2 500
I	-0.028	0.046	0.030	0.120	6.5	2 500	2 500

Shape II \$\frac{\text{8.7} \text{0.014}}{\text{0.017} \text{ A}}\$ Co.5 M20x1 16 F	R0.2 max.	Seals (two places) X LI 0.013 A 44 12 X 44 12	## * G	C0.3 C0.5 R0.2 max. E 16 M20×1	C0.5
⊥]0.00	05 F - 12	Lt (hardened)	30	53 27	-
53		L _a		80	_
*		Lo			→

	Str	oke	Screw shaft length $L_{\rm t}$ $L_{\rm s}$ $L_{\rm o}$		
Ball screw No.	Nominal	Maximum (L,—Nut length)			
W2802SA-1P-C5Z5	200	214	270	300	399
W2803SA-1P-C5Z5	300	314	370	400	499
W2804SA-1P-C5Z5	400	414	470	500	599
W2805SA-1P-C5Z5	450	502	558	600	733
W2807SA-1P-C5Z5	650	702	758	800	933
W2809SA-1P-C5Z5	850	902	958	1 000	1 133
W2811SA-1P-C5Z5	1 050	1 102	1 158	1 200	1 333


Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 5

Unit: mm

_	6-φ6.6 drill thru c'bore φ11×6.5
45°	450
	PCD 69
	M6×1.0 (oil hole)
31	

View X-X

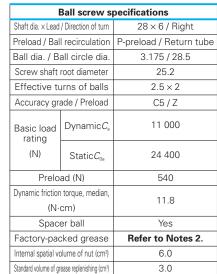
For drive side	For opposite to drive side				
(Fixed)	(Fixed)	(Simple)	٤		
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	ľ		
WBK20-11 (round)	WBK20S-11 (round)				

Unit: mm

Left side	Lead accuracy		Shaft run- out **	Mass	Permissible rotational speed N (min-1)		
shaft	Leau accuracy				Supporting condition		
end	T e_p v_u t		(kg)	Fixed - Simple support	Fixed - Fixed		
П	-0.006	0.023	0.018	0.035	2.8	2 500	_
П	-0.009	0.025	0.020	0.040	3.2	2 500	
П	-0.011	0.027	0.020	0.050	3.7	2 500	_
Ι	-0.013	0.030	0.023	0.060	4.2	2 500	2 500
Ι	-0.018	0.035	0.025	0.075	5.1	2 500	2 500
Ι	-0.023	0.040	0.027	0.090	5.9	2 500	2 500
I	-0.028	0.046	0.030	0.120	6.8	2 500	2 500

Shape II	Seals (two places) X	-0.35	80.2 max.	1100 CO.5 CO	0.012 E
⊥0.005 F 12	L _t (hardened)	30	53	27	
53	La		80	-	
	L _o				

	Str	oke	Screw shaft length		
Ball screw No.	Nominal Maximum (L-Nut length)		$L_{\rm t}$ $L_{\rm a}$ $L_{\rm o}$		
W2802SA-2Z-C5Z5	150	184	270	300	399
W2803SA-2Z-C5Z5	250	284	370	400	499
W2804SA-2Z-C5Z5	350	384	470	500	599
W2805SA-2Z-C5Z5	450	472	558	600	733
W2807SA-2Z-C5Z5	650	672	758	800	933
W2809SA-2Z-C5Z5	850	872	958	1 000	1 133
W2811SA-2Z-C5Z5	1 050	1 072	1 158	1 200	1 333


Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 6

Unit: mm

6- ϕ 6.6 drill thru c'bore ϕ 11×6.5
45°
PCD 69
M6×1.0 (oil hole)
31

View X-X

actory	ractory-	acı

Recommended support unit

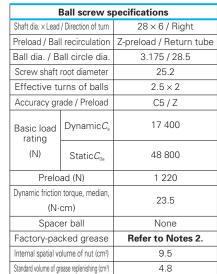
or drive side	For opposite to drive side				
(Fixed)	(Fixed)	(Simple)	ę		
VBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	-		
WBK20-11 (round)	WBK20S-11 (round)				

Unit: mm

Left side	Load accuracy			Shaft run- out **	Mass	Permissible rotational speed N (min-1)		
shaft		ead accuracy				Supporting condition		
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed	
П	-0.009	0.025	0.020	0.040	3.0	2 500	_	
П	-0.014	0.030	0.023	0.060	3.9	2 500	_	
I	-0.018	0.035	0.025	0.075	4.9	2 500	2 500	
I	-0.023	0.040	0.027	0.090	5.8	2 500	2 500	
I	-0.028	0.046	0.030	0.120	6.6	2 500	2 500	

Shape II	Seals (two places) X 1 10.019 A Seals (two places) X 10.013 A Seals (two places) X 10.013 A Seals (two places)	A G 10 14	C0.3 C0.5 R0.2 max. E 16 M20x1	
⊥0.005 F - 12	L _t (hardened)	30	53 2	7
53	La	<u>'</u>	80	_
·	Lo			

	Str	oke	Screw shaft length			
Ball screw No.	Namainal	Maximum	Screw Shart length			
	Nominal	(L _t —Nut length)	$L_{\rm t}$	L_{a}	L。	
W2803SA-3P-C5Z6	250	307	370	400	499	
W2805SA-3P-C5Z6	450	507	570	600	699	
W2807SA-3P-C5Z6	650	695	758	800	933	
W2809SA-3P-C5Z6	850	895	958	1 000	1 133	
W2811SA-3P-C5Z6	1 050	1 095	1 158	1 200	1 333	


Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 6

Unit: mm

_	6-φ6.6 drill thru c'bore φ11×6.5
45°	450
	PCD 69
	M6×1.0
	(oil hole)
31	

View X-X

Recommended support unit

For drive side	For opposite	to drive side	
(Fixed)	(Fixed)	(Simple)	٤
WBK20-01 (square)	WBK20-01 (square)	WBK20S-01 (square)	ľ
WBK20-11 (round)	WBK20S-11 (round)		

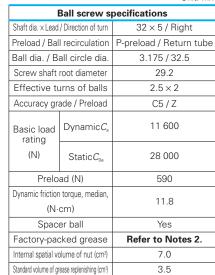
Unit: mm

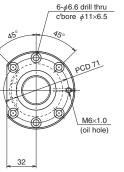
Left side	Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)		
shaft	Le	au accura	Су	out **			g condition
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.009	0.025	0.020	0.040	3.4	2 500	—
П	-0.014	0.030	0.023	0.060	4.3	2 500	_
I	-0.018	0.035	0.025	0.075	5.3	2 500	2 500
Ι	-0.023	0.040	0.027	0.090	6.2	2 500	2 500
I	-0.028	0.046	0.030	0.120	7.1	2 500	2 500

C0.5 Shape I	C0.5 R0.2 max.	A A A A A A A A A A A A A A A A A A A	Seals (two places)	X-4 A G	225 225 225 25 26 100 14	80.2 max.	1.10 ¢ CO.5	Ø 0.012 E
[⊥ 0.005 F → 12		L ₁ (hardened)		30	53	27	
_	53		La		·	80	·	
-	'		Lo					

	Stroke		Screw shaft length		nath
Ball screw No.	Namainal	Maximum	Screw shart length		
	Nominal $(L_t$ —Nut length)	$L_{\rm t}$	La	L _o	
W2803SA-4Z-C5Z6	250	271	370	400	499
W2805SA-4Z-C5Z6	450	471	570	600	699
W2807SA-4Z-C5Z6	650	659	758	800	933
W2809SA-4Z-C5Z6	850	859	958	1 000	1 133
W2811SA-4Z-C5Z6	1 050	1 059	1 158	1 200	1 333

Notes: 1. We recommend NSK support unit. See page B375 for details.


Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.


3. Contact NSK if the permissible rotational speed is to be exceeded.

B221

Lead 5

Unit: mm

_	" 111 0 5
/	c'bore <i>ϕ</i> 11×6.5
/	
45°	15°
45	~
	. /
W Y	PCD 71
(W) (ON PCD.
	174
118-11 1 24	
	F-F- Q 4 -
	; / \
	A
(O)`T(⊙ // ∖
	✓ M6×1.0
	(oil hole)
	()
00	
32 →	
View X-X	

Recommended support unit

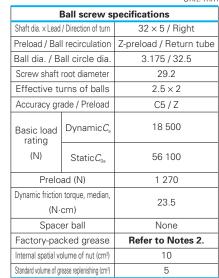
For drive side	For opposite	to drive side	
(Fixed)	(Fixed)	(Simple)	9
WBK25-01W (square)	WBK25-01W (square)	WBK25S-01W (square)	ľ
WBK25-11 (round)	WBK25-11 (round)		

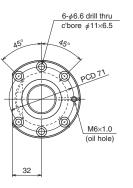
Unit: mm

Left side	Le	ad accura	асу	Shaft run- out ** Mass		Permissible rotational speed N (min-1) Supporting condition		
shaft end				1 1	(kg)			
enu	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$			Fixed - Simple support	Fixed - Fixed	
П	-0.006	0.023	0.018	0.040	3.1	2 180	_	
П	-0.009	0.025	0.020	0.050	3.7	2 180	_	
П	-0.011	0.027	0.020	0.050	4.2	2 180	_	
П	-0.014	0.030	0.023	0.060	4.8	2 180	_	
I	-0.016	0.035	0.025	0.075	5.6	2 180	2 180	
I	-0.018	0.035	0.025	0.075	6.1	2 180	2 180	
I	-0.023	0.040	0.027	0.090	7.3	2 180	2 180	
I	-0.028	0.046	0.030	0.120	8.5	2 180	2 180	
I	-0.035	0.054	0.035	0.150	10.2	2 070	2 180	

Shape II 20 F RO.3 max. 1.3	C0.5 C0.5 A G R0.3 max.	277	4.25 4.25	9002φ C1	<u> 0.013 E</u> C1
⊥[0.006]F]→	$L_{\rm t}$ (hardened)	35	62	33	
62	La		95		
	L _o				

	Str	Stroke		Screw shaft length	
Ball screw No.	Maximum L		Screw shart length		igtii
	Nominal	(L _t —Nut length)	$L_{\rm t}$	La	L _o
W3202SA-1P-C5Z5	150	209	265	300	415
W3203SA-1P-C5Z5	250	309	365	400	515
W3204SA-1P-C5Z5	350	409	465	500	615
W3205SA-1P-C5Z5	450	509	565	600	715
W3206SA-1P-C5Z5	550	609	665	700	857
W3207SA-1P-C5Z5	650	709	765	800	957
W3209SA-1P-C5Z5	850	909	965	1 000	1 157
W3211SA-1P-C5Z5	1 050	1 109	1 165	1 200	1 357
W3214SA-1P-C5Z5	1 350	1 409	1 465	1 500	1 657


Notes: 1. We recommend NSK support unit. See page B375 for details.


2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 5

Unit: mm

View X-X

Recommended	support	unit
-------------	---------	------

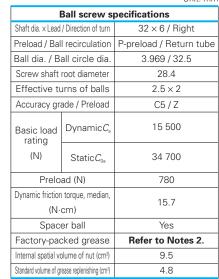
For drive side (Fixed)
WBK25DF-31 (round)

Unit: mm

Left side	ما	ad accura	ACV	Shaft run-	N 4	Permissible rotatio	nal speed N (min-1)
shaft		au accure	ю	out **	Mass	Supporting	g condition
end	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.007	0.023	0.018	0.040	3.5	2 180	_
П	-0.009	0.025	0.020	0.050	4.1	2 180	_
П	-0.012	0.027	0.020	0.060	4.7	2 180	_
П	-0.014	0.030	0.023	0.060	5.3	2 180	_
I	-0.016	0.035	0.025	0.075	6.1	2 180	2 180
I	-0.019	0.035	0.025	0.090	6.7	2 180	2 180
I	-0.024	0.040	0.027	0.090	7.9	2 180	2 180
I	-0.028	0.046	0.030	0.120	9.0	2 180	2 180
I	-0.036	0.054	0.035	0.150	10.8	2 040	2 180

Shape II C1 R0.3 R0.	CO.5 X-1	## * * (G	00.5	940Z\$ C1	013 E
<u> </u>	L₁ (hardened)	20	89	51	
< <u>89</u> ≼	← La Lo	•	140	>	

	Str	oke	Sor	ew shaft ler	arth
Ball screw No.	Nominal	Maximum	3016	Silait iei	igtii
	Nominal	(L _t —Nut length)	$L_{\rm t}$	La	L。
W3202SA-2Z-C5Z5	150	194	280	300	460
W3203SA-2Z-C5Z5	250	294	380	400	560
W3204SA-2Z-C5Z5	350	394	480	500	660
W3205SA-2Z-C5Z5	450	494	580	600	760
W3206SA-2Z-C5Z5	550	594	680	700	929
W3207SA-2Z-C5Z5	650	694	780	800	1 029
W3209SA-2Z-C5Z5	850	894	980	1 000	1 229
W3211SA-2Z-C5Z5	1 050	1 094	1 180	1 200	1 429
W3214SA-2Z-C5Z5	1 350	1 394	1 480	1 500	1 729


Notes: 1. We recommend NSK support unit. See page B375 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 6

Unit: mm

_	6-φ6.6 drill thru c'bore φ11×6.5
45°	450
	PCD 75
	M6×1.0 (oil hole)
34	. ,

View X-X

Recommended support unit

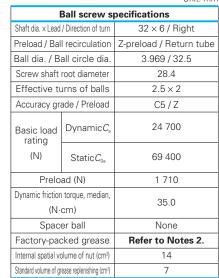
For drive side	For opposite	to drive side	
(Fixed)	(Fixed)	(Simple)	
WBK25-01W (square)	WBK25-01W (square)	WBK25S-01W (square)	ľ
WBK25-11 (round)	WBK25-11 (round)		

Unit: mm

Left side	Lo	ad accura	101	Shaft run-		Permissible rotatio	nal speed N (min-1)
shaft	Le	au accura	ıcy	out **	Mass	Supporting	g condition
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.009	0.025	0.020	0.050	3.8	2 180	_
П	-0.014	0.030	0.023	0.060	5.0	2 180	_
I	-0.018	0.035	0.025	0.075	6.3	2 180	2 180
I	-0.023	0.040	0.027	0.090	7.4	2 180	2 180
I	-0.028	0.046	0.030	0.120	8.5	2 180	2 180
I	-0.035	0.054	0.035	0.150	10.2	2 020	2 180

\(\lambda 0.014 \right \) Shape II \(\cdot \) \(\lambda 0.017 \right \) Shape I \(-\text{1.5} \right \)	16.35 1.35 3 4 CO.5 C	0019 A	Seals (two places) X 1 10.013 A 51 12 63	## * G	20.55 27 12.15	\$20.5 \$60.9	19402 % C1
	⊥ 0.006 F →		L _t (hardened)		35	62	33
	62		La			95	
			Lo				

	Stro	oke	Sor	ew shaft ler	agth
Ball screw No.	Nisasiasi	Maximum	3016	ew Shart lei	igui
	Nominal	(L _t —Nut length)	$L_{\rm t}$	La	L _o
W3203SA-3P-C5Z6	250	302	365	400	515
W3205SA-3P-C5Z6	450	502	565	600	715
W3207SA-3P-C5Z6	650	702	765	800	957
W3209SA-3P-C5Z6	850	902	965	1 000	1 157
W3211SA-3P-C5Z6	1 050	1 102	1 165	1 200	1 357
W3214SA-3P-C5Z6	1 350	1 402	1 465	1 500	1 657


Notes: 1. We recommend NSK support unit. See page B375 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 6

Unit: mm

_	6-φ6.6 drill thru c'bore φ11×6.5
45°	450
	PCD 75
	M6×1.0
	(oil hole)
34	

	View	X-X
--	------	-----

Recommended support unit

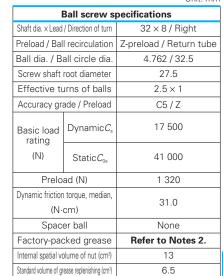
For drive side (Fixed)
WBK25DF-31 (round)

Unit: mm

t side	Lood occuracy			Shaft run-		Permissible rotational speed N (min-1)					
haft	L	au accura	iu accuracy			Supporting	g condition				
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed				
Π	-0.009	0.025	0.020	0.050	4.5	2 180	_				
П	-0.014	0.030	0.023	0.060	5.6	2 180	_				
Ι	-0.019	0.035	0.025	0.090	7.0	2 180	2 180				
Ι	-0.024	0.040	0.027	0.090	8.1	2 180	2 180				
Ι	-0.028	0.046	0.030	0.120	9.3	2 180	2 180				
Ι	-0.036	0.054	0.035	0.150	11.0	2 000	2 180				
	haft end II	naft rend r II -0.009 II -0.014 I -0.019 I -0.024 I -0.028	T e _p II -0.009 0.025 II -0.014 0.030 I -0.019 0.035 I -0.024 0.040 I -0.028 0.046	Tead accuracy Tead accuracy Teph 0.009 Tournel 0.009	Lead accuracy	Lead accuracy	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Shape II C1 R0.3 max. 10.017 A C0.5 Shape I C1 R0.3 R	Lo 16.35 10.019 A Seals (two places) 20.019 A 10.013 A 4 A 10.013 A 87 12 99	G	20.5	00000000000000000000000000000000000000	.013 E
⊥ 0.006 F →	$L_{\rm t}$ (hardened)	20	89	51	
89	L _a		140		
-	Lo			->	

	Str	oke	Screw shaft length		
Ball screw No.	Namainal	Maximum			
	Nominal (L,—Nut length)	$L_{\rm t}$	La	L _o	
W3203SA-4Z-C5Z6	250	281	380	400	560
W3205SA-4Z-C5Z6	450	481	580	600	760
W3207SA-4Z-C5Z6	650	681	780	800	1 029
W3209SA-4Z-C5Z6	850	881	980	1 000	1 229
W3211SA-4Z-C5Z6	1 050	1 081	1 180	1 200	1 429
W3214SA-4Z-C5Z6	1 350	1 381	1 480	1 500	1 729


Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 8

Unit: mm

6-φ9 drill thru	
/ c'bore φ14×8.5	
45° PCD 82 M6×1.0	
(oil hole)	
₹ 38	

View X-X

Recommended support unit

For drive side (Fixed)
WBK25DF-31 (round)

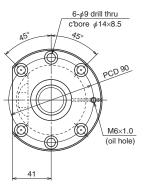
Unit: mm

l eft side			Shaft run-		Permissible rotational speed N (min-1)				
shaft	Le	ad accura	acy	out ** Mass		Out " Supporting condi			g condition
end	Т	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(Kg)	Fixed - Simple support	Fixed - Fixed		
Π	-0.009	0.025	0.020	0.050	4.7	2 180	_		
Ι	-0.014	0.030	0.023	0.060	5.8	2 180	_		
I	-0.019	0.035	0.025	0.090	7.2	2 180	2 180		
I	-0.024	0.040	0.027	0.090	8.3	2 180	2 180		
I	-0.036	0.054	0.035	0.150	11.1	1 920	2 180		
	shaft end II	shaft end <i>T</i> II -0.009 II -0.014 I -0.019 I -0.024	Elead accurate shaft T ep II -0.009 0.025 II -0.014 0.030 I -0.019 0.035 I -0.024 0.040	Elead accuracy shaft end T ep vu II -0.009 0.025 0.020 II -0.014 0.030 0.023 I -0.019 0.035 0.025 I -0.024 0.040 0.027	Lead accuracy	Lead accuracy	Lead accuracy		

Shape II C1 R0.3 max. 0.017 A	L ₂ 16.35 16.35 56.34 C.C.0.5 28.00 1.0.019 A Seals (two places) 28.00	C0.5	(0.0017 A) (0.017 A) (0.0017 A) (0.0017 A) (0.0017 A) (0.0017 A)	0.013 E
<u> </u>	L _t (hardened)	20	89	51
89	< L _a		140	
-	Lo			

	Str	oke	Screw shaft length		
Ball screw No.	Nominal	Maximum			
	Nominal	(L _t —Nut length)	$L_{\rm t}$	La	L。
W3203SA-5Z-C5Z8	250	298	380	400	560
W3205SA-5Z-C5Z8	450	498	580	600	760
W3207SA-5Z-C5Z8	650	698	780	800	1 029
W3209SA-5Z-C5Z8	850	898	980	1 000	1 229
W3214SA-5Z-C5Z8	1 350	1 398	1 480	1 500	1 729

Notes: 1. We recommend NSK support unit. See page B375 for details.


Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 10

Unit: mm

		Offit. Iffit
	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	32 × 10 / Right
Preload / Bal	I recirculation	Z-preload / Return tube
Ball dia. / B	all circle dia.	6.35 / 33
Screw shaft	root diameter	26.4
Effective to	urns of balls	2.5 × 1
Accuracy gr	ade / Preload	C5 / Z
Basic load rating	Dynamic <i>C</i> _a	25 500
rating (N)	Static C _{0a}	54 000
Prelo	ad (N)	1 960
,	torque, median, cm)	54.0
Spac	er ball	None
Factory-pag	cked grease	Refer to Notes 2.
Internal spatial v	olume of nut (cm³)	22
Standard volume of g	ease replenishing (cm³)	11

View X-X

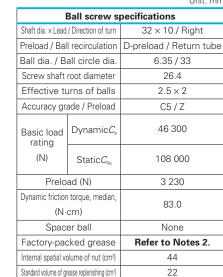
For drive side (Fixed)
WBK25DF-31 (round)

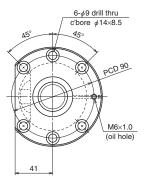
Jnit: mm

							Unit: mm					
Left side	Lead accuracy			Lood accuracy		Lood accuracy		Shaft run-		N 4	Permissible rotatio	nal speed N (min-1)
shaft		au accure	асу	out **	Mass	Supporting	g condition					
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed					
П	-0.009	0.025	0.020	0.050	5.5	2 180	_					
П	-0.012	0.027	0.020	0.060	6.0	2 180	_					
П	-0.014	0.030	0.023	0.060	6.6	2 180	_					
I	-0.016	0.035	0.025	0.075	7.4	2 180	2 180					
I	-0.019	0.035	0.025	0.090	7.9	2 180	2 180					
I	-0.024	0.040	0.027	0.090	9.0	2 180	2 180					
I	-0.028	0.046	0.030	0.120	10.1	2 180	2 180					
I	-0.036	0.054	0.035	0.150	11.7	1 860	2 180					
I	-0.043	0.065	0.040	0.200	13.3	1 280	1 820					

Shape II	017 A	0.019 A	Seals (two places) X - 1 100 X - 1 A A X - 1 A	# * * G	00.5	_ို့ပ -20h6	0.013 E
	⊥0.006 F ÷	L	t (hardened)	20	89	51	
-	89		La		140	-	
ļ.			Lo				

	Str	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum				
	Nominal	(L _t —Nut length)	$L_{\rm t}$	La	L。	
W3203SA-6Z-C5Z10	250	280	380	400	560	
W3204SA-3Z-C5Z10	350	380	480	500	660	
W3205SA-6Z-C5Z10	450	480	580	600	760	
W3206SA-3Z-C5Z10	550	580	680	700	929	
W3207SA-6Z-C5Z10	650	680	780	800	1 029	
W3209SA-6Z-C5Z10	850	880	980	1 000	1 229	
W3211SA-5Z-C5Z10	1 050	1 080	1 180	1 200	1 429	
W3214SA-6Z-C5Z10	1 350	1 380	1 480	1 500	1 729	
W3217SA-1Z-C5Z10	1 650	1 680	1 780	1 800	2 029	


Notes: 1. We recommend NSK support unit. See page B375 for details.


Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 10

Unit: mm

View X-X

|--|

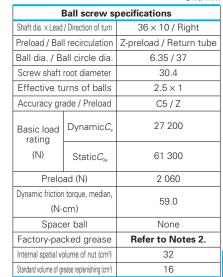
For drive side (Fixed)
WBK25DFD-31 (round)

Jnit: mm

							Unit: mm
Left side	Lead accuracy			Lead accuracy Shaft run-		Permissible rotatio	nal speed N (min-1)
shaft		aa aooare	,	out **	Mass	Supporting	g condition
end	T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	<i>L1</i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.009	0.025	0.020	0.050	7.5	2 180	_
П	-0.012	0.027	0.020	0.060	8.1	2 180	_
П	-0.014	0.030	0.023	0.060	8.6	2 180	_
I	-0.016	0.035	0.025	0.075	9.5	2 180	2 180
I	-0.019	0.035	0.025	0.090	10.0	2 180	2 180
I	-0.024	0.040	0.027	0.120	11.1	2 180	2 180
I	-0.028	0.046	0.030	0.120	12.2	2 180	2 180
I	-0.036	0.054	0.035	0.150	13.8	1 980	2 180
I	-0.043	0.065	0.040	0.200	15.4	1 350	1 910

Shape II 0.017 Shape I 10.017	C1. R0.3 max. A C0.5 R0.3 max. F M25x1.5	Lo 16.35 16.	Seals (two places)	<u> </u>	X - 3 80 15 X - 3	G	0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.022 A	9402¢	.013 E
	⊥ 0.006 F >	•	L _t (hardene	ed)		20	104		51	
-	104	•	<u>L</u> a	Lo				155		

	Str	oke	Screw shaft length				
Ball screw No.	Nominal	Maximum		Screw shart length			
	INOTTIITIAI	(L _t —Nut length)	$L_{\rm t}$	La	L _o		
W3203SA-7D-C5Z10	150	190	380	400	575		
W3204SA-4D-C5Z10	250	290	480	500	675		
W3205SA-7D-C5Z10	350	390	580	600	775		
W3206SA-4D-C5Z10	450	490	680	700	959		
W3207SA-7D-C5Z10	550	590	780	800	1 059		
W3209SA-7D-C5Z10	750	790	980	1 000	1 259		
W3211SA-6D-C5Z10	950	990	1 180	1 200	1 459		
W3214SA-7D-C5Z10	1 250	1 290	1 480	1 500	1 759		
W3217SA-2D-C5Z10	1 550	1 590	1 780	1 800	2 059		


Notes: 1. We recommend NSK support unit. See page B375 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 10

Unit: mm

	6-\(\phi\)11 drill thru bore \(\phi\)17.5×11
45° 9	50
	PCD 98
	7
	M6×1.0 (oil hole)
45	

View X-X

|--|

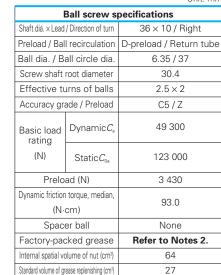
For drive side	For opposite to drive side
(Fixed)	(Simple)
WBK30DF-31 (round)	WBK25DF-31 (round)

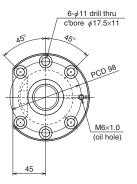
Jnit:	mm	

Left side shaft	Le	ad accura	асу	Shaft run- out **	Mass	Permissible rotatio	
end	Т	$e_{\scriptscriptstyle m p}$	υu	[(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.012	0.027	0.020	0.040	7.4	1 940	—
П	-0.016	0.035	0.025	0.050	8.8	1 940	_
I	-0.024	0.040	0.027	0.065	11.1	1 940	1 940
I	-0.033	0.054	0.035	0.100	13.9	1 940	1 940
I	-0.043	0.065	0.040	0.130	16.6	1 480	1 940

Shape II C1 R0.3 max. 12 R0.3 M25×1.5	L ₀ 16.35 15.35 15.35 16.35 1	A 0		A 7 0.013 E
⊥0.006 F >	L _t (hardened)	_20	89	61
89	La		150	
-	L _o		•	

	Str	oke	Screw shaft length			
Ball screw No.	Namainal	Maximum	Screw shart length			
	Nominal	(L _t —Nut length)	L_{t}	La	Lo	
W3604SA-1Z-C5Z10	350	377	480	500	670	
W3606SA-1Z-C5Z10	550	577	680	700	870	
W3609SA-1Z-C5Z10	850	877	980	1 000	1 239	
W3613SA-1Z-C5Z10	1 250	1 277	1 380	1 400	1 639	
W3617SA-1Z-C5Z10	1 650	1 677	1 780	1 800	2 039	


Notes: 1. We recommend NSK support unit. See page B375 for details.


Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 10

Unit: mm

View X-X

Recommended	support unit	

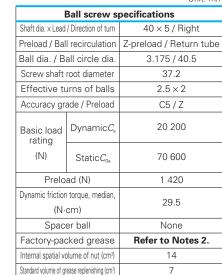
For drive side (Fixed)	For opposite to drive side (Simple)		
WBK30DFD-31 (round)	WBK25DFD-31 (round)		

Unit: mm

Left side Lead accuracy		side Lead accuracy		Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)		
shaft			,	out **		Supporting	condition			
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>11</i>	(kg)	Fixed - Simple support	Fixed - Fixed			
П	-0.012	0.027	0.020	0.040	9.3	1 940	_			
П	-0.016	0.035	0.025	0.050	10.7	1 940	_			
I	-0.024	0.040	0.027	0.080	13.1	1 940	1 940			
I	-0.033	0.054	0.035	0.100	15.9	1 940	1 940			
I	-0.043	0.065	0.040	0.130	18.6	1 540	1 940			

Shape II 0.01 C1 Shape I 12 12 20 12 12 20 10 12 12	C1 R0.3 max. 18 A R0.3 max. E M25x1.5	16.35 35.0°4 C1 Seals Seals 90 90 90 91	(two places) X-	A G	C0.5	(0.022)		C1
	⊥0.006 F →		t (hardened)	أياد	20	104	61	
-	104	•	L _a		*	165	-	

	Str	oke	Screw shaft length			
Ball screw No.	Nominal	Maximum	Screw shart length			
	NOTTITIAL	(L _t —Nut length)	$L_{\rm t}$	L_{a}	L。	
W3604SA-2D-C5Z10	250	287	480	500	685	
W3606SA-2D-C5Z10	450	487	680	700	885	
W3609SA-2D-C5Z10	750	787	980	1 000	1 269	
W3613SA-2D-C5Z10	1 150	1 187	1 380	1 400	1 669	
W3617SA-2D-C5Z10	1 550	1 587	1 780	1 800	2 069	


Notes: 1. We recommend NSK support unit. See page B375 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 5

Unit: mm

_	6-φ9 drill thru c'bore φ14×8.5
45°	450
	PCD 83
	Rc 1/8
	(oil hole)
39	

View	X-X

Recommended	support	unit
-------------	---------	------

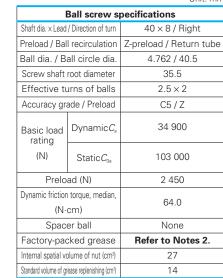
For drive side (Fixed)
WBK30DF-31 (round)

Unit: mm

							Offic. Hilli		
Left side	Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)				
shaft	Le	au accura	ю	Out ""				Supporting	g condition
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed		
П	-0.009	0.025	0.020	0.035	6.3	1 750	_		
П	-0.014	0.030	0.023	0.040	8.1	1 750	_		
I	-0.019	0.035	0.025	0.065	10.3	1 750	1 750		
I	-0.024	0.040	0.027	0.065	12.2	1 750	1 750		
I	-0.028	0.046	0.030	0.080	14.0	1 750	1 750		
I	-0.038	0.054	0.035	0.100	17.7	1 750	1 750		

Shape II	17.75	(two places) X - A G A G A A G A A G A A G A A G A A G A A G A A A A G A A A G A A A G A A A A G A A A G A A A A A G A A A A A G A A A A A A G A A A A A A A G A A A A A G A A A A A G A A A A A G A	C1 C1 S406.00	C1
<u> </u>	L _t (hardened)	20	89 61	
89	La		150	
		L _o		

	Str	oke	Screw shaft length		
Ball screw No.	Niereinel	Maximum			
	Nominal $(L_{\epsilon}$ —Nut length)	$L_{\rm t}$	La	L。	
W4003SA-1Z-C5Z5	250	291	380	400	572
W4005SA-1Z-C5Z5	450	491	580	600	772
W4007SA-1Z-C5Z5	650	691	780	800	1 039
W4009SA-1Z-C5Z5	850	891	980	1 000	1 239
W4011SA-1Z-C5Z5	1 050	1 091	1 180	1 200	1 439
W4015SA-1Z-C5Z5	1 450	1 491	1 580	1 600	1 839


Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 8

Unit: mm

	6-φ9 drill thru c'bore φ14×8.5
A50	90 PCD 90 Rc 1/8
41	(oil hole)
< `` >	

6-φ9 drill thru
c'bore φ14×8.5
15° PCD 90
Rc 1/8
(oil hole)
View X-X

Recommended support unit

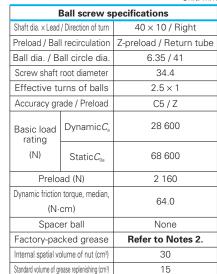
For drive side (Fixed)
WBK30DF-31 (round)

Unit: mm

							Offit. Hilli
Left side	Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)		
shaft	Le	au accura		out ** Mass		Supporting	g condition
end	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.009	0.025	0.020	0.035	7.4	1 750	_
П	-0.014	0.030	0.023	0.040	9.2	1 750	_
I	-0.019	0.035	0.025	0.065	11.3	1 750	1 750
I	-0.024	0.040	0.027	0.065	13.1	1 750	1 750
I	-0.028	0.046	0.030	0.080	14.9	1 750	1 750
I	-0.038	0.054	0.035	0.100	18.5	1 750	1 750

Shape II	X-1	## * G		A 0.013 E
⊥ 0.006 F →	L _t (hardened)	20	7 7	<u>€ 61</u>
89	L _a L _o		150	

	Str	oke	Screw shaft length		
Ball screw No.	Niereinel	Maximum			
	Nominal (L,—Nut length)	$L_{\rm t}$	La	L。	
W4003SA-2Z-C5Z8	200	250	380	400	572
W4005SA-2Z-C5Z8	400	450	580	600	772
W4007SA-2Z-C5Z8	600	650	780	800	1 039
W4009SA-2Z-C5Z8	800	850	980	1 000	1 239
W4011SA-2Z-C5Z8	1 000	1 050	1 180	1 200	1 439
W4015SA-2Z-C5Z8	1 400	1 450	1 580	1 600	1 839


Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 10

Unit: mm

View	X-X

Recommended	support unit
-------------	--------------

For drive side (Fixed)
WBK30DF-31 (round)

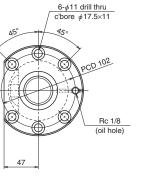
Unit: mm

Left side	Load accuracy		Lead accuracy		l ead accuracy			Permissible rotational speed N (min-1)			
shaft		au accure	ю	out **	Mass (kg)	Supporting	g condition				
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed				
П	-0.012	0.027	0.020	0.040	8.7	1 750	_				
П	-0.014	0.030	0.023	0.040	9.6	1 750	_				
П	-0.016	0.035	0.025	0.050	10.4	1 750	_				
I	-0.019	0.035	0.025	0.065	11.7	1 750	1 750				
I	-0.024	0.040	0.027	0.065	13.4	1 750	1 750				
I	-0.028	0.046	0.030	0.080	15.1	1 750	1 750				
I	-0.033	0.054	0.035	0.100	16.9	1 750	1 750				
I	-0.038	0.054	0.035	0.100	18.6	1 750	1 750				
I	-0.043	0.065	0.040	0.130	20.3	1 670	1 750				
I	-0.057	0.077	0.046	0.170	25.5	930	1 320				

Shape II	L ₀ 17.75 55 ²⁴⁴ 65 ²⁴ CC1 10.025 A Seals (two places) X A A G L ₀ A G A G A G A G A G A G A G A G A G A	* G	C1	-0013 ≠25h6	0.013 E
<u> </u>	L _t (hardened)	20	89	61	
89	L _a	-,-	150		
	L _o				

	Str	oke	Screw shaft length		agth	
Ball screw No.	Nominal	Maximum	Sciew shart length			
	inominai	(L _t —Nut length)	$L_{\rm t}$	La	L。	
W4004SA-1Z-C5Z10	350	377	480	500	672	
W4005SA-3Z-C5Z10	450	477	580	600	772	
W4006SA-1Z-C5Z10	550	577	680	700	872	
W4007SA-3Z-C5Z10	650	677	780	800	1 039	
W4009SA-3Z-C5Z10	850	877	980	1 000	1 239	
W4011SA-3Z-C5Z10	1 050	1 077	1 180	1 200	1 439	
W4013SA-1Z-C5Z10	1 250	1 277	1 380	1 400	1 639	
W4015SA-3Z-C5Z10	1 450	1 477	1 580	1 600	1 839	
W4017SA-1Z-C5Z10	1 650	1 677	1 780	1 800	2 039	
W4023SA-1Z-C5Z10	2 250	2 277	2 380	2 400	2 639	

Notes: 1. We recommend NSK support unit. See page B375 for details.


2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

B245 B246

Lead 10

Unit: mm

6- ϕ 11 drill thru c'bore ϕ 17.5×11
45° 75° PCD 102
Rc 1/8 (oil hole)
47

View X-X

Unit: mi					
Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	40 × 10 / Right			
Preload / Bal	I recirculation	D-preload / Return tube			
Ball dia. / B	all circle dia.	6.35 / 41			
Screw shaft	root diameter	34.4			
Effective to	urns of balls	2.5 × 2			
Accuracy gra	ade / Preload	C5 / Z			
Basic load rating	Dynamic <i>C</i> _a	52 000			
(N)	Static C _{0a}	137 000			
Prelo	ad (N)	3 630			
'	torque, median, cm)	108			
Spac	er ball	None			
Factory-pag	cked grease	Refer to Notes 2.			
Internal spatial vo	olume of nut (cm³)	59			
Standard volume of gr	ease replenishing (cm³)	30			

Recommended support unit

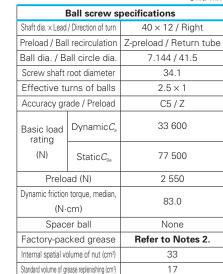
For drive side (Fixed)	
WBK30DFD-31 (round)	ľ

Unit: mm

Cinc. mini							
Left side	Lo	ad accura	101/	Shaft run-		Permissible rotational speed N (min	
shaft	LG	au accura	iCy	out **	Mass (kg)	Supporting	g condition
end	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>	(kg)	Fixed - Simple support	Fixed - Fixed
П	-0.012	0.027	0.020	0.040	11.0	1 750	_
П	-0.014	0.030	0.023	0.040	11.9	1 750	_
П	-0.016	0.035	0.025	0.050	12.7	1 750	_
I	-0.019	0.035	0.025	0.065	14.1	1 750	1 750
I	-0.024	0.040	0.027	0.080	15.8	1 750	1 750
I	-0.028	0.046	0.030	0.080	17.5	1 750	1 750
I	-0.033	0.054	0.035	0.100	19.3	1 750	1 750
I	-0.038	0.054	0.035	0.100	21.0	1 750	1 750
I	-0.043	0.065	0.040	0.130	22.7	1 750	1 750
I	-0.057	0.077	0.046	0.170	27.9	960	1 370

- 9 - 9 - 9 88	L ₀ 17.75 17.75 Seals (two places) X 193 193			φ25h6	0.013 E
⊥[0.006 F]→	$L_{\rm t}$ (hardened)	20	104	61	
104	L _a	-	165		

	Stroke Screw shaft ler		nath			
Ball screw No.	Niereinel	Maximum	Sciew shart length			
	Nominal	(L _t —Nut length)	L_{t}	La	L。	
W4004SA-2D-C5Z10	250	287	480	500	687	
W4005SA-4D-C5Z10	350	387	580	600	787	
W4006SA-2D-C5Z10	450	487	680	700	887	
W4007SA-4D-C5Z10	550	587	780	800	1 069	
W4009SA-4D-C5Z10	750	787	980	1 000	1 269	
W4011SA-4D-C5Z10	950	987	1 180	1 200	1 469	
W4013SA-2D-C5Z10	1 150	1 187	1 380	1 400	1 669	
W4015SA-4D-C5Z10	1 350	1 387	1 580	1 600	1 869	
W4017SA-2D-C5Z10	1 550	1 587	1 780	1 800	2 069	
W4023SA-2D-C5Z10	2 150	2 187	2 380	2 400	2 669	


Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 12

Unit: mm

6-¢11 drill thru c'bore ¢17.5×11 45° PCO 106 Rc 1/8 (oil hole)

View X-X

Recommended	support	unit
necommenueu	auppoit	uiiit

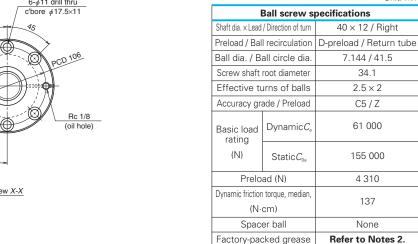
For drive side (Fixed)
WBK30DF-31 (round)

Unit: mm

	Load accuracy			Mass	Permissible rotational speed N (min-1)					
Lead accuracy		out **	Supporting condition							
Т	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg) Fixed - Simple support Fixed		Fixed - Fixed				
-0.016	0.035	0.025	0.050	11.6	1 750	1 750				
-0.024	0.040	0.027	0.065	14.2	1 750	1 750				
-0.033	0.054	0.035	0.100	17.7	1 750	1 750				
-0.043	0.065	0.040	0.130	21.2	1 670	1 750				
-0.060	0.077	0.046	0.170	27.2	850	1 220				

C1	C1 R0.3 max. 12 M30×1.5	0,025 A	Seals (two places) X - 1 1	# * G	\$406.94 2 E		0.013 E
			Lt (hardened)	20	89	61	
	89		La		150		
			Lo				

	Stroke		Screw shaft length				
Ball screw No.	NI : I	Maximum	Sciew sildit length		igtii		
	Nominal	(L _t —Nut length)	$L_{\rm t}$	L _a L _o			
W4006SA-3Z-C5Z12	500	563	680	700	939		
W4009SA-5Z-C5Z12	800	863	980	1 000	1 239		
W4013SA-3Z-C5Z12	1 200	1 263	1 380	1 400	1 639		
W4017SA-3Z-C5Z12	1 600	1 663	1 780	1 800	2 039		
W4024SA-1Z-C5Z12	2 300	2 363	2 480	2 500	2 739		


Notes: 1. We recommend NSK support unit. See page B375 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 12

Unit: mm

6-φ11 drill thru 48

View X-X

Recommended support unit

Internal spatial volume of nut (cm³)

Standard volume of grease replenishing (cm3)

For drive side (Fixed)
WBK30DFD-31 (round)

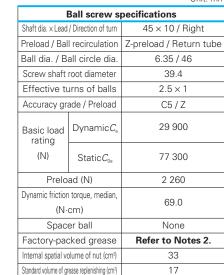
76 38

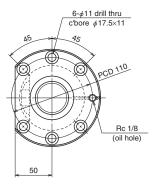
Unit: mm

Lead accuracy			Shaft run- out ** Mass		Permissible rotational speed N (min-1)		
		Out ""		Supporting condition			
Τ	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg) Fixed - Simple support Fixed - I		Fixed - Fixed	
-0.016	0.035	0.025	0.050	14.8	1 750	1 750	
-0.024	0.040	0.027	0.080	17.4	1 750	1 750	
-0.033	0.054	0.035	0.100	20.9	1 750	1 750	
-0.043	0.065	0.040	0.130	24.3	1 750	1 750	
-0.060	0.077	0.046	0.170	30.4	880	1 260	

C1 C1 C1 R0.3 max. F L10.006 F	Seals (two places) X-4 105 12 90 18 X-4	## * # # # # # # # # # # # # # # # # #	C1	044 044 074 074 074 074 074 074 074 074	0.013 E
	L _t (hardened)	20	104	61	
104	<u>L</u> a		165		
-	L _o			>	

	Str	oke	Screw shaft length				
Ball screw No.	Nominal	Maximum (L _t —Nut length)	L _t				
W4006SA-4D-C5Z12	400	455	680	700	969		
W4009SA-6D-C5Z12	700	755	980	1 000	1 269		
W4013SA-4D-C5Z12	1 100	1 155	1 380	1 400	1 669		
W4017SA-4D-C5Z12	1 500	1 555	1 780	1 800	2 069		
W4024SA-2D-C5Z12	2 200	2 255	2 480	2 500	2 769		


Notes: 1. We recommend NSK support unit. See page B375 for details.


2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 10

Unit: mm

View X-X

For drive side (Fixed)
WBK35DF-31 (round)

Unit: mm

Chatama										
Load accuracy			Shaft run-		Permissible rotational speed N (min-1)					
Lead accuracy			out **	Mass	Supporting	g condition				
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg) Fixed - Simple support Fixed		Fixed - Fixed				
-0.016	0.035	0.025	0.050	13.4	1 550	1 550				
-0.024	0.040	0.027	0.065	16.7	1 550	1 550				
-0.033	0.054	0.035	0.100	21.2	1 550	1 550				
-0.043	0.065	0.040	0.130	25.6	1 550	1 550				
-0.060	0.077	0.046	0.170	33.4	980	1 400				

C1 C1 C1 C1	Seals (two places) X 10.025 A Seals (two places) X 10.015 A Seals (two places) X 10.015 A Seals (two places)	A G	C1	0.015 E
-	L _t (hardened)	20	92	63
92	La		155	
	Lo			

	Str	oke	Screw shaft length		
Ball screw No.	Nominal	Maximum	Screw Shart length		igui
	Nominal	(L _t —Nut length)	$L_{\rm t}$	La	L。
W4506SA-1Z-C5Z10	550	577	680	700	947
W4509SA-1Z-C5Z10	850	877	980	1 000	1 247
W4513SA-1Z-C5Z10	1 250	1 277	1 380	1 400	1 647
W4517SA-1Z-C5Z10	1 650	1 677	1 780	1 800	2 047
W4524SA-1Z-C5Z10	2 350	2 377	2 480	2 500	2 747

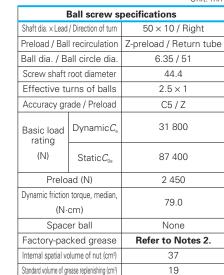
Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

51

View X-X


6-ø11 drill thru

c'bore *ϕ*17.5×11

Screw shaft ø50

Lead 10

Unit: mm

Recommended support unit

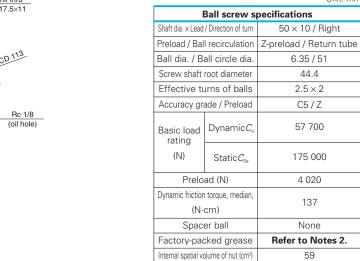
For drive side (Fixed)	
WBK40DF-31 (round)	

Unit: mm

						011111
1	Lead accuracy				Permissible rotatio	nal speed N (min-1)
L		У		out ** Mass	Supporting	g condition
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
-0.014	0.030	0.023	0.050	14.8	1 400	1 400
-0.019	0.035	0.025	0.065	17.6	1 400	1 400
-0.024	0.040	0.027	0.080	20.3	1 400	1 400
-0.028	0.046	0.030	0.080	23.1	1 400	1 400
-0.036	0.054	0.035	0.100	27.3	1 400	1 400
-0.048	0.065	0.040	0.130	34.2	1 400	1 400
-0.062	0.093	0.054	0.170	42.5	1 020	1 400

C1 C	0.018 A C1 2.11		9500 d	Seals (two pl	X - 132	## * A G	-	2 E M40×1.5 30	م م35h6 م35h6	0.015 E
		<		L _t (hardened)			20	92	78	
	92	<		La				170	· · · · · · · · · · · · · · · · · · ·	
	<			L _o						

	Stroke		Screw shaft length		
Ball screw No.		Maximum	3016	ew Shartier	igui
	Nominal	(L _t —Nut length)	$L_{\rm t}$	La	L。
W5005SA-1Z-C5Z10	450	477	580	600	862
W5007SA-1Z-C5Z10	650	677	780	800	1 062
W5009SA-1Z-C5Z10	850	877	980	1 000	1 262
W5011SA-1Z-C5Z10	1 050	1 077	1 180	1 200	1 462
W5014SA-1Z-C5Z10	1 350	1 377	1 480	1 500	1 762
W5019SA-1Z-C5Z10	1 850	1 877	1 980	2 000	2 262
W5025SA-1Z-C5Z10	2 450	2 477	2 580	2 600	2 862


Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 10

Unit: mm

Standard volume of grease replenishing (cm3)

6-¢11 drill thru c'bore ¢17.5×11 45° PCD 113 Rc 1/8 (oil hole)

View X-X

Recommended	support	unit
-------------	---------	------

For drive side (Fixed)
WBK40DFD-31 (round)

Unit: mm

30

						01111.111111
	Lead accuracy				Permissible rotatio	nal speed N (min-1)
			out **	Mass	Supporting	g condition
T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	Fixed - Fixed
-0.014	0.030	0.023	0.050	16.8	1 400	1 400
-0.019	0.035	0.025	0.065	19.6	1 400	1 400
-0.024	0.040	0.027	0.080	22.3	1 400	1 400
-0.028	0.046	0.030	0.080	25.1	1 400	1 400
-0.036	0.054	0.035	0.100	29.3	1 400	1 400
-0.048	0.065	0.040	0.130	36.2	1 400	1 400
-0.062	0.093	0.054	0.170	44.6	1 040	1 400

C1 C1 C1 C1 C1 C1 C1 C1 C	0.025 A S	Seals (two places) X-4 145 163	A G	Ct.	2 A	15 E
		Lt (hardened)	20	107	78	
107		La		185		
		Lo	<u>'</u>			

	Stroke		Screw shaft length				
Ball screw No.	Nisasiasi	Maximum		Screw shart length			
	Nominal	(L _t —Nut length)	$L_{\rm t}$	L_{a}	L _o		
W5005SA-2Z-C5Z10	350	417	580	600	892		
W5007SA-2Z-C5Z10	550	617	780	800	1 092		
W5009SA-2Z-C5Z10	750	817	980	1 000	1 292		
W5011SA-2Z-C5Z10	950	1 017	1 180	1 200	1 492		
W5014SA-2Z-C5Z10	1 250	1 317	1 480	1 500	1 792		
W5019SA-2Z-C5Z10	1 750	1 817	1 980	2 000	2 292		
W5025SA-2Z-C5Z10	2 350	2 417	2 580	2 600	2 892		

Notes: 1. We recommend NSK support unit. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Contact NSK if the permissible rotational speed is to be exceeded.

B-3-1.3 Finished Shaft End Ball Screws Made of Stainless Steel KA Type

1. Order of the dimension tables

The tables begin with the smallest shaft diameter ball screw, and proceeds to larger sizes. If ball screws have the same shaft diameter, those with smaller leads appear first. Page numbers of shaft diameter and lead combinations are shown in **Table 1**.

2. Dimension tables

The dimension tables show shapes/sizes as well as specification factors of each shaft diameter/ lead combination. Tables also contain data as follows:

Stroke

Nominal stroke: A reference for your use.

Maximum stroke: The stroke limit that the nut
can move.

Lead accuracy

Lead accuracy is C3 and C5 grades.

- T: Travel compensation
- $e_{\rm n}$: Tolerance on specified travel
- ນູ: Travel variation

See "Technical Description: Lead Accuracy" (page B37) for details of the codes.

Permissible rotational speed

d • n : Limited by the relative peripheral speed between screw shaft and

nut.

Critical speed: Limited by the natural frequency

of a ball screw shaft. Critical speed depends on the supporting condition of screw shaft.

The lower of the two criteria, the d-n and critical speed, will determine the overall permissible rotational speed of the ball screw. For details, see "Technical Description: Permissible Rotational Speed" (page B47).

Table 1 Combinations of screw shaft diameter and lead

Lead (mm) Screw shaft diameter (mm)	1	2
6	B261	
8	B263	B265
10		B267
12		B271
15		
16		B281
20		

3. Material

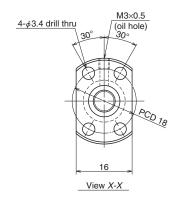
A martensitic stainless steel is used. A special heat treatment technology provides the ball groove section with sufficient hardness which produces high load carrying capacity and durability.

4. Other

Seal of the ball screw, ball recirculating deflector, and end cap are made of synthetic resin. Consult NSK when using the ball screws under extreme environments or special environments, or using special lubricant or oil.

For special environments, see pages B70 and D2. See pages B67 and D13 for lubricants.

Note: For details of standard stock products, contact NSK.


4	5	10	20
B269			
	B273	B275	
		B277	B279
			B283

B259 B260

Lead 1

Unit: mm

	Ball screw sp	oecifications
Shaft dia. x Lead	/ Direction of turn	6×1 / Right
Preload / Ba	II recirculation	P-preload / Deflector
Ball dia. / B	all circle dia.	0.800 / 6.2
Screw shaft	root diameter	5.2
Effective to	urns of balls	1×3
Accuracy gr	ade / Preload	C3 / Z
Basic load rating	Dynamic C _a	470
(N)	Static C _{0a}	680
Axia	l play	0
Prelo	ad (N)	147
Dynamic fri	ction torque,	1.0
(N-	cm)	1.3 or less
Spac	er ball	None
Factory-pa	cked grease	Refer to Notes 1.

Factory-pag	cked grease	Refer to Notes 1.
Spac	er ball	None
l '	ction torque, cm)	1.3 or less
Prelo	ad (N)	147
Axia	l play	0
(N)	Static C _{0a}	680
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	470
Accuracy gr	ade / Preload	C3 / Z
Effective to	urns of balls	1 × 3
Screw shaft	root diameter	5.2
Ball dia. / B	all circle dia.	0.800 / 6.2
Preload / Bal	II recirculation	P-preload / Deflector
Shaft dia. x Lead	/ Direction of turn	6×1/Right

Unit:	mm	
-------	----	--

1.	ead accurac	°V	Shaft run-		Permissible rotational speed N (min-1)	
		, y	out **	OUT **	out	Supporting condition
Т	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i></i>		Fixed - Simple support	
0	0.010	0.008	0.025	0.06	3 000	

(15) (15) (10.008 A // * * G 0.009 A (15) (15) (15) (16) (17) (17) (17) (18) (17) (18) (19) (19) (19) (19) (19) (19) (19) (19	L _s (stroke range) 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C0.2 C0.3 C0.3 C0.3 R0.2 R0.2 R0.2 R0.2 L0.0025 E
 <		>

Ball screw No.	Strol	ke L _s	Thread length			
	NI : I					
	Nominal	Maximum	$L_{\rm t}$	L ₁	La	Lo
W0601KA-3PY-C3Z1	100	102	125	128	135	174

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

2. Ball nut does not have seal.

3. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 1

Unit: mm

drill thru	M3×0.5			Ball screw sp	ecifications	
\30°	(oil hole)		Shaft dia. x Lead / Direction of turn			
PCD 21		Preload / Ball recirculation				
		Ball dia. / B	all circle dia.	0.800 / 8.2		
		Screw shaft	root diameter	7.2		
		Effective to	1×3			
		Accuracy grade / Preload		C3 / Z		
		Basic load rating	Dynamic C _a	545		
		(N)	Static C _{0a}	955		
<	18		Axia	l play	0	
View X-X		Prelo	ad (N)	29.4		
			l '	ction torque, cm)	1.8 or less	
			Spac	er ball	None	

4-\$3.4 drill thru	M3×0.5 (oil hole) 30°
-	8 v X-X

Recommended support unit

Refer to Notes 1.

Factory-packed grease

For drive side (Fixed)	For opposite to drive side (Free)	
WBK08-01C (square, clean)	WBK08S-01C (square, clean)	
WBK08-11C (round, clean)		

Unit: mm

	and annura	N. /	Shaft run-		Permissible rotational speed N (min-1)		
L	ead accurad	ЗУ	out **	out **	out **	-	Supporting condition
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	<i>Lf</i> (kg)		Fixed - Simple support		
0	0.010	0.008	0.035	0.12	3 000		

C0.2 R0.2	2 0.009 A	5 6 X 4	(4) - <u>10.0</u>	1	0.005 E
	L	-t 	(8)	27	10
9		L _a	· +	37	
<		L ₀			>

Ball screw No.	Strol	ke L _s	Thread length			
	N					
	Nominal	Maximum	$L_{\rm t}$	L ₁	La	L _o
W0802KA-1PY-C3Z1	150	155	190	194	202	248

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

2. Ball nut does not have seal.

3. Contact NSK if the permissible rotational speed is to be exceeded.

(Fine lead)

Nut model: MPFD

NSN

Screw shaft ø8

Lead 2

Unit: mm

Ball screw specifications					
Shaft dia. x Lead	/ Direction of turn	8 × 2 / Right			
Preload / Bal	l recirculation	P-preload / Deflector			
Ball dia. / B	all circle dia.	1.200 / 8.3			
Screw shaft	root diameter	6.9			
Effective to	urns of balls	1 × 3			
Accuracy gra	ade / Preload	C3 / Z			
Basic load rating	Dynamic C _a	1 080			
(N)	Static C _{0a}	1 630			
Axia	l play	0			
Prelo	ad (N)	49.0			
,	ction torque, cm)	2.0 or less			
Spac	er ball	None			
Factory-pag	cked grease	Refer to Notes 1.			
Internal spatial vo	olume of nut (cm³)	0.34			
Standard volume of gr	ease replenishing (cm³)	0.17			

4-\phi 3.4 drill thru
PCD 23
20
View X-X

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)
WBK08-01C (square, clean)	WBK08S-01C (square, clean)
WBK08-11C (round, clean)	

Unit: mm

	and annura	21.4	Shaft run-	Torring and Total and Speed		
L	ead accurad	out **		Mass	Supporting condition	
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	
0	0.010	0.008	0.035	0.13	3 000	

[/[0.008 A]	Ls (stro	ke range) 14	10	- 0.008 A 0.0	005 <i>E</i>
81. 07.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	/(two place	es) X-1	C0.2	C0.5	Ç0.5
C0.5 R0.2 max0.1 0.8 -0.1	(1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	8.4.	10 2 88 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1/_	000 000 000 000 000 000 000 000 000 00
6.8 ⊥ 0.0025 F →	22 28 L ₁	X-J	4 (8)	_	
9 *	L1	L _a L _o	>< (0) ><	37	* *

	Stroke L _s		Thread length			
Ball screw No.	Nisasiasi	Maximum	Tillead length			
	Nominal		$L_{\rm t}$	L_1	La	Lo
W0802KA-5PY-C3Z2	150	154	190	194	202	248

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

B265

NSN

Screw shaft ø10

Lead 2

Unit: mm

i i	Ball screw sp	pecifications
Shaft dia. x Lead	/ Direction of turn	10 × 2 / Right
Preload / Bal	l recirculation	P-preload / Deflector
Ball dia. / Ba	all circle dia.	1.200 / 10.3
Screw shaft	root diameter	8.9
Effective to	ırns of balls	1×3
Accuracy gra	ade / Preload	C3 / Z
Basic load rating	Dynamic C _a	1 210
(N)	Static C _{0a}	2 110
Axia	play	0
Prelo	ad (N)	58.8
	ction torque, cm)	0.10 – 2.5
Space	er ball	None
Factory-pag	ked grease	Refer to Notes 1.
Internal spatial vo	olume of nut (cm³)	0.44
Standard volume of gr	ease replenishing (cm³)	0.22

4-φ4.5 drill thru	M3×0.5
\	(oil hole)
	30 30 30 PCD 22 View X-X

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)
WBK08-01C (square, clean)	WBK08S-01C (square, clean)
WBK08-11C (round, clean)	

Unit: mm

L	Lood coouroov		Shaft run- out ** Mass		Permissible rotational speed N (min-1) Supporting condition
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
0	0.012	0.008	0.030	0.22	3 000

CO.2 CO.5 RO.2 RO.3 RO.3 RO.3 RO.3 RO.3 RO.3 RO.3 RO.3	(two places) X (wo places) X (R0.2 R0.2	20.5 Co.5
⊥ 0.0025 F →	<u>L_t</u> L ₁	(8) 27	.10
9 1	L _a	37	
<u> </u>	Lo	***	
1.			1

	Strol	ke L _s	Thread length			
Ball screw No.	Nisasiasi	N 4 i	Ŭ.			
	Nominal	Maximum	$L_{\rm t}$	L_1	La	Lo
W1002KA-3PY-C3Z2	200	203	250	254	262	308

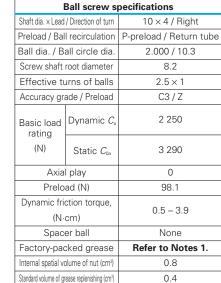
Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

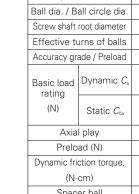
Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

View X-X

M6×1.0 (oil hole)


 $4-\phi 4.5$ drill thru


c'bore ∮8×4

Screw shaft ø10

Lead 4

Unit: mm

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)
WBK10-01C (square, clean)	WBK10S-01C (square, clean)
WBK10-11C (round, clean)	

Unit: mm

Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)	
		out **	Mass	Supporting condition	
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		<i></i>	Fixed - Simple support
0	0.010	0.008	0.030	0.29	3 000
0	0.013	0.008	0.050	0.39	3 000

(37) (37)	Ls (stroke range) Seals (two places) Li (stroke range) Seals A A A A A A A A A A A A A	A G	0.010 A 0.005 E 0.05 C 0.5 C 0
⊥10.003 F	<u>L</u> t.	5_ (10)_	<u>- ⊥0.003 E</u> 30 15
10	L _a L _o		45
*			1

Ball screw No.	Stroke L _s		Thread length			
	Namainal	N day digay yaa	Trilead length			
	Nominal	Maximum	L_{t}	L_1	La	L _o
W1001KA-3P-C3Z4	100	110	160	165	175	230
W1003KA-3P-C3Z4	300	310	360	365	375	430

1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

B269

(Fine lead)

Nut model: MPFD

M3×0.5

View X-X

4-φ4.5 drill thru

145K

Screw shaft ø12

0.4 - 3.4

None Refer to Notes 1.

0.53

0.27

Lead 2

Unit: mm

Shaft dia. x Lead	/ Direction of turn	12 × 2 / Right
Preload / Bal	I recirculation	P-preload / Deflector
Ball dia. / B	all circle dia.	1.200 / 12.3
Screw shaft	root diameter	10.9
Effective to	urns of balls	1 × 3
Accuracy gra	ade / Preload	C3 / Z
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	1 360
(N) Static C_{0a}		2 680
Axia	l play	0
Prelo	ad (N)	98.1
Dynamic fri	ction torque,	0.4.2.4

Ball screw specifications

Recommended support unit

(N·cm) Spacer ball

Factory-packed grease
Internal spatial volume of nut (cm³)

Standard volume of grease replenishing (cm3)

For drive side (Fixed)	For opposite to drive side (Free)	3
WBK10-01C (square, clean)	WBK10S-01C (square, clean)	
WBK10-11C (round, clean)		

Unit: mm

					Offic. Hilli
Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)	
		041	Mass	Supporting condition	
Т	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
0	0.010	0.008	0.030	0.24	3 000
0	0.012	0.008	0.040	0.36	3 000

(38)	Ls (stroke range)	13	
C0.5 R0.2 F 0.90 T A C0.2	0.010 A Seals 3 X	A G (width of flats) 77, 5	<u> </u>
10		(10)	30 15
< 10 ×	La Lo	<u> </u>	****

Ball screw No.	Strol	ke L _s	Thread length			
	N					
	Nominal	Maximum	$L_{\rm t}$	L ₁	L _a	L _o
W1201KA-3PY-C3Z2	100	109	160	165	175	230
W1203KA-1PY-C3Z2	250	259	310	315	325	380

tes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

B271 B272

(Fine lead)

Nut model: PFT

View X-X

M6×1.0 (oil hole) $4-\phi 4.5$ drill thru

c'bore ∮8×4

NSN

Screw shaft ø12

Lead 5

Unit: mm

l l	Ball screw s	pecifications
Shaft dia. x Lead	/ Direction of turn	12 × 5 / Right
Preload / Bal	l recirculation	P-preload / Return tube
Ball dia. / Ba	all circle dia.	2.381 / 12.3
Screw shaft	root diameter	9.8
Effective to	irns of balls	2.5 × 1
Accuracy gra	ade / Preload	C3 / Z
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	3 070
(N)	Static C _{0a}	4 670
Axia	l play	0
Prelo	ad (N)	98.1
Dynamic fri	ction torque,	1.0 – 4.4
(N-	cm)	1.0 – 4.4
Space	er ball	None
Factory-pag	ked grease	Refer to Notes 1.
Internal spatial vo	olume of nut (cm³)	1.2

Recommended support unit

0.6

Standard volume of grease replenishing (cm³)

For drive side (Fixed)	For opposite to drive side (Free)	3
WBK10-01C (square, clean)	WBK10S-01C (square, clean)	
WBK10-11C (round, clean)		

Unit: mm

Lead accuracy		Shaft run-		Permissible rotational speed N (min-1)	
		out **	Mass	Supporting condition	
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	(kg)		Fixed - Simple support
0	0.012	0.008	0.040	0.47	3 000
0	0.016	0.012	0.065	0.66	3 000

(width of flats) (7) 5 (10) 30 15 (10) 30 15 (10) 30 15 (10) 30 15 (10) 30 15 (10) 30 15 (10) 30 15 (10) 30 15 (10) 30 15 (10) 30 15 (10) 30 15 (10) 30 15 (10) 30 15 (10) 30 15 (10) 30 15 (10) 30 15 (10) 30 15 (10) 30 15	(40)	L _s (stroke range) 12	-0.25 -12
<u>Lo</u>	C0.2 C0.5 R0.2 R0.2 R0.2 R0.9 R0.2 R0.9 R0.2 R0.9 R0.9 R0.9 R0.9 R0.9 R0.9 R0.9 R0.9	(two places) A G (width of flat)	C0.2 C0.5 C0.5 R0.2 max 10 min

Ball screw No.	Stroke L _s		Thread length			
	Nisasiasi	N 4 i	Tillead length			
	Nominal	Maximum	$L_{\rm t}$	L_1	La	Lo
W1202KA-3P-C3Z5	200	208	260	265	275	330
W1205KA-1P-C3Z5	450	458	510	515	525	580

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

B273 B274

Lead 10

Unit: mm

l	pecifications			
Shaft dia. x Lead	/ Direction of turn	12 × 10 / Right		
Preload / Bal	I recirculation	P-preload / Return tube		
Ball dia. / B	all circle dia.	2.381 / 12.5		
Screw shaft	root diameter	10.0		
Effective to	urns of balls	2.5 × 1		
Accuracy gr	ade / Preload	C5 / Z		
Basic load rating (N)	Dynamic $C_{\scriptscriptstyle a}$	3 070		
	Static C _{0a}	4 790		
Axia	l play	0		
Prelo	ad (N)	98.1		
Dynamic friction torque, (N·cm)		1.0 – 4.9		
Spac	er ball	None		
Factory-page	cked grease	Refer to Notes 1.		
Internal spatial v	olume of nut (cm³)	1.4		
Standard volume of gr	rease replenishing (cm³)	0.7		

M6×1 (oil ho	
30° 30°	4-φ4.5 drill thru c'bore φ8×4
	oc0 40
32 	

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)	3
WBK10-01C (square, clean)	WBK10S-01C (square, clean)	
WBK10-11C (round, clean)		

Unit: mm

L	ead accurad	су	Shaft run- out **	Mass	Permissible rotational speed N (min-1) Supporting condition
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
0	0.023	0.018	0.050	0.56	3 000
0	0.030	0.023	0.075	0.72	3 000

* (44) **	Ls (stroke range)	13	3 0 -0.25 12 12	
ï.010 A	© 0.012 A Seals (two places)	5 X - 4	[0.015]	A 0.008 E 0.008 E 0.009 € 0.0
89 00 00 00 00 00 00 00 00 00 00 00 00 00			C0.2	C0.5 C0.5
(O. E. So.)	2 1 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	920	# 880 F0.2	
F 00.9 max. 7.9°	<u> </u>	AG	max. <u>10</u> M10×1	*
<u> </u>	40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(width of fla	ats) (7) 5	
_10	L ₁ L _a		(10) 30	15
- T ²	L	D	-1-	

Ball screw No.	Stroke L _s		Thread length				
	Nisasiasi	N 4 - village vara	Tillead length				
	Nominal	Maximum	L_{t}	L_1	La	L_{\circ}	
W1:	203KA-3P-C5Z10	250	253	310	315	325	380
W1:	205KA-3P-C5Z10	450	453	510	515	525	580

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

B275

NSN

Screw shaft ø15

Lead 10

Unit: mm

l l	Ball screw s	pecifications			
Shaft dia. x Lead	/ Direction of turn	15 × 10 / Right			
Preload / Bal	I recirculation	P-preload / Return tube			
Ball dia. / B	all circle dia.	3.175 / 15.5			
Screw shaft	root diameter	12.2			
Effective to	urns of balls	2.5 × 1			
Accuracy gr	ade / Preload	C5 / Z			
Basic load rating (N)	Dynamic $C_{\scriptscriptstyle a}$	5 780			
	Static C _{0a}	9 430			
Axia	l play	0			
Prelo	ad (N)	147			
Dynamic fri	ction torque,	45.70			
(N·	cm)	1.5 – 7.9			
Spac	er ball	None			
Factory-page	cked grease	Refer to Notes 1.			
Internal spatial v	olume of nut (cm³)	2.3			
Standard volume of g	rease replenishing (cm³)	1.4			

M6×1.0 (oil hole)	4- ϕ 5.5 drill thru c'bore ϕ 9.5×5.5
36 30	PCD 45
View X-X	-

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)	3
NBK12-01C (square, clean)	WBK12S-01C (square, clean)	
WBK12-11C (round, clean)		

Unit: mm

B278

					Offit. Hilli
Load agguragy		Shaft run-		Permissible rotational speed N (min-1)	
Lead accuracy		out ** Mass	Supporting condition		
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
0	0.027	0.020	0.050	0.99	3 000
0	0.035	0.025	0.065	1.2	3 000
0	0.046	0.030	0.110	1.7	1 610

12	(48)	Ls (stroke range)	0 -0.25
«	© CO.5 RO.2 RO.2 RO.2 P.5	Seals (two places) (two places)	12 10.009 E 10.0014 A 80 80 80 80 80 80 80 80 80 80

	Strol	ke L _s	Thread length		
Ball screw No.	Nominal Maximur	Maximum			
		IVIAXIITIUITI	$L_{\rm t}$	L_{a}	L_{\circ}
W1504KA-3P-C5Z10	400	427	489	504	561
W1506KA-3P-C5Z10	600	627	689	704	761
W1510KA-1P-C5Z10	1 000	1 027	1 089	1 104	1 161

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

(Medium lead)

Nut model: UPFC

NSN

Screw shaft ø15

Lead 20

Unit: mm

l l	Ball screw sp	pecifications
Shaft dia. x Lead	/ Direction of turn	15 × 20 / Right
Preload / Bal	I recirculation	P-preload / End cap
Ball dia. / B	all circle dia.	3.175 / 15.5
Screw shaft	root diameter	12.2
Effective to	urns of balls	1.7 × 1
Accuracy gr	ade / Preload	C5 / Z
Basic load rating (N)	Dynamic C _a	4 150
	Static C _{0a}	6 450
Axia	l play	0
Prelo	ad (N)	147
Dynamic fri	ction torque,	1.5 – 7.9
(N·	cm)	7.0
Spac	er ball	None
Factory-page	cked grease	Refer to Notes 1.
Internal spatial v	olume of nut (cm³)	1.9
Standard volume of or	rease replenishing (cm³)	1.0

M6×1.0	4-¢5.5 drill thru
(oil hole) 30° >+ 30°	/
30 30	PCD 45
View X-X	

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)	3
VBK12-01C (square, clean)	WBK12S-01C (square, clean)	
WBK12-11C (round, clean)		

Unit: mm

L	Lead accuracy		Shaft run- out **	Mass	Permissible rotational speed N (min-1) Supporting condition
T	$e_{\scriptscriptstyle P}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support
0	0.027	0.020	0.050	1.0	3 000
0	0.035	0.025	0.065	1.3	3 000
0	0.046	0.030	0.110	1.8	1 610

(34) (34) (34) (30) (34) (30) (34) (34) (34) (34) (34) (34) (34) (34	L _s (stroke range) A A A A A A A A A A A A A	28 12°25
*	Lo	

Ball screw No.	Strol	ke L _s	т	h	
	N	N 4 :	Thread length		
	Nominal Maximum		$L_{\rm t}$	La	L _o
W1504KA-7PG-C5Z20	400	424	486	504	561
W1506KA-7PG-C5Z20	600	624	686	704	761
W1510KA-3PG-C5Z20	1 000	1 024	1 086	1 104	1 161

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.
Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

B279 B280

NSN

Screw shaft ø16

Lead 2

Unit: mm

Ball screw specifications				
Shaft dia. x Lead	/ Direction of turn	16 × 2 / Right		
Preload / Bal	I recirculation	P-preload / Deflector		
Ball dia. / B	all circle dia.	1.588 / 16.4		
Screw shaft	root diameter	14.6		
Effective to	urns of balls	1 × 4		
Accuracy gra	ade / Preload	C3 / Z		
Basic load rating (N)	Dynamic $C_{\scriptscriptstyle a}$	2 870		
	Static C _{0a}	6 250		
Axia	l play	0		
Prelo	ad (N)	147		
	ction torque, cm)	0.5 – 4.9		
Spac	er ball	None		
Factory-pag	cked grease	Refer to Notes 1.		
Internal spatial vo	olume of nut (cm³)	1.6		
Standard volume of gr	ease replenishing (cm³)	0.8		

M6×1.0	20 20	4-φ5.5 drill thru
(oil hole)	30° 30°	
_		
		CD 35
	0 0	~
	< 29	
	View X-X	

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)	
WBK12-01C (square, clean)	WBK12S-01C (square, clean)	
WBK12-11C (round, clean)		

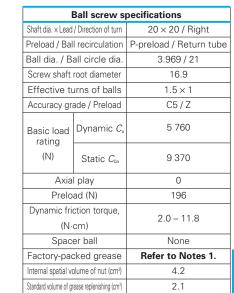
Unit: mm

1	and annura	20.7	Shaft run- out ** Mass		Permissible rotational speed N (min-1)	
L	ead accurad	ЗУ			out **	
T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support	
0	0.010	0.008	0.020	0.46	3 000	
0	0.013	0.010	0.035	0.75	3 000	

(39)	L _s (stroke range)	13 12 - 20 25 13 12 - 20 25
C0.5 R0.2	0.010 A Seals Two places 5 X Two places	# * G
12	L _t L _a	5 (10) 30 15
	L _o	· · · · · ·

	Strol	ke L _s	Thread length			
Ball screw No.	Nisasiasi	N 4 i				
	Nominal	Maximum	L_{t}	La	L。	
W1601KA-3PY-C3Z2	100	137	189	204	261	
W1603KA-1PY-C3Z2	300	337	389	404	461	

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.


See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

Lead 20

Unit: mm

M6×1.0	$4-\phi 6.6$ drill thru
(oil hole) \	c'bore <i>ϕ</i> 11×6.5
30° 30°	,
*	
((3)	
	PCD 59
	PCD 3e
/ 1/1/	-
	/
	/
À:	
L(Ø)(Ø),	
46	
View V V	
View X-X	

4 (0 0 1 111 11

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Free)	3
WBK15-01C (square, clean)	WBK15S-01C (square, clean)	
WBK15-11C (round, clean)		

Unit: mm

					Offic. Hilli			
	and annura	2) (Shaft run-		Permissible rotational speed N (min-1)			
Lead accuracy			out **	Mass	Supporting condition			
T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$		(kg)	Fixed - Simple support			
0	0.030	0.023	0.050	2.0	3 000			
0	0.035	0.025	0.085	2.5	3 000			
0	0.046	0.030	0.110	3.4	2 160			

(61) Ls (stroke range) 15 0.014 A 17 0.014 A 17 0.014 A 18 19 10 10 10 10 10 10 10 10 10
L _a 60 L _a 60 L _a

Ball screw No.	Strol	ke L _s	Thread length			
	Nominal	Maximum				
		iviaximum	$L_{\rm t}$	La	L。	
W2005KA-3P-C5Z20	400	434	510	535	608	
W2007KA-3P-C5Z20	600	634	710	735	808	
W2011KA-3P-C5Z20	1 000	1 034	1 110	1 135	1 208	

Notes: 1. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details.

Use of NSK Clean Grease LG2 is recommended.

2. Contact NSK if the permissible rotational speed is to be exceeded.

B283 B284

B-3-1.4 Blank Shaft End MS Type, FS Type, SS Type

1. Order of the dimension tables

The dimension table begins with the smallest shaft diameter of each MS, FS and SS type ball screws, and proceed to larger sizes. If ball screws have the same shaft diameter, those with smaller leads appear first. Page numbers of shaft diameter and lead combinations are shown in the **Table 1**.

2. Dimension tables

The dimension tables show shapes/sizes as well as specification factors of each shaft diameter/lead combination. Tables also contain data as follows:

Lead accuracy

Lead accuracy is either C3 or C5 grades.

T: Travel compensation

e_n: Tolerance of specified travel

 υ_{\parallel} : Travel variation

See "Technical Description: Lead Accuracy" (page B37) for details of the codes.

Permissible rotational speed

d • n: Limited by the relative peripheral speed between the screw shaft and the nut.

Critical speed: Limited by the natural

frequency of a ball screw shaft. Critical speed depends on the supporting condition of screw shaft. Criterion of maximum rotational speed

: 3 000 min-1

The lower of the two criteria, d·n and critical speed, will determine the overall permissible rotational speed of the ball screw. For details, see "Technical Description: Permissible Rotational Speed" (page B47).

3. Shaft end processing

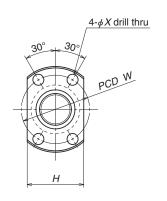
MS, FS, and SS types require shaft end processing to your specification. The exclusive support units (page B375) are available to design the bearing seats. See "Configuration of shaft end" (page B27 and following pages) when

using a support unit. See "Technical Description: Shaft End Processing" (page B79) for procedures of shaft end processing and precautions.

4. Other

The seals of the ball screw, ball recirculating deflectors and end caps are made of synthetic resin. Consult NSK when using the ball screws under extreme environments or special environments, or using special lubricant or oil. For special environments, see pages B70 and D2. See pages B67 and D13 for lubricants.

Note: For details of standard stock products, contact NSK.


Table 1 Cambinations of screw shaft diameter and lead

Screw shaft diameter(mm)	1	1.5	2	2.5	4	5	6
4	B287						
6	B287						
8	B287	B289	B289				
10			B289	B291	B295		
12			B291	B291		B295	
14						B297	
15							
16			B293	B293		B301	
20					B307	B307	
05					B309	B309	B309
25					B309	B311	B309
20						B313	B313
28						B315	B315
						B317	B317
32						B319	B317
						B321	5319
36							
40						B323	
45							
50							

8	10	12	16	20	25	32	40	50
	Door							
	B295							
B315	D007			B299				
	B297		B301	6299		B299		
	B301		D301	B301		DZ99	B299	
	B311			D301			D233	
	B313			B303	B303			B303
	D010							
	B321							
B319	B323				B305	B305		
	B325							
	B323							
	B325							
	B327	B327						
B327	B329	B327						
	B331	DOZO						
	B333							
	B331							
	B333							

B285 B286

Screw shaft ø4, ø6, ø8, Lead 1

View X-X

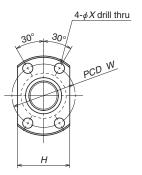
Unit: mm

di	mensio	ns	Screw shaft dimensions				Lead accuracy			Run-out			Mass	Permissible rotational	NS.			
Overall length	Bolt W	hole X	Threaded length	Shaft of	end,	right	Shaft e	end, left	Overall length	Т	Deviation e_n	Variation \mathbf{v}_{u}	Shaft straightness T	Nut O.D. eccentricity	Flange perpendicularity K	(kg)	speed N (min-1)	
-11	00	/\	— _T	G ₂		-2	3	-3	-0		U _D	O _u	1	J	1			
12	15	2.9	80	6.0	4	40	3.3	10	130	0	0.008	0.008	0.030	0.009	0.008	0.026	3 000	
15	18	3.4	125	8.0	4	50	5.3	15	190	0	0.010	0.008	0.030	0.009	0.008	0.063	3 000	
16	21	3.4	110	10.2	4	60	7.3	25	195	n	0.010	0.008	0.030	0.009	0.008	0.11	3 000	
10	21	3.4	190	10.2	4	00	7.5	25	275	U	0.010	0.000	0.050	0.003	0.000	0.14	3 000	

Co.1	C0.2	J A X A A G	CO.	5 Center hole
	L ₃	$\left \frac{L_{n}}{L_{t}}\right $ (hardened)	L ₂	
	Not case hardened	L _o	Not case hardened	
	P	Nut type code: MSFD		

Ball screw No.	Stroke Max. L _t -L _n	snatt dia.	Lead <i>l</i>	Ball dia.	Ball circle dia. d _m	Root dia.	Effective ball turns	1)	ad rating N) Static	Axial play Max.	Outside dia.	F	ut Flange	-
		d_1				,		$C_{\rm a}$	C_{0a}		D	Α	Н	В
W0400MS-1Y-C3T1	68	4	1	0.8	4.2	3.2	2	315	370	0.005	10	20	14	3
W0601MS-1Y-C3T1	110	6	1	0.8	6.2	5.2	3	575	925	0.005	12	24	16	3.5
W0801MS-1Y-C3T1 W0802MS-1Y-C3T1	94 174	8	1	0.8	8.2	7.2	3	670	1 290	0.005	14	27	18	4

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.


Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Ball nut does not have seal.

4. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B285.

Unit: mm

Lead 1.5, 2 Screw shaft ø10 Lead 2

View X-X

Conter hole	C0.2	J A 960 0 \$		X A G	Min.	6.3(or/)	Co.5 Center hole
	L ₃		Lt (hardened)			L ₂	
	Not case hard	lened	Lo		Not cas	se hardened	

Nut type	code:	MSFD

Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective hall	1)	ad rating ()	Axial	Outside dia.	Nı	ut Flange	
	L_{t} - L_{n}	d_1	l	$D_{\rm w}$	$d_{\rm m}$	d _r	turns	Dynamic Static C _a C _{0a}	Max.	D	Α	Н	В	
W0801MS-2Y-C3T1.5	88	0	1 5	1.0	0.2	7.0	2	1 000	1 000	0.005	15	20	10	1
W0802MS-2Y-C3T1.5	168	8	1.5	1.0	8.3	7.0	3	1 080	1 980	0.005	15	28	19	4
W0801MS-3Y-C3T2	84	8	2	1.2	8.3	6.9	3	1 220	2 210	0.005	16	29	20	4
W0802MS-3Y-C3T2	164	Ö	2	1.2	0.5	0.9	٥	1 320	0 2 2 1 0	0.005	10	29	20	4
W1001MS-1Y-C3T2	122	10	2	12	10.3	8.9	3	1 /100	2 850	0.005	18	35	22	5
W1002MS-1Y-C3T2	222	10	2	1.2	10.3	0.9	3	1 490	2 000	0.005	10	30	22	5

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

dim	ensio	ns	5	sha	ft di	mensi	ons		Lead accuracy			F	Run-ou	Mass	Permissible rotational			
Overall length	Bolt	hole	Threaded length	Shaft e			Overall length		Deviation	Variation	Shaft	Nut 0.D.	Flange perpendicularity	(kg)	speed	80		
L_{n}	W	X	$L_{\rm t}$	d ₂	L ₁	L_2	$d_{\scriptscriptstyle 3}$	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min ⁻¹)	
22	22	3.4	110	10.2	4	60	7.2	25	195	0	0.010	0 008	0.030	n nna	0.008	0.12	3 000	
22	22	5.4	190	10.2	4	00	7.2	25	275	U	0.010	0.000	0.050	0.003	0.000	0.15	3 000	
26	23	3.4	110	10.2	4	60	7.0	25	195		0.010	0 008	0.030	n nna	0.008	0.12	3 000	
20	20	5.4	190	10.2	4	00	7.0	23	275	0	0.010	0.000	0.050	0.003	0.000	0.15	3 000	
28	27	4.5	150	12.2	4	70	9.0	30	250	0	0.010	0.008	0.035	n nna	0.008	0.22	3 000	
20	۷/	4.5	250	12.2	+	70	5.0	30	350	U	0.012	0.000	0.050	0.003	0.000	0.17	3 000	

B289 B290

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.
 See page D13 for details.

^{3.} Permissible rotational speed is determined by d n value and critical speed. See pages B47 and B285.

Not case hardened

C0.1

Center hole

/ J A

Seals (two places)

B

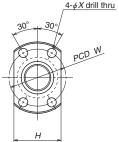
Nut type code: MSFD

 L_t (hardened)

X**-**¶

C0.5

Center hole


6.3(or /)

Not case hardened

Min.

A G

Screw shaft ø10 Lead 2.5 Screw shaft ø12 Lead 2, 2.5

View X-X

4-φX drill thr
30° 30° PCD W

Unit: mm

	dim	ensio	ns	5	Screw	sha	ft di	mensi	ons		Le	ad acc	uracy	R	un-ou	Mass	Permissible rotational	
	Overall length	Bolt	hole	Threaded length	Shaft e	end, r	ight	Shaft end, left Overall length		Deviation Variation		Variation	Shaft straightness	Nut O.D.	Flange	(kg)	speed	
	Ln	W	X	$L_{\rm t}$	d ₂	L_1	L_2	d_3	L ₃	Lo	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K	_	N (min-1)
	20 0	28	4.5	150	12.2	4	70	8.7	30	250	_	0.010	0.008	0.035	0.010	0.008	0.23	3 000
	32	20	4.5	250	12.2	4				350	U	0.012	0.006	0.050			0.28	
	28	29	4.5 210 310	210	10 14.2	5	80	11.0	35	325		0.012 0	0.000	0.050	0.010	0.008	0.36	3 000
	28 2	29		310	310	14.2	5	00	11.0	33	425	0	0.012	0.008	0.060	0.010	0.000	0.44
	32	30	4.5	210	14.2	5	80	10.7	35	325	n	0.012	0.008	0.050	0.010	0.008	0.37	7 2 000
		30	4.5	310	14.2	J	00	10.7	33	425	0.012	0.008	0.060	0.010	0.006	0.45	3 000	

Ball screw No.	Stroke	Screw shaft	Lead	Ball dia.	Ball circle	Root dia.		Basic load rating (N)		Axial	Nut			
	Max.	dia.			dia.	uia.	ball turns	Dynamic	Static	play Max.	Outside dia.	ı	Flange	Э
	L_{t} - L_{n}	$d_{\scriptscriptstyle 1}$	l	$D_{\rm w}$	$d_{\rm m}$	d_{r}		C_{a}	C_{0a}	IVIAX.	D	Α	Н	В
W1001MS-2Y-C3T2.5	118	10	م ٦	1 500	10.4	0.0	_	2 120	2 640	0.005	10	20	00	_
W1002MS-2Y-C3T2.5	218	10	2.5	886.1	10.4	8.6	3	2 130	3 040	0.005	19	36	23	5
W1202MS-1Y-C3T2	182	10	2	1.200	100	10.9	3	1 660	3 630	0.005	20	37	24	5
W1203MS-1Y-C3T2	282	282 12	4	1.200	12.3	10.9	3	1 000	3 020	0.005	20	37	24	5
W1202MS-2Y-C3T2.5	178	10	2 5	1 500	10 /	10.6	2	2 360	1 510	0.005	21	20	25	_
W1203MS-2Y-C3T2.5	278	12	2.5	1.588	12.4	10.6	3	2 300	0 4 540	0.005	21	38	25	5

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

3. Permissible rotational speed is determined by dn value and critical speed. See pages B47 and B285.

C0.2

Not case hardened

C0.1

Center hole

/ J A

Seals (two places)

 \bot K A \rightarrow

Lt (hardened)

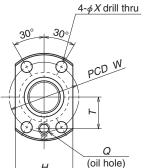
В

Nut type code: MSFD

-11 I G

Min.

A


C0.5

Center hole

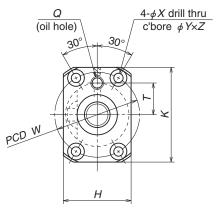
6.3 (or/)

Not case hardened

Lead 2, 2.5

View X-X

<u>4-φX drill thru</u>
30° 30°
30
- W
PCD W
Q
(oil bolo)
H (Oil fible)


Ball screw No.	, ,	shaft dia.	Lead		dia.	did.	hall	(1)	ad rating () Static	Axial play Max.	Outside dia.	F	lang	Nut		Bolt	hole
	L_t - L_n	d_1	ι	$D_{\rm w}$	$d_{\rm m}$	d_{r}	turno	$C_{\rm a}$	C_{0a}	IVIUX.	D	Α	Н	В	L_{n}	W	X
W1602MS-1Y-C3T2	210	16	2	1.588	16.4	116	4	2 510	8 450	0.005	25	44	29	10	40	35	5.5
W1604MS-1Y-C3T2	360	10		1.000	10.4	14.0	4	3 310	0 400	0.005	25	44	29	10	40	33	0.0
W1602MS-2Y-C3T2.5	206	16	2.5	1.588	16.4	116	4	2 510	0 150	0.005	25	44	29	10	44	35	5.5
W1604MS-2Y-C3T2.5	356	10	2.5	1.000	10.4	14.0	4	3 310	0 400	0.005	25	44	29	10	44	30	5.5

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B285.

dimens	ions	Scr	ew s	shaf	t dir	nen	sior	าร	Lea	ad acc	uracy	F	Run-ou	t	Mass	Permissible rotational	Internal spatial volume of nut	Standard volume of grease	NS
Oil h	ole	Threaded length	Shaft	end,	right	Shaft e	nd, left	Overall length		Deviation	Variation	Shaft	Nut O.D. eccentricity	Flange	(kg)	speed	(cm³)	replenishing	
Q	Τ	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L ₂	d_3	L ₃	Lo	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	регрепикиалку <i>К</i>		N (min-1)	(CITI°)	(cm³)	
M6×1	16	250	16.2	30	100	1/17	40	390	0	0.012	0.008	0.035	0.010	U UU8	0.71	3 000	1.5	0.8	
IVIOXI	10	400	10.2	30	100	14.7	40	540	U	0.013	0.010	0.050	0.010	0.000	0.93	3 000	1.5	0.0	
N A C: . 1	10	250	100	20	100	1 1 7	40	390	0	0.012	0.008	0.035	0.010	0 000	0.73	2 000	1 -	0.0	
M6×1 16	400	16.2	30	100	14./	40	540	U	0.013	0.010	0.050	0.010	0.008	0.95	3 000	1.5	0.8		

Screw shaft ø10 Lead 4 Screw shaft ø12 Lead 5, 10

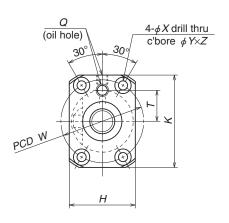
View X-X

Unit: mm

																			Offic. Hilli	
dimens	ions	5	Scre	ew	sha	aft (dime	ensi	ons	Le	ad acc	curacy	F	Run-ou	ıt	Mass	Permissible rotational	Internal spatial volume of nut	01 91 0000	2
Oil h	ole	Threaded length	Sha	ft e	nd, r	ight	Shaft en	d, left	Overall length		Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange nemendicularity	(kg)	speed	(0003)	replenishing	
Q	T	Ĺ	d_2	Lu	L_1	L	d ₃	L ₃	Ľ.	Τ	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min ⁻¹)	(CITT)	(cm³)	
		160							265		0.010	0.008	0.030			0.34				
M6×1	14	260	14	5	40	70	8.2	35	365	0	0.012	0.008	0.040	0.010	0.008	0.39	3 000	0.86	0.43	
		360							465		0.013	0.010	0.050			0.45				
		150							255		0.010	0.008	0.030			0.44				
M6×1	15	250	14	5	40	70	9.8	35	355	0	0.012	0.008	0.040	0.010	0.008	0.52	3 000	1.2	0.6	
		450							555		0.015	0.010	0.065			0.67]			
NAC-41	1 5	250	1 1	0	10	70	100	2.5	355	0	0.023	0.018	0.050	0.010	0.010	0.57	2 000	1 1	0.7	
M6×1	15	450	14	Ø	40	70	10.0	35	555	U	0.027	0.020	0.075	0.012	0.010	0.74	3 000	1.4	0.7	

		Seals (two paces)	I G
Co.5	C0.2 96 77 77 76 76 76 76 76 76 76 76 76 76 76	X A A A A A A A A A A A A A A A A A A A	ϕd_2 +0.2 C0.5 All Center hole Lu L1
-		Lt (hardened)	L ₂
Not <	t case hardened	Lo	Not case hardened

Nut type code: SFT, LSFT


Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. \mathcal{O}_1	Lead	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia.	Turns	(N Dynamic	ad rating N) Static C _{0a}	Axial	Outside dia.	F A	=lar H	nge K		ut Overall length L	B W	olt	ho Y	le Z
W1001FS-1-C3T4	126																			
W1002FS-1-C3T4	226	10	4	2.000	10.3	8.2	2.5×1	2 740	4 450	0.005	26	46	28	42	10	34	36	4.5	8	4.5
W1003FS-1-C3T4	326																			
W1201FS-1-C3T5	110																			
W1202FS-1-C3T5	210	12	5	2.381	12.3	9.8	2.5×1	3 760	6 310	0.005	30	50	32	45	10	40	40	4.5	8	4.5
W1204FS-1-C3T5	410																			
W1202FS-2-C5T10	200	12	10	2 201	10 5	100	2 Ev1	2 750	6 400	0.005	20	ΕΛ	22	1 E	10	ΕO	40	1 =	0	4.5
W1204FS-2-C5T10	400	12	10	2.301	12.5	10.0	Z.5X1	3 / 50	0 400	0.005	30	50	SΖ	45	10	50	40	4.5	0	4.5

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B285.

Screw shaft ø14 Lead 5, 8 Screw shaft ø15 Lead 10

View X-X

Unit: mm

		ensions Screw shaft dime																	
dimens	ions		rev	v s	haf	t di	men	sio	ns	Le	ad acc	uracy	F	Run-ou	t	Mass	Permissible rotational	Internal spatial volume of nut	or grouss
Oil h	ole	Threaded length	Sha	ft er	nd, r	ight	Shaft end	d, left	Overall length		Deviation	Variation	Shaft	Nut O.D. eccentricity	Flange nemendicularity	(kg)	speed	(cm³)	replenishing
Q	Т	Ľ,	d_2	Lu	L_1	L_2	$d_{\scriptscriptstyle 3}$	L ₃	L _o	Τ	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(CITT)	(cm³)
MGv1	17	350	15	5	40	100	11.2	40	490	0	0.013	0.010	0.035	0.012	0.008	0.78	2 000	2.0	1.0
M6×1	-/	600	10	5	40	100	11.2	40	740	U	0.016	0.012	0.055	0.012	0.006	1.0	3 000	2.0	1.0
M6×1	17	500	15	8	40	100	11.2	40	640	٥	0.027	0.020	0.065	0.015	0.011	1.0	3 000	2.0	1.0
IVIOXI	17	800	15	0	40	100	11.2	40	940	U	0.035	0.025	0.085	0.015	0.011	1.3	3 000	2.0	1.0
		400							570		0.025	0.020	0.050			1.0			
M6×1	17	600	15	8	40	120	12.2	<u>-</u>	770	0	0.030	0.023	0.065	0.015	0.011	1.3	3 000	2.3	1.2
IVIOXI	17	900	10	0	40	120	12.2	50	1 070	U	0.040	0.027	0.110	0.015	0.011	1.7	3 000	2.3	1.2
		1 100							1 270		0.046	0.030	0.150			1.9			

	/ J A	Seals (two places)		
Co.5 Center hole	96 <i>Q</i> \$ 100.2	X A A A A A A A A A A A A A A A A A A A	71.6	C0.5 Center hole
L ₃		L _t (hardened)	L ₂	_
Not cas	e hardened	Lo	Not case hardened	

Nut type code: SFT, LSFT

Ball screw No.	Stroke Max. <i>L</i> _t - <i>L</i> _n	Screw shaft dia. d ₁	Lead <i>l</i>	Ball dia. <i>D</i> w	Ball circle dia. d _m	Root dia.	Turns	(N Dynamic	ad rating N) Static C _{0a}	Axial play Max.	Outside dia. D	A	=lar H	nge K		ut Overall length L _n	B W	olt	hol Y	е <i>Z</i>
W1403FS-1-C3T5	310	14	5	2 175	115	11 2	2 Ev1	6 700	11 700	0.005	24	E 7	24	ΕO	11	40	1 E		0 E	E E
W1406FS-1-C3T5	560	14	5	3.175	14.5	11.2	Z.5X1	0 /90	11 /00	0.005	34	57	34	50	11	40	45	0.0	9.5	5.5
W1405FS-1-C5T8	454	14	8	2 175	115	11 2	2 5 1	6 700	11 700	0.005	21	57	21	E0	11	16	15	E E	0 5	E E
W1408FS-1-C5T8	754	14	0	3.175	14.5	11.2	Z.3X1	0 /90	11 700	0.005	54	57	34	50	11	40	45	5.5	9.0	0.0
W1504FS-1-C5T10	349																			
W1506FS-1-C5T10	549	15	10	2 175	155	12.2	2 5 1	7 070	12 000	0.005	21	57	21	E۷	11	Б 1	15	E E	0 5	5.5
W1509FS-1-C5T10	849	13	10	3.1/5	10.5	12.2	Z.3X1	7 070	12 000	0.005	54	57	34	50	11	01	45	0.0	შ.ე	0.0
W1511FS-1-C5T10	1 049																			

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

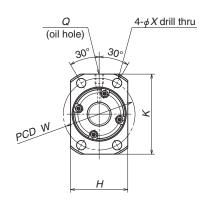
2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d-n value and critical speed. See pages B47 and B285.

C0.5

Not case hardened

Center hole


C0.5

Center hole

Screw shaft ø15 Lead 20 Screw shaft ø16 Lead 32 Screw shaft ø20

Lead 40

Unit: mm

View X-X

Lo
Nut type code: USFC

B C

Lt (hardened)

⊥ *K A*

X - 1

 $X \rightarrow A G$

Min.

Not case hardened

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. $d_{\scriptscriptstyle 1}$	Lead	Ball dia.	Ball circle dia. d _m	Root dia.	Turns	(N Dynamic		Axial play Max.	Outside dia.	A	FI H	ang <i>K</i>	Nut		Overall length	Bolt	hole
W1504FS-2G-C5T20	355																		
W1506FS-2G-C5T20	555	1 -	20	0 175	1	100	1 71	5 070	0 720	م ممد	0.4		20	Ε0	10	11	4.5	4 -	
W1509FS-2G-C5T20	855	15	20	3.1/5	15.5	12.2	1.7×1	5 070	0 /30	0.005	34	55	36	50	10		45	45	5.5
W1511FS-2G-C5T20	1 055																		
W1609FS-2GX-C5T32	866	10	20	0 175	10.75	10.4	0.7×2	4 000	6 600	0.005	0.4		00	٦.	10	10.5	0.4	45	
W1613FS-1GX-C5T32	1 266	16	32	3.1/5	10./5	13.4	0.7XZ	4 000	0 090	0.005	34	55	36	50	10	10.5	34	45	5.5
W2011FS-1GX-C5T40	1 059	20	40	0 175	00.75	17 /	0.70	4 400	0.640	0.005	20	F0	40	F0	10	11	4.1	40	
W2017FS-1GX-C5T40	1 659	20	40	3.1/b	20./5	17.4	0.7×2	4 490	0 040	0.005	38	ეგ	40	52	10	П	41	48	ხ.ხ

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

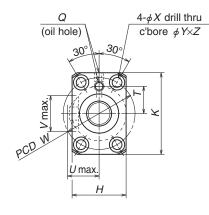
See page D13 for details

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B285.

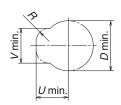
٠.																					
	dimens	ions	Sc	:re\	N S	haf	t di	men	sio	ns	Le	ad acc	curacy	F	Run-ou	ıt	Mass	Permissible rotational	Internal spatial volume of nut	or grouss	FS
	Oil h	ole	Threaded length	Sha	aft e	nd, r	ight	Shaft en	ıd, left	Overall length	Travel com- pensation	Deviation	Variation	Shaft strainhtness	Nut O.D. eccentricity	Flange nemendicularity	(kg)	speed	(cm³)	replenishing	
	Q	Τ	L _t	d_2	L	L_1	L_2	d ₃	L ₃	L _o	T	$e_{\scriptscriptstyle m p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min ⁻¹)	(CIII)	(cm³)	
			400							570		0.025	0.020	0.050			1.0				
	N 1 C 1		600	15.0	10	10	100	100	E0	770		0.030	0.023	0.065	0.015	0.011	1.3	2 000	1.0	1.0	
M6×11 5 F	900	10.2	13	40	120	12.2	50	1 070	0	0.040	0.027	0.110	0.015	0.011	1.7	3 000	1.9	1.0			
			1 100							1 270		0.046	0.030	0.150			2.0				
	M6×1	5	900	16.0	10	10	150	13.4	60	1 110	۸	0.040	0.027	0.110	0.015	0.011	1.9	3 000	2.0	1.0	
	IVIOXI	5	1 300	16.2	19	40	130	13.4	00	1 510	U	0.054	0.035	0.150	0.015	0.011	2.5	3 000	2.0	1.0	
ĺ	MGV1	_	1 100	20.2	22	60	150	17 /	00	1 330	٥	0.046	0.030	0.150	0.015	0.011	3.5	2 000	2.7	1 /	
	M6×1	5	1 700	ZU.Z	22	00	100	17.4	00	1 930	U	0.065	0.040	0.200	0.015	0.011	4.9	3 000	2.7	1.4	

C0.5

Not case hardened


Center hole

C0.5


Not case hardened

Center hole

Screw shaft ø16 Lead 5, 16 Screw shaft ø20 Lead 10, 20

View X-X

Housing hole and its clearance (only applicable to shaft dia. ϕ 16, lead 16)

Nut type code: SFT, LSFT

Lo

В

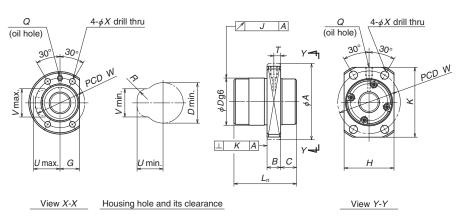
⊥ *K A*-

Lt (hardened)

Seals (two places)

 $X \rightarrow$

Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Turns	1)	1)	Axial					Ν	ut				
Ball Screw No.	l	d ₁	,	D _w	dia.	' '	X	Dynamic	Static	play Max.	Outside dia.	F	-lar	nge		Overall length	Вс	olt	ho	le
	L_{t} - L_{n}	u_1	ι	$D_{\rm w}$	$d_{\rm m}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	r v i ca / c.	D	Α	Н	Κ	В	L	W	X	Y	Ζ
W1605FS-1-C3T5	458	16	5	3.175	16.5	13.2	2.5×1	7 330	13 500	0 005	4 0	63	4 0	55	11	12	51	5 5	9 5	5 5
W1609FS-1-C3T5	858	10	J	0.170	10.5	10.2	2.5/1	7 000	10 000	0.000	+0	00	70	55	11	72	01	0.0	0.0	0.0
W1606FS-1-C5T16	544	1.0	1.0	0 175	10.75	10.4	1 51	4 710	0 1 1 0	0 005	0.4		2.4	۲0	10		4.5		о г	
W1611FS-1-C5T16	1 044	16	10	3.175	16.75	13.4	1 X C. 1	4 / 10	8 110	0.005	34	/د	34	บบ	ΙZ	00	45	5.5	9.5	0.0
W2009FS-1-C5T10	846	20	10	2 000	0.1	100	0 51	10.000	01 700	٥ ٥٥٢	10	7.4	40	00	10	F 4	- C		11	C F
W2013FS-1-C5T10	1 246	20	10	3.969	21	16.9	2.5×1	10 900	21 /00	0.005	46	/4	40	00	13	54	59	0.0		0.5
W2010FS-1-C5T20	937	20	20	2 060	21	16.0	1 5./1	7.040	12 700	0.005	16	7.1	16	cc	10	62	EO	6 6	11	e E
W2015FS-1-C5T20	1 437	20	20	3.969		10.9	1.5×1	/ 040	12 /00	0.005	40	/4	40	סט	13	03	59	0.0	11	0.0


Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Permissible rotational speed is determined by d-n value and critical speed. See pages B47 and B285.

			sions			crew	/sł	naft	dir	nens	sior			ad acc			un-oı		Mass	Permissible rotational	Internal spatial volume of nut	Standard volume of grease	6
Proje	cting	tube	Oil ho	ole	Threaded length	Shaf	t en	d, riç	ght	Shaft en	d, left	Overall length		Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed N (min-1)	(cm³)	replenishing	
U	V	R	Q	T	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L	L_1	L_2	d ₃	L ₃	Ľ。	Τ	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	Ĭ	J	K		IN (ETHILE:)	(CITT)	(cm³)	
			M6×1	17	500	16.2	5	40	150	13.2	60	710	Λ	0.015	0.010	0.055	0.012	0.008	1.4	2 000	2.6	1.3	
			IVIOXI	17	900	10.2	5	40	150	13.2	00	1 110	U	0.021	0.015	0.095	0.012	0.000	1.9	3 000	2.0	1.3	H
10			1.40.4	4-7	600	400	4.0	40	450	40.4		810	_	0.030	0.023	0.085	0.045	0.044	1.5		0.4	4.4	
19	20	8	M6×1	1 /	1 100	16.2	10	40	150	13.4	60	1 310	U	0.046	0.030	0.150	0.015	0.011	2.3	3 000	2.1	1.1	
			1.40 4	0.4	900	00.0	4.0	00	450	100	00	1 130	^	0.040	0.027	0.110	0.045	0.044	3.2		4.7	0.4	
_	_	_	M6×1	24	1 300	20.2	10	60	150	16.9	80	1 530	U	0.054	0.035	0.150	0.015	0.011	4.1	3 000	4.7	2.4	
			NAC- 1	0.4	1 000	00.0	10	00	150	100	00	1 230	^	0.040	0.027	0.110	0.015	0 011	3.6	0.000	4.0	0.1	
_	_	_	M6×1	24	1 500	20.2	13	bU	150	16.9	80	1 730	U	0.054	0.035	0.200	0.015	0.011	4.8	3 000	4.2	2.1	

B301

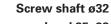
Lead 20, 25, 50

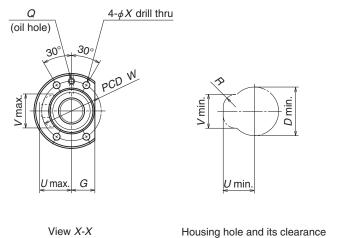
Nut type code: USFC

Unit: mm

		din	ner	nsions		S	crev	v s	haf	t dir	nen	sior	าร	Le	ad acc	uracy	R	un-oı	ut	Mass	Permissible rotational	Internal spatial volume of nut		S
F	roje	cting	tube	Oil ho	ole	Threaded length	Sha	ıft eı	nd, r	ight	Shaft e	nd, left	Overall length		Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	(cm³)	of grease replenishing	
	U	V	R	Q	T	$L_{\rm t}$	d_2	Lu	L_1	L_2	d₃	L ₃	Lo	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min ⁻¹)		(cm³)	
Ī	31	35	12	M6×1		1 350	25.2	13	70	200	21.3	100	1 650	Λ	0.054	0.035	0.120	0.015	0.011	6.8	2 800	12	6.0	
	ווכ	SS	12	IVIOXI		2 150	25.2	13	//	200	21.3	100	2 450	U	0.077	0.046	0.160	0.013	0.011	9.8	2 000	12	0.0	
Ī	20	0.4	10	N 1 C 1		1 350	٥٢ ٥	1.	70	200	01.0	100	1 650	^	0.054	0.035	0.120	0.015	0.011	6.8	0 000	10	Г 0	
	32	34	12	M6×1	_	2 150	25.2	15	//	200	21.3	100	2 450	U	0.077	0.046	0.160	0.015	0.011	9.8	2 800	10	5.0	
Ī				M6×1	6	1 500	25.2	26	70	200	21.9	100	1 800	٥	0.054	0.035	0.120	0.015	0.011	7.3	2 000	E 2	2.7	
ı		_	_	IVIOXI	0	2 150	25.2	20	//	200	21.9	100	2 450	U	0.077	0.046	0.160	0.015	0.011	9.8	2 800	5.3	2.7	

	/ J A	Seals (two places)	₩ I G	
	C0.3 10 10 10 10 10 10 10 10 10 10 10 10 10	X A A B C Ln	71.6 Min. L1	C0.5 Center hole
L		L_{t} (hardened)	L ₂	
Not ca	ase hardened	Lo	Not case hardened	


Nut type code: LSFT


Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d_1	Lead <i>l</i>		Ball circle dia. d _m	MOOL	Turns	Dynamic	۷)	Axial	Nut type code	Outside dia.	Α	G G		Nut		С	Overall length	Bolt W	
W2513FS-1-C5T20 W2521FS-1-C5T20		125	20	4.762	26.25	21.3	2.5×1	15 700	32 800	0.005	LSFT	44	71	23	_	_	12	8	96	57	6.8
W2513FS-2-C5T25 W2521FS-2-C5T25		125	25	4.762	26.25	21.3	1.5×1	10 100	19 100	0.005	LSFT	44	71	23		_	12	10	90	57	6.6
W2515FS-1GX-C5T50 W2521FS-3GX-C5T50		125	50	3.969	26	21.9	0.7×2	6 700	13 500	0.005	USFC	46	70	_	48	63	12	13	50	58	6.6

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d-n value and critical speed. See pages B47 and B285.

Unit: mm

																					011111	
d	ime	nsic	ns	Sc	crev	v sł	naft	t din	nen	sion	ıS	Lea	ad acc	uracy	R	lun-oı	ut	l .	Permissible rotational	Internal spatial volume of nut	Standard volume	꿇
Proj	ecting t	tube	Oil hole	Threaded length	Sha	ıft er	nd, r	ight	Shaft e	nd, left	Overall length	Travel com- persation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange nemendicularity	(kg)	speed	(cm³)	of grease replenishing	
U	V	R	Q	$L_{\rm t}$	d_2	Lu	L_1	L_2	d_3	L ₃	Ľ.	Τ	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	Ĭ	J	K		N (min-1)	(0111)	(cm³)	
34	42	12	M6×1	1 700	າາາ	15	70	250	28.3	120	2 070	Λ	0.065	0.040	0.160	0.010	0.012	13.8	2 180	17	8.5	
34	42	12	IVIOXI	2 700	32.3	10	//	200	۷٥.٥	120	3 070	U	0.093	0.054	0.210	0.019	0.013	20.0	2 100	17	0.0	
0.4	2	10	N 4 C 1	1 700	20.0	10	70	٥٥٥	20.2	100	2 070	0	0.065	0.040	0.160	0.010	0.010	13.9	2 180	1 -	7.5	
34	42	12	M6×1	2 700	ડ∠. ડ	19	/0	250	28.3	120	3 070	U	0.093	0.054	0.210	0.019	0.013	20.0	Z 180	15	7.5	

		JA	Seals (two places)		I G	
Co.5	6.3	\$\frac{\phi}{\phi} \frac{\phi}{\phi} \frac{\phi}{\phi}\qua	Q ϕ	A A A A A A A A A A A A A A A A A A A	71.6 Min. L ₁	C0.5 Center hole
	L ₃		L _t (hardened)		L ₂	
	Not case hard	lened	Lo		Not case hardened	

(Medium, High helix lead: Tube type)

Nut type	code:	LSFT
----------	-------	------

Dell serem Ne	Stroke Max.		Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns Turns	Basic loa (1	ad rating J)	Axial				Ν	ut			
Ball screw No.	L_{t} - L_{n}	d ₁	1	n n	dia.	dia.	X	Dynamic	Static	play Max.	Outside dia.		Flar	nge		Overall length	Bolt	hole
	L _t -L _n	u_1	ι	$D_{\rm w}$	$d_{\rm m}$	$d_{\rm r}$	Circuits	$C_{\rm a}$	C_{0a}	TVIOX.	D	Α	G	В	С	L	W	X
W3217FS-1-C5T25	1 583	32	25	1 762	22.75	20.2	2 5 1	17 000	41 800	0 005	Б 1	85	26	15	10	117	67	9
W3227FS-1-C5T25	2 583	32	20	4.702	33.20	20.3	Z.3X1	17 900	41 000	0.005	01	00	20	10	10	117	07	9
W3217FS-2-C5T32	1 591	32	32	4 760	22.25	20.2	1 5.71	11 500	24 800	0 005	51	85	26	15	12	109	67	0
W3227FS-2-C5T32	2 591	JZ	JZ	4.702	აა.20	20.3	TXC.1	11 300	24 800	0.005	01	00	20	15	12	109	0/	9

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B285.

C0.5

Not case hardened

Center hole

 $/\!\!/ J A$

Center hole

_11 I G

Min. L₁

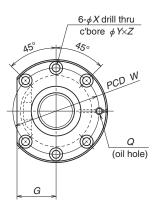
Not case hardened

Screw shaft ø20 Lead 4, 5

Nut type code: PFT

 $\perp \mid K \mid A \mid \rightarrow$

Lt (hardened)


Seals (two places)

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d ₁	Lead	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia.	Turns	(1) Dvnamic	N)	/NI\	friction torque,	Outside dia.	FI A	ang	Nut	Overall length L _n	_	hole
W2003SS-1P-C5Z4	251																	
W2005SS-1P-C5Z4	451	20	4	2.381	20.3	17.8	2.5×2	5 420	10 700	290	3.9	40	63	24	11	49	51	5.5
W2008SS-1P-C5Z4	751																	
W2003SS-2P-C5Z5	244																	
W2005SS-2P-C5Z5	444	20	-	0 175	20 5	170	2 5.42	0 410	17 100	400	7.0	11	67	20	11	EC		E E
W2007SS-1P-C5Z5	644	20	5	3.175	20.5	17.2	2.5×2	9 4 10	17 100	490	7.8	44	07	20	111	90	20	5.5
W2010SS-1P-C5Z5	944																	

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

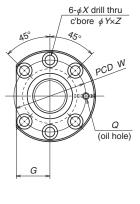
- 2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B285.

																				Unit: mm	
	din	ner	sions	Scr	ew	sha	aft d	lime	nsic	ons		d accu	,		lun-ou		Mass	Permissible rotational	spatial	Standard volume	SS
Ī	Bolt	nole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft	Nut O.D.	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing	
	Υ	Ζ	Q	Lt	d_2	L	L ₂	d ₃	L ₃	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm ³)	(cm³)	
ı				300			150		_	450	-0.007	0.023	0.018	0.055			1.5				
,	9.5	5.5	M6×1	500	20.2	40	150	17.8	50	700	-0.012	0.027	0.020	0.085	0.015	0.011	2.0	3 000	2.7	1.4	
				800			200		100	1 100	-0.019	0.035	0.025	0.140			2.9				
				300			150		_	450	-0.007	0.023	0.018	0.055			1.6				
			140.4	500			150	47.0	50	700	-0.012	0.027	0.020	0.085		0.044	2.2		4.0		
,	9.5	5.5	M6×1	700	20.2	40	200	17.2	100	1 000	-0.017	0.035	0.025	0.110	0.015	0.011	2.8	3 000	4.3	2.2	
				1 000			200		100	1 300	-0.024	0.040	0.027	0.180			3.5				

View X-X

		Seals (two places) X-1	1 G
C1	C0.5 6.3		C1 Canter hole
	L ₃	$ \stackrel{L_n}{=} L_t \text{ (hardened)} $	L ₂
	Not case hardened	L_{o}	Not case hardened

Nut type code: PFT


Ball screw No.	Stroke Max. L _t -L _n	shaft dia.	Lead	Ball dia.	Ball circle dia. d _m	Root dia.	Turns	(N Dvnamic	N)	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.	FI A	anç G	Nut ge B		Bolt W	
W2503SS-1P-C5Z4	252																	
W2506SS-1P-C5Z4	552	25	4	2.381	25.3	22.8	2.5×2	6020	13 600	290	4.9	46	69	26	11	48	57	5.5
W2510SS-1P-C5Z4	952																	
W2503SS-2P-C5Z5	245																	
W2505SS-1P-C5Z5	445	25	5	3.175	25.5	22.2	2 5./2	10 400	21 000	E40	8.8	EO	72	28	11		C1	E E
W2508SS-1P-C5Z5	745	25	5	3.175	25.5	22.2	Z.SXZ	10 400	21 900	540	0.0	50	/3	20	11	00	01	5.5
W2512SS-1P-C5Z5	1 145																	
W2504SS-1P-C5Z6	338																	
W2508SS-2P-C5Z6	738	25	6	3.969	25.5	21.4	2.5×2	14 100	26 800	690	13.8	53	76	29	11	62	64	5.5
W2512SS-2P-C5Z6	1 138																	

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

- Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.
- 3. Permissible rotational speed is determined by d n value and critical speed. See pages B47 and B285.

Unit: mm

dir	ner	nsions		ew	sha	aft c	lime	nsic	ons	Lead	d accu	ıracy	F	lun-ou	ıt	Mass	Permissible rotational	spatial	Standard volume	00
Bolt	hole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft	Nut O.D.	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing	
Y	Z	Q	L_{t}	d_2	L_1	L2	d ₃	L ₃	Ľ.	T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	I	J	K		N (min-1)	(cm³)	(cm³)	
			300			150		_	450	-0.007	0.023	0.018	0.040			2.2				
9.5	5.5	M6×1	600	25.2	40	200	22.8	100	900	-0.014	0.030	0.023	0.075	0.015	0.011	3.8	2 800	3.2	1.6	H
			1 000			200		100	1 300	-0.024	0.040	0.027	0.120			5.2				
			300			200		_	500	-0.007	0.023	0.018	0.040			2.5				
0 5	5.5	M6×1	500	25.2	10	200	22.2	50	750	-0.012	0.027	0.020	0.060	0.015	0 011	3.4	2 800	5.2	2.6	
9.5	0.5	IVIOXI	800	25.2	40	250	22.2	100	1 150	-0.019	0.035	0.025	0.090	0.015	0.011	4.8	2 000	0.2	2.0	
			1 200			300		100	1 600	-0.029	0.046	0.030	0.120			6.3				
			400			200		_	600	-0.010	0.025	0.020	0.050			3.0				
9.5	5.5	M6×1	800	25.2	40	250	21.4	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	4.8	2 800	7.0	3.5	
			1 200			300		100	1 600	-0.029	0.046	0.030	0.120			6.3				

View X-X

C0.5	C0.5	Seals (two places) X A B L A G	1 G	1 Center hole
_	L ₃	L _t (hardened)	L ₂	
1	Not case hardened	Lo	Not case hardened	

Nut type code: ZFD

Ball screw No.	Stroke Max. L _t -L _n	shaft dia.	Lead	Ball dia.	Ball circle dia. d _m	Root dia.	Turns	1) Dynamic	V)	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.	FI A	anç G	Nut	Overall length L _n	Bolt	hole
W2502SS-1ZY-C5Z5	184																	
W2504SS-3ZY-C5Z5	334																	
W2506SS-2ZY-C5Z5	534	25	5	3.175	25.75	22.4	1×3	9 790	22 900	740	13.8	40	63	24	11	66	51	5.5
W2509SS-1ZY-C5Z5	834																	
W2512SS-3ZY-C5Z5	1 134																	
W2504SS-4ZY-C5Z10	312																	
W2506SS-3ZY-C5Z10	512																	
W2508SS-3ZY-C5Z10	712	25	10	4.762	26.25	21.3	1×2	11 400	21 400	880	21.5	42	69	26	15	88	55	6.6
W2511SS-1ZY-C5Z10	1 012																	
W2515SS-2ZY-C5Z10	1 412																	

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d-n value and critical speed. See pages B47 and B285.

			Unit: mm	

dir	mer	nsions	Scr	ew	sha	aft c	lime	ensio	ons	Lead	d accu	ıracy	F	Run-ou	ıt	Mass	Permissible rotational	spatial	Standard volume	SS
Bolt	t hole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	end, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	replenishing	
Y	Z	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L_2	d_3	L_3	L_{\circ}	T	$e_{\scriptscriptstyle m p}$	$v_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm³)	(cm³)	
			250			200		_	450	-0.005	0.023	0.018	0.040			2.1				
			400			200		50	650	-0.009	0.025	0.020	0.060			2.8				
9.5	5.5	M6×1	600	25.2	40	250	22.4	100	950	-0.013	0.030	0.023	0.075	0.015	0.011	3.9	2 800	5.4	2.7	
			900			250		100	1 250	-0.021	0.040	0.027	0.090			4.9				
			1 200			300		100	1 600	-0.028	0.046	0.030	0.120			6.2				
			400			200		50	650	-0.008	0.025	0.020	0.060			3.0				
			600			250		100	950	-0.012	0.030	0.023	0.075			4.1				
11	6.5	M6×1	800	25.2	60	250	21.3	100	1 150	-0.017	0.035	0.025	0.090	0.015	0.011	4.8	2 800	9.0	4.5	
			1 100			300		100	1 500	-0.024	0.046	0.030	0.120			6.0				
			1 500			300		100	1 900	-0.034	0.054	0.035	0.150			7.4				

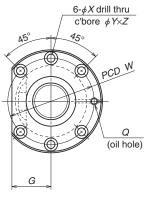
Center hole

C0.5

Not case hardened

1 J A

Center hole


-11 I G

1.6

Min. L₁

Not case hardened

Screw shaft ø25 Lead 10 Screw shaft ø28 Lead 5, 6

View X-X

Nut type code: PFT

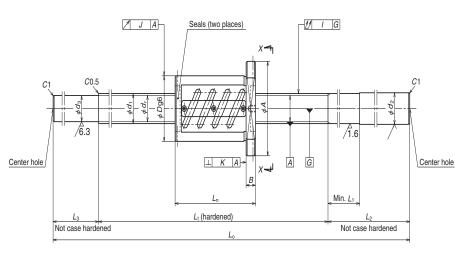
⊥ K A >

Lt (hardened)

A

Seals (two places)

Dell a servición	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns Turns		ad rating ()	Preload	Dynamic friction torque,			I	Nut	t		
Ball screw No.	L _t -L _n	d_1	l	D _w	dia.	dia.	× Circuits	Dynamic	Static	(N)	median (N.cm)	Outside dia.	FI	anç		Overall length		hole
W2504SS-2P-C5Z10	319	- '		"		·	Ondato	$C_{\rm a}$	C_{0a}		(14 0111)	D	Α	G	В	L _n	W	X
W2507SS-1P-C5Z10	619									=								
W2510SS-2P-C5Z10	919	25	10	4.762	25.5	20.5	1.5×2	11 600	19 000 	590	13.8	58	85	32	15	81	/1	6.6
W2515SS-1P-C5Z10	1 419																	
W2804SS-1P-C5Z5	344																	
W2806SS-1P-C5Z5	544	28	5	3.175	28.5	25.2	2.5×2	11 000	24 400	540	9.8	55	85	21	12	56	60	6.6
W2808SS-1P-C5Z5	744	20)	3.173	20.5	25.2	2.5/2	11 000	24 400	540	3.0	55	00	31	12	50	03	0.0
W2812SS-1P-C5Z5	1 144																	
W2804SS-3P-C5Z6	337																	
W2806SS-3P-C5Z6	537	28	6	3.175	28.5	25.2	2.5×2	11 000	24 400	5/10	10.8	55	85	31	12	63	69	6.6
W2808SS-3P-C5Z6	737	20	0	0.170	20.5	23.2	2.3/2	11 000	24 400	J40	10.0	00	00	01	12	03	03	0.0
W2812SS-3P-C5Z6	1 137																	

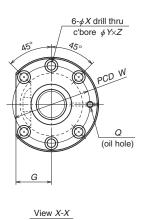

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B285.

	din	ner	sions	Scr	ew	sha	aft c	lime	nsic	ons	Lead	d accu	ıracy	F	ในท-ou	ıt	Mass		Internal spatial	volume	c.
	Bolt	hole	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft	Nut O.D. eccentricity	Flange nemendicularity	(kg)	specu	volume of nut	of grease replenishing	
	Y	Ζ	Q	$L_{\rm t}$	d_2	L_1	L ₂	d ₃	L ₃	Lo	T	$e_{\scriptscriptstyle \mathrm{p}}$	υu	I	J	K		N (min-1)	(cm³)	(cm³)	
ı				400			200		50	650	-0.010	0.025	0.020	0.060			3.8				
	11	6 5	M6×1	700	25.2	60	250	20.5	100	1 050	-0.017	0.035	0.025	0.090	0.019	0.012	5.1	2 800	9.7	4.9	
	11	0.5	IVIOXI	1 000	20.2	00	250	20.5	100	1 350	-0.024	0.040	0.027	0.120	0.019	0.013	6.1	2 000	9.7	4.5	
				1 500			300		100	1 900	-0.036	0.054	0.035	0.150			8.0				
				400			200		_	600	-0.010	0.025	0.020	0.050			3.7				
	11	C E	MCv.1	600	20.2	10	250	25.0	100	950	-0.014	0.030	0.023	0.075	0.010	0.010	5.2	2 500	C 1	0.1	
	11	0.0	M6×1	800	28.2	40	250	25.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	6.1	2 500	6.1	3.1	
				1 200			300		100	1 600	-0.029	0.046	0.030	0.120			8.1				
Ī				400			200		_	600	-0.010	0.025	0.020	0.050			3.8				
	11	C E	NAC-1	600	20.2	10	250	25.2	100	950	-0.014	0.030	0.023	0.075	0.010	0.010	5.3	2 500	C 1	2.1	
	11	0.5	M6×1	800	28.2	40	250	25.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	6.2	2 500	6.1	3.1	

100 1 600 -0.029 0.046 0.030 0.120

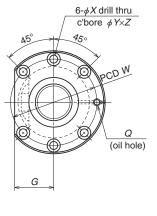

Nut type code: ZFT

Ball screw No.	Stroke Max. L _r -L _n	Screw shaft dia. <i>d</i> 1	Lead	Ball dia.	Ball circle dia. dm	Root dia.	Effective ball turns Turns X Circuits	Dynamic	Static	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.	FI	anç		Overall length		
		- 1					on ounto	C _a	C_{0a}		(1.1.0111)	D	Α	G	В	Ln	W	X
W2804SS-2Z-C5Z5	314																	
W2806SS-2Z-C5Z5	514	28	5	2 175	20 E	25.2	2 5.2	17 400	40 000	1 225	21.5	55	85	21	12	06	60	6.6
W2808SS-2Z-C5Z5	714	20	5	3.175	20.5	25.2	Z.SXZ	17 400	40 000	1 220	21.5	00	00	١٥١	12	00	09	0.0
W2812SS-2Z-C5Z5	1 114																	
W2804SS-4Z-C5Z6	301																	
W2806SS-4Z-C5Z6	501	28	6	2 175	20 E	25.2	2 5/2	17 400	10 onn	1 225	22.5	55	85	21	12	۵۵	60	6.6
W2808SS-4Z-C5Z6	701	20	0	3.175	20.5	25.2	Z.UXZ	17 400	40 000	1 220	22.5	55	00	ادا	12	שט	US	0.0
W2812SS-4Z-C5Z6	1 101	1																

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d-n value and critical speed. See pages B47 and B285.



Unit: mm

٠																					-
	din	ner	sions	Scr	ew	sha	aft d	lime	nsic	ons	Lead	d accu	ıracy	F	Run-ou	ıt	Mass	Permissible rotational	Internal spatial	Standard volume	SS
	Bolt	hole	Oil hole	Threaded length	Shaft	t end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft	Nut O.D. eccentricity	Flange	(kg)	эрсси	volume of nut	of grease replenishing	
	Υ	Ζ	Q	$L_{\rm t}$	d_2	L1	L ₂	d ₃	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	υu	I	J	K		N(min-1)	(cm³)	(cm³)	
				400			200		_	600	-0.010	0.025	0.020	0.050			4.7				
	11	G E	M6×1	600	28.2	10	250	25.2	100	950	-0.014	0.030	0.023	0.075	0.019	0.012	5.5	2 500	9.2	4.6	
	11	0.0	IVIOXI	800	ZÖ.Z	40	250	125.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	6.4	2 500	9.2	4.6	
				1 200			300		100	1 600	-0.029	0.046	0.030	0.120			8.4				
ľ				400			200		_	600	-0.010	0.025	0.020	0.050			4.2				
	11	6 5	M6×1	600	28.2	10	250	25.2	100	950	-0.014	0.030	0.023	0.075	0.019	0.012	5.7	2 500	9.5	4.8	
	11	0.5	IVIOXI	800	20.2	40	250	25.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	6.6	2 500	9.5	4.0	
				1 200			300		100	1 600	-0.029	0.046	0.030	0.120			8.6				

B315 B316

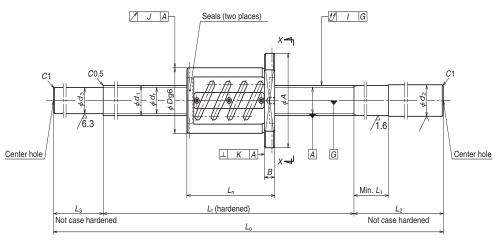
View X-X

Unit: mm

	dim	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	un-ou		Mass	Permissible rotational	Internal spatial	Standard volume	SS
Е	Bolt	hole	Э	Oil hole	Threaded length	Shaft	end,	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange nemendicularity	(kg)	speed		of grease replenishing	
W	Χ	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L_2	d_3	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm³)	(cm³)	
					400			200		50	650	-0.010	0.025	0.020	0.060			4.8				
					600			250		100	950	-0.014	0.030	0.023	0.075			6.5				
71	6.6	11	6.5	M6×1	800	32.3	40	250	29.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	7.7	2 180	6.9	3.5	
					1 200			300		100	1 600	-0.029	0.046	0.030	0.120			10.3				
					1 500			300		100	1 900	-0.036	0.054	0.035	0.150			12.1				
					600			250			950	-0.014	0.030	0.023	0.075			6.7				
75	6.6	11	6.5	M6×1	1 000	32.3	40	300	28.4	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	9.2	2 180	9.4	4.7	
					1 500			300			1 900	-0.036	0.054	0.035	0.150			12.1				

C1	C0.5 0 0 6.3	Seals (two places) X A G L A G	C1	er hole
	L ₃	L _t (hardened)	L ₂	
	Not case hardened	L _o	Not case hardened	

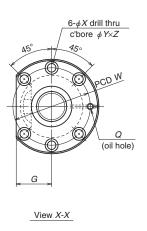
Nut type code: PFT


Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d_1	Lead <i>l</i>	Ball dia. D _w	Ball circle dia. d _m	Root dia. <i>d</i> _r	Turns	Dynamic	۷)	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut lang		Overall length
W3204SS-1P-C5Z5	344															
W3206SS-1P-C5Z5	544															
W3208SS-1P-C5Z5	744	32	5	3.175	32.5	29.2	2.5×2	11 600	28 000	590	10.8	58	85	32	12	56
W3212SS-1P-C5Z5	1 144															
W3215SS-1P-C5Z5	1 444															
W3206SS-3P-C5Z6	537															
W3210SS-1P-C5Z6	937	32	6	3.969	32.5	28.4	2.5×2	15 500	34 700	780	15.6	62	89	34	12	63
W3215SS-3P-C5Z6	1 437															

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

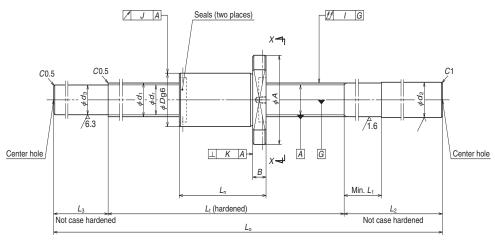
Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d-n value and critical speed. See pages B47 and B285.


Nut type code: ZFT

Ball screw No.	Stroke Max. L _t -L _n	Screw shaft dia. d ₁	Lead <i>l</i>	Ball dia.	Ball circle dia. d _m	Root dia. <i>d</i> _r	Effective ball turns Turns × Circuits	(N Dynamic		Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.		Nut ang <i>G</i>		Overall length
W3204SS-2Z-C5Z5	314															
W3206SS-2Z-C5Z5	514															
W3208SS-2Z-C5Z5	714	32	5	3.175	32.5	29.2	2.5×2	18 500	56 100	1 270	22.5	58	85	32	12	86
W3212SS-2Z-C5Z5	1 114															
W3215SS-2Z-C5Z5	1 414															
W3206SS-4Z-C5Z6	501															
W3210SS-2Z-C5Z6	901	32	6	3.969	32.5	28.4	2.5×2	24 700	69 400	1 720	34.5	62	89	34	12	99
W3215SS-4Z-C5Z6	1 401															
W3206SS-5Z-C5Z8	518															
W3210SS-3Z-C5Z8	918	32	8	4.762	32.5	27.5	2.5×1	17 500	41 000	1 320	30.5	66	100	38	15	82
W3215SS-5Z-C5Z8	1 418															

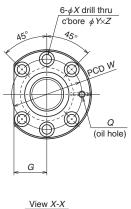
Notes: 1. Use of NSK support unit is recommended. See page B375 for details.


Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d-n value and critical speed. See pages B47 and B285.

	dim	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun-oı		Mass	Permissible rotational	Internal spatial	Standard volume	SS
E	3olt	hole	Э	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing	
W	X	Y	Z	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L_2	d₃	L ₃	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	Ĭ	J	K		N (min-1)	(cm³)	(cm³)	
					400			200		50	650	-0.010	0.025	0.020	0.060			5.1				
					600			250		100	950	-0.014	0.030	0.023	0.075			6.9				
71	6.6	11	6.5	M6×1	800	32.3	40	250	29.2	100	1 150	-0.019	0.035	0.025	0.090	0.019	0.013	8.0	2 180	10	5.0	
					1 200			300		100	1 600	-0.029	0.046	0.030	0.120			10.1				
					1 500			300		100	1 900	-0.036	0.054	0.035	0.150			12.4				
					600			250		_	950	-0.014	0.030	0.023	0.075			7.1				
75	6.6	11	6.5	M6×1	1 000	32.3	40	300	28.4	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	9.7	2 180	15	7.5	
					1 500			300		_	1 900	-0.036	0.054	0.035	0.150			12.6				
					600			250		_	950	-0.014	0.030	0.023	0.075			7.3				
82	9	14	8.5	M6×1	1 000	32.3	50	300	27.5	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	9.8	2 180	7.9	4.0	
					1 500			300		_	1 900	-0.036	0.054	0.035	0.150			12.6				

Nut type code: ZFD

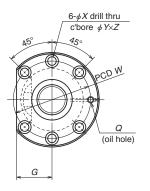

Ball screw No.	Stroke Max. <i>L</i> _t - <i>L</i> _n		Lead <i>l</i>	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia. <i>d</i> _r	Turns	Dynamic	N) Static	Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.	F	Nut	je	Overall length
14/000 400 071/ 0575	000				""		Circuits	C _a	C_{0a}		(14-011)	D	Α	G	В	L _n
W3204SS-3ZY-C5Z5	323															
W3206SS-6ZY-C5Z5	523															
W3209SS-1ZY-C5Z5	823	32	5	3.175	32.75	29.4	4	14 200	40 700	1 080	19.6	48	75	29	12	77
W3212SS-3ZY-C5Z5	1 123															
W3216SS-1ZY-C5Z5	1 523															
W3205SS-3ZY-C5Z10	380															
W3207SS-3ZY-C5Z10	580															
W3210SS-6ZY-C5Z10	880	32	10	6.35	33.75	27.1	3	25 900	52 800	1 860	49.0	54	88	34	15	120
W3214SS-3ZY-C5Z10	1 280															
W3218SS-3ZY-C5Z10	1 680															

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

See page D13 for details

3. Permissible rotational speed is determined by d n value and critical speed. See pages B47 and B285.



VIEW X-X

	dim	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun-oı	ut	Mass	Permissible rotational	Internal spatial	Standard volume	SS
	3olt	hole	Э	Oil hole	Threaded length	Shaft	end,	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing	
W	X	Y	Z	Q	$L_{\rm t}$	d_2	L_1	L_2	d ₃	L ₃	L	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm³)	(cm³)	
					400			200		50	650	-0.009	0.025	0.020	0.060			4.6				
					600			250		100	950	-0.013	0.030	0.023	0.075			6.4				
61	6.6	11	6.5	M6×1	900	32.3	40	250	29.4	100	1 250	-0.021	0.040	0.027	0.090	0.015	0.011	8.1	2 180	22	11	
					1 200			300		100	1 600	-0.028	0.046	0.030	0.120			10.2				
					1 600			300		100	2 000	-0.037	0.054	0.035	0.150			12.6				
					500			250		100	850	-0.010	0.027	0.020	0.075			6.2				
					700			250		100	1 050	-0.015	0.035	0.025	0.090			7.3				
70	9	14	8.5	M6×1	1 000	32.3	60	300	27.1	100	1 400	-0.022	0.040	0.027	0.120	0.019	0.013	9.3	2 180	23	12	
					1 400			350		120	1 870	-0.032	0.054	0.035	0.150			11.9				
					1 800			350		120	2 270	-0.041	0.065	0.040	0.200			14.1				

Unit: mm

Screw shaft ø32, ø36 Lead 10 Screw shaft ø40 Lead 5

View X-X

Center hole	C0.5 6.3	Seals (two places) X A B L A G	G	Center hole
	L ₃	L _t (hardened)	L ₂	
	Not case hardened	Lo	Not case hardened	

Nut type code: ZFT

							Effective	Dagia la	ad rating							
	Stroke	Screw	Lead	Ball			ball turns	Dasic 10/		Preload	Dynamic friction			Nu	t	
Ball screw No.	Max.	shaft dia.		dia.	circle dia.	dia.	Turns	Dynamic	· .	(N)	torque, median	Outside dia.	F	ang	е	Overall length
	$L_{t}-L_{n}$	d_1	l	$D_{\rm w}$	$d_{\rm m}$	d_{r}	Circuits		C_{0a}	(,	(N·cm)	D	Α	G	В	Ln
W3205SS-1Z-C5Z10	400															
W3207SS-1Z-C5Z10	600															
W3210SS-4Z-C5Z10	900	32	10	6.350	33	26.4	2.5×1	25 500	54 000	1 960	50	74	108	41	15	100
W3214SS-1Z-C5Z10	1 300															
W3218SS-1Z-C5Z10	1 700															
W3607SS-1Z-C5Z10	597															
W3612SS-1Z-C5Z10	1 097	36	10	6.350	37	30.4	2.5×1	27 200	61 300	2 060	56	75	120	45	18	103
W3620SS-1Z-C5Z10	1 897															
W4006SS-1Z-C5Z5	511															
W4010SS-1Z-C5Z5	911	40	5	3.175	40.5	37.2	2.5×2	20 200	70 600	1 420	28.5	67	101	39	15	89
W4016SS-1Z-C5Z5	1 511															

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d-n value and critical speed. See pages B47 and B285.

	din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	F	lun-oı	ut	Mass	Permissible rotational	Internal spatial	Standard volume	Š
	3olt	hole	Э	Oil hole	Threaded length	Shaft	end	right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing	
W	X	Y	Z	Q	$L_{\rm t}$	d_2	L_1	L ₂	d ₃	L ₃	L _o	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm ³)		
					500			250		100	850	-0.012	0.027	0.020	0.075			7.5				
					700			250		100	1 050	-0.017	0.035	0.025	0.090			8.5				
90	9	14	8.5	M6×1	1 000	32.3	60	300	26.4	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	10.5	2 180	22	11	
					1 400			350		120	1 870	-0.034	0.054	0.035	0.150			13.1				
					1 800			350		120	2 270	-0.043	0.065	0.040	0.200			15.2				
					700			300		100	1 100	-0.017	0.035	0.025	0.065			10.9				
98	11	17.5	11	M6×1	1 200	36.3	60	350	30.4	120	1 670	-0.029	0.046	0.030	0.100	0.019	0.013	14.9	1 940	27	14	
					2 000			350		120	2 470	-0.048	0.065	0.040	0.130			20.4				
					600			300			1 000	-0.014	0.030	0.023	0.050			11.1				
83	9	14	8.5	Rc1/8	1 000	40.3	50	300	37.2	100	1 400	-0.024	0.040	0.027	0.080	0.019	0.013	14.8	1 750	14	7.0	
					1 600			350			2 050	-0.038	0.054	0.035	0.130			20.8				

B323 B324

Screw shaft ø32, ø36

Lead 10

Unit: mm

22.3

View X-X

2 000

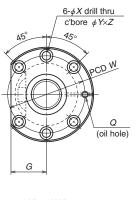
L_n $Min. L_1$	Center hole
L_3 L_1 (hardened) L_2	
Not case hardened L _o	

Nut type code: DFT

Ball screw No.	Stroke Max. L _t -L _n		Lead <i>l</i>	Ball dia. <i>D</i> "	Ball circle dia. d _m	Root dia. <i>d</i> r	Effective ball turns Turns X Circuits	Basic loa (N Dynamic <i>C</i> _a		Preload (N)	Dynamic friction torque, median (N·cm)	Outside dia.	F A	Nu lang <i>G</i>		Overall length
W3205SS-2D-C5Z10	310															
W3207SS-2D-C5Z10	510															
W3210SS-5D-C5Z10	810	32	10	6.350	33	26.4	2.5×2	46 300	108 000	3 240	83	74	108	41	15	190
W3214SS-2D-C5Z10	1 210															
W3218SS-2D-C5Z10	1 610															
W3607SS-2D-C5Z10	507															
W3612SS-2D-C5Z10	1 007	36	10	6.350	37	30.4	2.5×2	49 300	123 000	3 430	93	75	120	45	18	193
W3620SS-2D-C5Z10	1 807															

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.


See page D13 for details

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B285.

		dim	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun-oı	ut	Macc	Permissible rotational	Internal spatial	Standard volume	00
	Е	3olt	hole)	Oil hole	Threaded length	Shaft	end,	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	of nut	renlenishinn	
	W	X	Y	Z	Q	$L_{\rm t}$	d_2	L_1	L ₂	d₃	L ₃	Lo	T	$e_{\scriptscriptstyle p}$	υu	I	J	K	Ū	N (min-1)	(cm ³)	(cm³)	
ı						500			250		100	850	-0.012	0.027	0.020	0.075			9.5				
						700			250		100	1 050	-0.017	0.035	0.025	0.090			10.6				
	90	9	14	8.5	M6×1	1 000	32.3	60	300	26.4	100	1 400	-0.024	0.040	0.027	0.120	0.019	0.013	12.5	2 180	57	29	
						1 400			350		120	1 870	-0.034	0.054	0.035	0.150			15.1				
						1 800			350		120	2 270	-0.043	0.065	0.040	0.200			17.2				
						700			300		100	1 100	-0.017	0.035	0.025	0.065			12.8				

98 | 11 | 17.5 | 11 | M6×1 | 1 200 | 36.3 | 60 | 350 | 30.4 | 120 | 1 670 | -0.029 | 0.046 | 0.030 | 0.100 | 0.019 | 0.013 | 16.8 | 1 940 | 67 | 34

120 2 470 -0.048 0.065 0.040 0.130

View X-X

Center hole	C0.5 5.3	J A		A G		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	C1Center hole
<u>L₃</u>			L _t (hardened)		L ₂		
Not case	hardened		Lo		Not case h	nardened >	

Nut type code: ZFT

Ball screw No.	Stroke Max.		Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns Turns	Basic loa (1	ad rating V)	Preload	Dynamic friction			Nut		
Dali Screw No.			,		dia.			Dynamic	Static	(N)	torque, median	Outside dia.	F	lang	e	Overall length
	$L_{t}-L_{n}$	d_1	l	$D_{\rm w}$	$d_{\rm m}$	d _r	Circuits	Ca	C_{0a}		(N·cm)	D	Α	G	В	L
W4007SS-1Z-C5Z8	570															
W4012SS-1Z-C5Z8	1 070	40	8	4.762	40.5	35.5	2.5×2	34 900	103 000	2 450	64	74	108	41	15	130
W4018SS-1Z-C5Z8	1 670															
W4007SS-2Z-C5Z10	597															
W4010SS-2Z-C5Z10	897															
W4014SS-1Z-C5Z10	1 297	40	10	6.350	41	34.4	2.5×1	28 600	68 600	2 160	64	82	124	47	18	103
W4018SS-2Z-C5Z10	1 697															
W4024SS-1Z-C5Z10	2 297															
W4010SS-4Z-C5Z12	883															
W4016SS-2Z-C5Z12	1 483	40	12	7.144	41.5	34.1	2.5×1	33 600	77 500	2 550	83	86	128	48	18	117
W4025SS-1Z-C5Z12	2 383															

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use.

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B285.

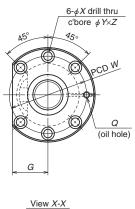
	dim	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun-ou	ıt	Mass	Permissible rotational	Internal spatial	Standard volume	SS
E	3olt	hole	9	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing	
W	X	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L_2	d_3	L ₃	Ľ.	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	Ĭ	J	Κ		N (min-1)	(cm³)	(cm³)	
					700			300		100	1 100	-0.017	0.035	0.025	0.065			13.0				
90	9	14	8.5	Rc1/8	1 200	40.3	50	350	35.5	100	1 650	-0.029	0.046	0.030	0.100	0.019	0.013	18.0	1 750	27	14	
					1 800			350		120	2 270	-0.043	0.065	0.040	0.130			23.5				
					700			300		100	1 100	-0.017	0.035	0.025	0.065			13.3				
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			15.9				
102	11	17.5	11	Rc1/8	1 400	40.3	60	350	34.4	120	1 870	-0.034	0.054	0.035	0.100	0.025	0.015	20.0	1 750	30	15	
					1 800			350		120	2 270	-0.043	0.065	0.040	0.130			23.4				
					2 400			400		150	2 950	-0.058	0.077	0.046	0.170			29.4				
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			16.7				
106	11	17.5	11	Rc1/8	1 600	40.3	70	350	34.1	150	2 100	-0.038	0.054	0.035	0.130	0.025	0.015	22.9	1 750	35	18	
					2 500			400		150	3 050	-0.060	0.077	0.046	0.170			31.1				

Not case hardened

Center hole

/ J A

Seals (two places)


Center hole

_11 I G

Min. L_1

Not case hardened

Lead 10, 12

Nut type code: DFT

Lt (hardened)

⊥ K A →

Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	circle	Root dia.	Effective ball turns Turns	Basic loa		Preload				Nut		
Buil Solow Ivo.	L_{t} - L_{n}	d ₁	l	D _w	$d_{\rm m}$	d _r	× Circuits	Dynamic <i>C</i> _a	Static C _{0a}	(N)	median (N·cm)	Outside dia.	A FI	lang <i>G</i>	е В	Overall length
W4007SS-3D-C5Z10	507															
W4010SS-3D-C5Z10	807															
W4014SS-2D-C5Z10	1 207	40	10	6.350	41	34.4	2.5×2	52 000	137 000	3 630	108	82	124	47	18	193
W4018SS-3D-C5Z10	1 607															
W4024SS-2D-C5Z10	2 207															
W4010SS-5D-C5Z12	775															
W4016SS-3D-C5Z12	1 375	40	12	7.144	41.5	34.1	2.5×2	61 000	155 000	4 310	138	86	128	48	18	225
W4025SS-2D-C5Z12	2 275	1														

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

2. Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B285.

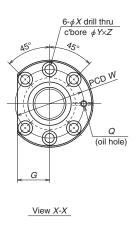
Unit: mm

	dim	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	un-ou	ıt	Mass	Permissible rotational	spatial	volume	00
	3olt	hole	_	_	Threaded length	Shaft	end	right	Shaft e	end, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed N. (min-1)	of nut	molonishina	ı
W	X	Y	Ζ	Q	$L_{\rm t}$	d_2	L_1	L_2	d_3	L_3	L_{\circ}	Τ	$e_{\scriptscriptstyle p}$	$\nu_{\scriptscriptstyle u}$	I	J	Κ		N (min-1)	(cm ⁻)	(cm ⁻)	
					700			300		100	1 100	-0.017	0.035	0.025	0.065			15.5				
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			18.1				Н
102	11	17.5	11	Rc1/8	1 400	40.3	60	350	34.4	120	1 870	-0.034	0.054	0.035	0.100	0.025	0.015	22.2	1 750	74	37	
					1 800			350		120	2 270	-0.043	0.065	0.040	0.130			25.6				
					2 400			400		150	2 950	-0.058	0.077	0.046	0.170			31.6				
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			19.7				
106	11	17.5	11	Rc1/8	1 600	40.3	70	350	34.1	150	2 100	-0.038	0.054	0.035	0.130	0.025	0.015	25.8	1 750	93	47	
					2 500			400		150	3 050	-0.060	0.077	0.046	0.170			34.0				

B329 B330 Not case hardened

Center hole

/ J A


Center hole

1.6

Min. L₁

Not case hardened

Unit: mm

Lead 10

Nut type code: ZFD

В

Seals (two places)

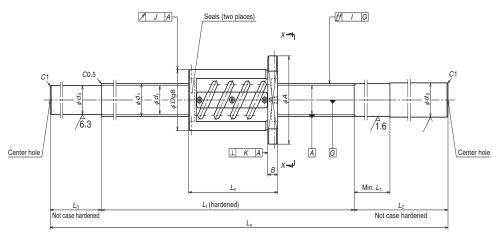
⊥ K A →

Lt (hardened)

Ball screw No	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	CIICIC	Root dia.	Effective ball	(1)	1	Preload	Dynamic friction torque,			Nut		
Ball colow ive.	L _t -L _n	d ₁	ı	D _w	$d_{\rm m}$	d,	turns	Dynamic	Static	(N)	median	Outside dia.	F	ang	е	Overall length
	—t —n	G ₁	ľ	D _W	um	u _r		C_{a}	$C_{\scriptscriptstyle \mathrm{0a}}$		(N·cm)	D	Α	G	В	L_{n}
W4007SS-4ZY-C5Z10	557															
W4010SS-6ZY-C5Z10	857															
W4014SS-3ZY-C5Z10	1 257	40	10	6.350	41.75	35.1	4	38 400	93 300	2 840	83	62	104	40	18	143
W4018SS-4ZY-C5Z10	1 657															
W4024SS-3ZY-C5Z10	2 257															
W5007SS-1ZY-C5Z10	557															
W5010SS-3ZY-C5Z10	857															
W5015SS-3ZY-C5Z10	1 357	50	10	6.350	51.75	45.1	4	43 600	122 000	3 240	108	72	114	44	18	143
W5020SS-3ZY-C5Z10	1 857															
W5026SS-3ZY-C5Z10	2 457															

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

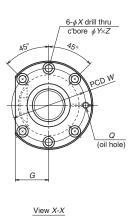

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B285.

	din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	F	lun-ou	ut	Mass	Permissible rotational	spatial	Standard volume	SS
Е	Bolt	hole	9	Oil hole	Threaded length	Shaft	end,	, right	Shaft e	nd, left	Overall	Travel compensation	Deviation	Variation	Shaft strainhtness	Nut O.D. eccentricity	Flange nemendicularity	(kg)	speed	volume of nut	of grease replenishing	
W	X	Y	Ζ	Q	$L_{\rm t}$	$d_{\scriptscriptstyle 2}$	L_1	L ₂	d_3	L ₃	L	T	$e_{\scriptscriptstyle p}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm³)	(cm³)	
					700			300		100	1 100	-0.015	0.035	0.025	0.065			12.1				
					1 000			300		100	1 400	-0.022	0.040	0.027	0.080			14.7				
82	11	17.5	11	Rc1/8	1 400	40.3	60	350	35.1	120	1 870	-0.032	0.054	0.035	0.100	0.019	0.013	18.9	1 750	32	16	
					1 800			350		120	2 270	-0.041	0.065	0.040	0.130			22.5				
					2 400			400		150	2 950	-0.056	0.077	0.046	0.170			28.5				
					700			300		100	1 100	-0.015	0.035	0.025	0.065			18.3				
					1 000			300		100	1 400	-0.022	0.040	0.027	0.080			22.5				
92	11	17.5	11	Rc1/8	1 500	50.3	60	400	45.1	150	2 050	-0.034	0.054	0.035	0.130	0.019	0.013	31.8	1 400	39	20	
					2 000			400		150	2 550	-0.046	0.065	0.040	0.170			38.9				
					2 600			500	1	200	3 300	-0.060	0.093	0.054	0.220			49.5				

B331 B332

Screw shaft ø45, ø50

Lead 10


Nut type code: ZFT

Ball screw No.	Stroke Max.	Screw shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective ball turns Turns	Basic loa	ad rating V)	Preload	Dynamic friction			Nut		
Dall Screw IVO.			,	_	dia.		X	Dynamic	Static	(N)	torque, median	Outside dia.	F	lang	е	Overall length
	$L_{t}-L_{n}$	d_1	l	$D_{\rm w}$	$d_{\rm m}$	d_{r}	Circuits	C_{a}	$C_{\scriptscriptstyle 0a}$		(N.cm)	D	Α	G	В	Ln
W4510SS-1Z-C5Z10	897															
W4516SS-1Z-C5Z10	1 497	45	10	6.350	46	39.4	2.5×1	29 900	77 300	2 260	69	88	132	50	18	103
W4525SS-1Z-C5Z10	2 397															
W5010SS-1Z-C5Z10	897															
W5015SS-1Z-C5Z10	1 397	EU	10	6 250	51	111	2 5.7	21 000	07 400	2 450	78	02	105	51	18	100
W5020SS-1Z-C5Z10	1 897	50	10	6.350	51	44.4	2.5×1	31 800	87 400	2 450	/8	93	135	וכ	18	103
W5026SS-1Z-C5Z10	2 497															
W5010SS-2Z-C5Z10	837															
W5015SS-2Z-C5Z10	1 337	E0.	10	0.050	E1	11.1	0.500	F7 700	175 000	4 000	100	02	105	E1	10	100
W5020SS-2Z-C5Z10	1 837	50	10	6.350	51	44.4	2.5×2	57 700	1/5 000	4 020	138	93	135	51	18	163
W5026SS-2Z-C5Z10	2 437															

Notes: 1. Use of NSK support unit is recommended. See page B375 for details.

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B285.

	din	nens	sion	S	Sc	rew	sh	aft c	lime	nsio	ns	Lead	accu	racy	R	lun-oı	ut	Mass	Permissible rotational	Internal spatial	Standard volume	SS
	3olt	hole	Э	Oil hole	Threaded length	Shaft	end	, right	Shaft e	nd, left	Overall length	Travel compensation	Deviation	Variation	Shaft straightness	Nut O.D. eccentricity	Flange perpendicularity	(kg)	speed	volume of nut	of grease replenishing	
W	X	Y	Ζ	Q	$L_{\rm t}$	d_2	L_1	L_2	d₃	L ₃	L _o	T	$e_{\scriptscriptstyle \mathrm{p}}$	$\upsilon_{\scriptscriptstyle u}$	I	J	K		N (min-1)	(cm³)	(cm³)	
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			19.7				
110	11	17.5	11	Rc1/8	1 600	45.3	60	400	39.4	150	2 150	-0.038	0.054	0.035	0.130	0.025	0.015	28.1	1 550	34	17	Н
					2 500			450		150	3 100	-0.060	0.077	0.046	0.170			38.8				
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			23.8				
113	11	17.5	11	D ₀ 1/0	1 500	50.3	60	400	44.4	150	2 050	-0.036	0.054	0.035	0.130	0.025	0.015	32.9	1 400	37	19	
113		17.5	11	Rc1/8	2 000	50.5	00	400	44.4	150	2 550	-0.048	0.065	0.040	0.170	0.025	0.015	39.8	1 400	3/	19	
					2 600			450		150	3 200	-0.062	0.093	0.054	0.220			48.9				
					1 000			300		100	1 400	-0.024	0.040	0.027	0.080			25.5				
110	11	17 5	11	D ₀ 1/0	1 500	E0 2	60	400	111	150	2 050	-0.036	0.054	0.035	0.130	0.025	0.015	34.6	1 400	EO	30	
113	11	17.5	11	Rc1/8	2 000	50.3	00	400	44.4	150	2 550	-0.048	0.065	0.040	0.170	0.025	0.015	41.5	1 400	59	30	
					2 600			450		150	3 200	-0.062	0.093	0.054	0.220			50.7				

B-3-1.10 Ball Screws for Transfer Equipment

1. Features

Transporting mechanism

A series with accuracy grades of Ct7 and Ct10 only demonstrates high ball screw performance for transporting mechanism of Cartesian type robots and single axis actuators.

The following types are categorized ball screw for transfer equipment. VFA and RMA types have finished shaft ends. RMS type, R series of RNFTL, RNFBL, RNCT, RNFCL, and RNSTL types have blank shaft ends. Table 1 Classifications of ball screws for transfer equipment

Finished shaft end	VFA type, RMA type
	RMS type
D	R Series
Blank shaft end	RNFTL type, RNFBL type
	RNCT type, RNFCL type, RNSTL type

Interchangeable screw shaft and ball nut Screw shaft and nut assembly components are sold separately, and randomly-matched. The

maximum axial play after assembly is shown in the dimension tables.

2. Specifications

(1) Ball recirculation system

Figs. 1, 2, and 3 show the structures of ball return tube, deflector, and end cap ball recirculation systems. Deflector recirculation system has the feature of compact nut outside diameter for small lead. End cap recirculation system is for screws with high helix lead and multiple start threads. Since the leads are in the range larger than 1.3 times of the screw shaft diameter, it is suitable for high-speed operation.

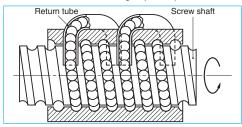


Fig. 1 Structure of return tube recirculation system B335



Fig. 2 Structure of deflector recirculation system

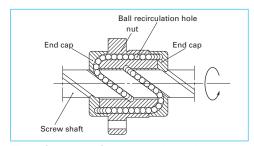


Fig. 3 Structure of end cap recirculation system

(2) Accuracy grade and axial play

Standard lead accuracy and axial play are shown on **Table 2**. Axial play varies with internal specification. Refer to the dimension tables.

Table 2 Accuracy grade and axial play

Accuracy grade	VFA type, RMA type, RMS type: Ct7 R Series: Ct10
Axial play	See dimension tables

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Table 3 Allowable d·n value and the criterion of maximum rotational speed

Allowable d∙n value	50 000 or less
Criterion of maximum rotational speed	3 000 min ⁻¹
den value: shaft dia d	[mm] × rotational speed n [min-1]

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

3. Design precautions

For general precautions regarding ball screws, refer to "Design Precautions" (page B80) and "Handling Precautions" (page B99).

(1) Nut installation

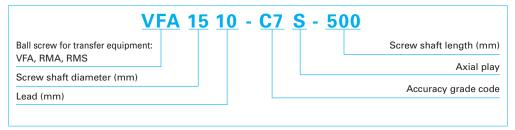
Nut assembly and the screw shaft are separated at the time of delivery. Refer to "Technical Description: Installation of Ball Screw" (page B73) for installation of ball nut assembly.

(2) Shaft end machining

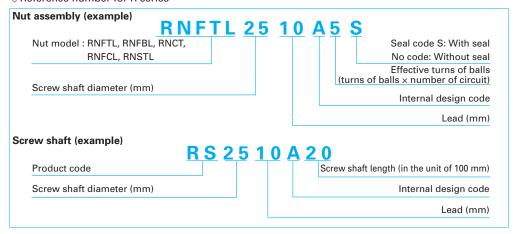
It is necessary to machine screw shaft end of RMS and R series. Refer to "Selection Guide to NSK Ball Screw: Configuration of shaft end" (page B27) if you use standard support units. Refer to "Technical Description: Shaft End Machining" (page B79) for procedures and precautions.

4. Product categories

Ball screws for transfer equipment have models as follows.


Table 4 Product categories of ball screws for transfer equipment

Nut model	Shape	Flange shape	Recirculation system	Preload system	Page
VFA		Flanged rectangular	Return tube type	Non- preload Slight axial play	B339 - B344
RMA RMS		Flanged Circular II	Deflector type	Non- preload Slight axial play	B345 - B358
RNFTL	internation of annumerators	Flanged Circular I Projecting tube type	Return tube type	Non- preload Slight axial play	B359 - B362
RNFBL		Flanged Circular II	Return tube type	Non- preload Slight axial play	B365
RNCT	nnessesses	V-thread (no flange) Projecting tube type	Return tube type	Non- preload Slight axial play	B367
RNFCL		Flanged Circular II	End cap type	Non- preload Slight axial play	B369 - B372
RNSTL	MANANANA DE PUDDANANANA	Square type	Return tube type	Non- preload Slight axial play	B373


5. Structure of reference number

The followings describe the structure of "Reference number for ball screw".

♦ Reference number for VFA, RMA, and RMS types

♦ Reference number for R series

6. Combinations of shaft diameter and lead

Combinations of shaft diameter and lead are shown below.

For details of standard stock products, contact NSK.

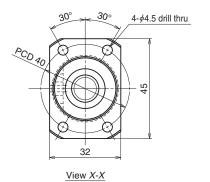
Table 5 Combinations of shaft diameter and lead for VFA, RMA, RMS types

Lead Screw shaft diameter	1	1.5	2	10	20
6	B345, 357				
8	B347, 357	B349, 357	B351, 357		
10			B353, 357		
12			B355, 357	B339	
15				B341	B343

Table 6 Combinations of shaft diameter and lead for R series

	Table 6 Combinations of Share diameter and read for it series															
Screw shaft										١,						
diameter (mm)	3	4	5	6	8	10	12	16	20	25	32	40	50	64	80	
10	○B359 △B367			○B359●B365												9
12					○B359●B365		○B363@B369									ı
14		○B359 ●B365 △B367 □B373	○B359 ●B365 △B367 □B373													Can Colone to manere Equipment
15									©B369							ı
16						○B359		○B363 ○B369			©B371					1
18					○B359●B365 △B367□B373											
20			○B359 ●B365 △B367 □B373			○B359●B365 □B373			○B363 ○B369			◎B371				
25			○B359 ●B365 △B367 □B373			○B359 ●B365 △B367 □B373				○B363 ○B369			©B371			
28				○B361 ●B365 △B367 □B373												
32						○B361 ●B365 △B367 □B373					○B363 ○B369			©B371		
36						○B361 ●B365 △B367 □B373										_
40						○B361△B367 ●B365						○B363 ○B369			©B371	
45							○B361 △B367□B373									
50						○B361 △B367		○B361 △B367					© B369			

O: RNFTL ●: RNFBL △: RNCT O: RNFCL □: RNSTL


B337 B338

Screw shaft ø12

Lead 10

Unit: mm

	Ball screw s	pecification			
Shaft dia.xLead	/ Direction of turn	12 × 10 / Right			
Ball reci	rculation	Return tube			
Ball dia. / B	all circle dia.	2.381 / 12.5			
Screw sha	aft root dia.	10.0			
Effective to	urns of balls	2.5 × 1			
Accuracy grade	/ Axial play code	Ct7 / S			
	Dynamic C _a	3 750			
rating (N)	Static C _{0a}	6 480			
Axia	l play	0.010 or less			
,	ction torque cm)	1.5 or less			
Spacer ball Factory-packed grease		None			
		NSK grease LR3			
Internal spatial v	olume of nut (cm³)	1.4			
Reference of grease	replenishing amount	0.7			

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)			
WBK10-01A (square)	WBK12SF-01 (square)			
WBK10-11 (round)				

	Unit: mm
Shaft	Permissible rotational speed N (min ⁻¹)

Load agaireau				1 1	T CITTIOSIDIC TOtational Special N (ITIIIT)			
Lead accuracy			run-out** Mass (kg)		Supporting condition			
T	$e_{\scriptscriptstyle m p}$	$v_{\scriptscriptstyle 300}$			Fixed - Simple support	Fixed - Free		
0	0.085	0.052	0.100	0.56	3 000	3 000		
0	0.155	0.052	0.160	0.73	3 000	1 300		

2-seals X

	Str	oke	Screw shaft length			
Ball screw No.	Namainal	Maximum				
	Nominal	(L_t -nut length)	L_{t}	La	L。	
VFA1210C7S-410	250	260	310	365	410	
VFA1210C7S-610	450	460	510	565	610	

Notes: 1. We recommend NSK support units (page B375). WBK12SF-01 (on simple support side) supports ball screw directly on shaft outside diameter.

Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space.
 See page D16 for details.

3. Permissible rotational speed is determined by d · n value and critical speed. See pages B47 and B335.

B339 B340

 ϕ 3.5 (oil hole) <u>⊥</u>0.018 A

40

52

Lt (hardened)

7 5

Min. 230

(range of 15h8 dia.)

25

/ 0.014 E

√ 0.030 A

10

15

/M12×1

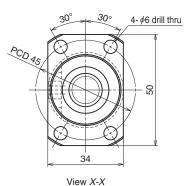
← ⊥ 0.008 *E*

30

45

30

C0.3


C0.5 C0.5 C0.5

Screw shaft ø15

Lead 10

Unit: mm

Ball screw specification				
Shaft dia.×Lead	Direction of turn	15 × 10 / Right		
Ball reci	rculation	Return tube		
Ball dia. / B	all circle dia.	3.175 / 15.5		
Screw sha	aft root dia.	12.2		
Effective to	urns of balls	2.5 × 1		
Accuracy grade / Axial play code		Ct7 / S		
Basic load	Dynamic C _a	7 070		
rating (N)	Static C _{0a}	12 800		
Axia	l play	0.010 or less		
Dynamic friction torque (N·cm)		2.5 or less		
,	er ball	None		
Factory-page	cked grease	NSK grease LR3		

Recommended support unit

2.3 1.2

Factory-packed grease Internal spatial volume of nut (cm3)

Reference of grease replenishing amount

For drive side (Fixed)	For opposite to drive side (Simple)			
WBK12-01A (square)	WBK15SF-01 (square)	•		
WBK12-11 (round)				

	Str	oke	Screw shaft length			
Ball screw No.	Nisasiasi	Maximum				
	Nominal	(L _t -nut length)	L_{t}	La	Lo	
VFA1510C7S-500	300	348	400	455	500	
VFA1510C7S-700	500	548	600	655	700	
VFA1510C7S-1000	800	848	900	955	1 000	

11 * * G

A G

Notes: 1. We recommend NSK support units (page B375). WBK12SF-01 (on simple support side) supports ball screw directly on shaft outside diameter.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Permissible rotational speed is determined by d · n value and critical speed. See pages B47 and B335.

			Shaft		Permissible rotational speed N (min ⁻¹)			
Lead accuracy			run-out**	Mass	Supporting condition			
Τ	$e_{\scriptscriptstyle \! p}$	V ₃₀₀		(kg)	Fixed - Simple support	Fixed - Free		
0	0.120	0.052	0.075	0.89	3 000	2 600		
0	0.195	0.052	0.110	1.1	3 000	1 150		
0	0.310	0.052	0.180	1.5	2 340	510		

Unit: mm

B342

 ϕ 3.5 (oil hole)

⊥ 0.018 A >

57

Lt (hardened)

Min. 230

(range of 15h8 dia.)

25

√ 0.014 E

 ϕ 4 drill 12 deep

12.5 C0.3

30

√ 0.030 A

10

15

/M12×1

⊢⊥ 0.008 *E*

30

45

-1∕1 * * G

G À

None

NSK grease LR3

2.3 1.4

Ball screw specification				
Shaft dia.xLead	Direction of turn	15 × 20 / Right		
Ball reci	rculation	Return tube		
Ball dia. / B	all circle dia.	3.175 / 15.5		
Screw sha	aft root dia.	12.2		
Effective to	urns of balls	1.5 × 1		
Accuracy grade	/ Axial play code	Ct7 / S		
Basic load rating	Dynamic $C_{\scriptscriptstyle a}$	4 560		
	Statio C	7 730		

	Ball dia. / B	all circle dia.	3.175 / 15.5
	Screw sha	aft root dia.	12.2
	Effective to	urns of balls	1.5 × 1
	Accuracy grade	/ Axial play code	Ct7/S
	Basic load rating (N)	Dynamic $C_{\scriptscriptstyle a}$	4 560
		Static C _{0a}	7 730
	Axia	l play	0.010 or less
	'	ction torque cm)	2.5 or less

Spacer ball

Factory-packed grease Internal spatial volume of nut (cm3)

Reference of grease replenishing amount

Recommended support unit

For drive side (Fixed)	For opposite to drive side (Simple)
WBK12-01A (square)	WBK15SF-01 (square)
WBK12-11 (round)	

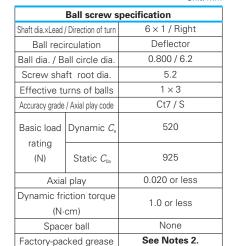
30° 30°	4-φ6 drill thru			
PCD 45	20			
34				
View X-X				

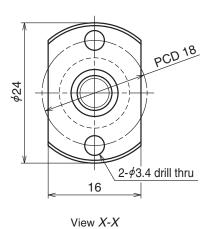
	Str	Stroke		Carayy aboft langth		
Ball screw No.	Nominal	Maximum	Screw shaft length			
		(L-nut length)	$L_{\rm t}$	La	L。	
VFA1520C7S-500	300	343	400	455	500	
VFA1520C7S-700	500	543	600	655	700	
VFA1520C7S-1000	800	843	900	955	1 000	

Notes: 1. We recommend NSK support units (page B375). WBK12SF-01 (on simple support side) supports ball screw directly on shaft outside diameter.

2. Use of NSK grease LR3 is recommended. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

3. Permissible rotational speed is determined by d · n value and critical speed. See pages B47 and B335.


Load accuracy		Shaft			sible rotational speed N (min ⁻¹)	
	ead accurac	Э	run-out**	Mass (kg)	Supporting conditi	g condition
Т	$e_{\scriptscriptstyle p}$	$v_{\scriptscriptstyle 300}$		(kg)	Fixed - Simple support	Fixed - Free
0	0.120	0.052	0.075	0.94	3000	2 630
0	0.195	0.052	0.110	1.2	3 000	1 160
0	0.310	0.052	0.180	1.6	2 350	510


B343 B344

Screw shaft ø6

Lead 1

Unit: mm

Recommended support unit

For drive side (Fixed)			
WBK04R-11 (round)			

Unit:	mm

Lead accuracy			Shaft run-out**	Mass (kg)	Permissible rotational speed
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation $\upsilon_{\scriptscriptstyle 300}$. 3,	N (min ⁻¹)
0	0.052	0.052	0.060	0.045	3 000
0	0.085	0.052	0.090	0.065	3 000

Not case hardened Max. 7	X-1 G 3.5 X-1	R0.15 M4×0.5 Or less C0.3 C0.3 0.30 0.00 0.00 0.00 0.00 0.00 0.00
L _t (hard	lened)	15 6
<	L ₀ ⁺² 0	

Ball screw No.	Stro	oke	Carous aboft langth	
	Nominal Maximum (L _t -Nut length)		Screw shaft length	
			L_{t}	L。
RMA0601C7S-160	100	124	139	160
RMA0601C7S-260	200	224	239	260

Notes: 1. We recommend NSK support bearing kit (page B375).

Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B335.

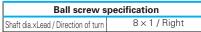
B345

φ 14 414

Not case hardened

Max. 7

C0.3


M6×0.75

φ4.5h9

8

_7.5

C0.3 C0.3

Shart dia.xread	Direction of turn	0 × 1 / Hight
Ball reci	rculation	Deflector
Ball dia. / B	all circle dia.	0.800 / 8.2
Screw sha	ft root dia.	7.2
Effective to	urns of balls	1 × 3
Accuracy grade	/ Axial play code	Ct7 / S
	Dynamic $C_{\scriptscriptstyle a}$	600
rating (N)	Static C _{0a}	1 290
		0.000

	Accuracy grade	/ Axial play code	Ct//3
		Dynamic $C_{\scriptscriptstyle a}$	600
	rating (N)	Static C _{0a}	1 290
	Axial play Dynamic friction torque		0.020 or less
			1.0 or less
	(N·	cm)	1.0 31 1000
	Spacer ball		None

Recommended support unit

Factory-packed grease

See Notes 2.

For drive side (Fixed)	
WBK06R-11 (round)	

φ27	PCD 21
<u></u>	2-\psi_3.4 drill thru

View	X-X
view	X-X

Ball screw No.	Str	oke	Screw shaft length	
	Nominal	Maximum		
		(L_t -Nut length)	$L_{\rm t}$	L。
RMA0801C7S-180	100	130	146	180
RMA0801C7S-280	200	230	246	280

 $X \rightarrow$

Ġ

x⊸

L₀⁺²0

16

Lt (hardened)

11 ** G

9

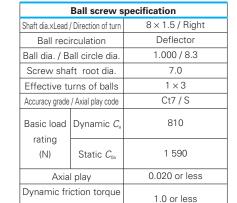
Max. 7

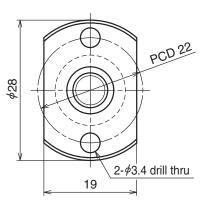
Not case hardened

26

0

C0.3


Notes: 1. We recommend NSK support bearing kit (page B375).


2. Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B335.

Lead accuracy			Shaft run-out**	Mass (kg)	Permissible rotational speed
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation $\upsilon_{\scriptscriptstyle 300}$	Ц	(kg)	N (min ⁻¹)
0	0.052	0.052	0.060	0.085	3 000
0	0.085	0.052	0.090	0.12	3 000

View	X-X

Recommended	support	unit
-------------	---------	------

None

See Notes 2.

(N·cm)

Spacer ball

Factory-packed grease

For drive side				
(Fixed)				
WBK06R-11 (round)				

Unit:	mm

Lead accuracy			Shaft run-out**	Mass (kg)	Permissible rotational speed
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation $\upsilon_{\scriptscriptstyle 300}$	Ц	(Ng)	N (min ⁻¹)
0	0.052	0.052	0.060	0.093	3 000
0	0.085	0.052	0.090	0.13	3 000

CO.3 Not case hardened Max. 7 22	C0.3 M6×0.75 C0.3 C0.3 C0.3 C0.3 Not case hardened Max. 7
L _t (hardened)	26 8
L ₀ ⁺² 0	312 3

	Str	oke	Carayy aboft langth	
Ball screw No.	Nominal	Maximum	Screw shaft length	art ierigtri
	INOMINAL	(L_t -Nut length)	$L_{\rm t}$	L_{\circ}
RMA0801.5C7S-180	100	124	146	180
RMA0801.5C7S-280	200	224	246	280

Notes: 1. We recommend NSK support bearing kit (page B375).

2. Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B335.

Screw shaft ø8

Lead 2

Unit: mm

ϕ 29

View	<u>X-X</u>	

Recommended :	support	uni
---------------	---------	-----

Factory-packed grease

See Notes 2.

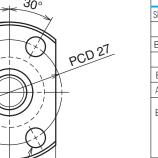
For drive side (Fixed)	
WBK06R-11 (round)	

Unit:	mm	

Lead accuracy		Shaft run-out**	Mass (kg)	Permissible rotational speed	
Target compensation T	Deviation $e_{\scriptscriptstyle p}$	Variation $\upsilon_{\scriptscriptstyle 300}$	U	(kg)	N (min⁻¹)
0	0.052	0.052	0.060	0.10	3 000
0	0.085	0.052	0.090	0.14	3 000

Not case hardened Max. 7	X-1 G 4 X-1	C0.3 C0.3 C0.3 V V V V V V V V V V V V V V V V V V V	M6×0.75 C0.3 C0.3
L _t	(Hardened)	26	8
<	L _o ⁺² 0		→

	Stro	Stroke		Screw shaft length	
Ball screw No.	Nominal		art ierigtri		
	Nominal		L_{t}	L_{\circ}	
RMA0802C7S-180	100	120	146	180	
RMA0802C7S-280	200	220	246	280	


Notes: 1. We recommend NSK support bearing kit (page B375).

2. Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B335.

 ϕ 32

4-*∮*4.5 drill thru

View X-X

22

	Ball screw s	pecification
Shaft dia.xLead / Direction of turn		10 × 2 / Right
Ball reci	rculation	Deflector
Ball dia. / B	all circle dia.	1.200 / 10.3
Screw sha	ft root dia.	8.9
Effective to	urns of balls	1×3
Accuracy grade	/ Axial play code	Ct7 / S
	Dynamic C _a	1 210
rating (N)	Static C _{0a}	2 510
Axia	l play	0.020 or less
Dynamic fri	ction torque	1.0 or less
(N·cm) Spacer ball		1.0 of less
		None
Factory-page	cked grease	See Notes 2.

Recommended support unit

For drive side (Fixed)		
WBK08-01A (square)		
WBK08-11 (round)		

	mm

					Offic: ITITI	
	Lead accuracy	11	Shaft run-out**	Mass (kg)	Permissible rotational speed	
Target compensation $\mathcal T$	Deviation $e_{\scriptscriptstyle p}$		Ш	(Kg)	N (min ⁻¹)	
0	0.085	0.052	0.070	0.19	3 000	
0	0.085	0.052	0.100	0.25	3 000	

C0.3 On Sign William Property of the Control of th	X 4 5 X 4 28	CO.3 CO.3	M8×1° C0.5 C0.5
L _t (hardened)	39	10
<	L_0^{+2}		>

	Str	oke	Screw shaft length		
Ball screw No.	Nominal	Maximum Screw sn		art length	
	NOTTITIAL	(L_t -Nut length)	L_{t}	L。	
RMA1002C7S-250	150	173	201	250	
RMA1002C7S-350	250	273	301	350	


Notes: 1. We recommend NSK support bearing kit (page B375).

2. Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d-n value and critical speed. See pages B47 and B335.

B353 B354

Spacer ball

Factory-packed grease

PCD 29 ϕ 37 $4-\phi 4.5$ drill thru 24

Recommended support unit

None

See Notes 2.

For drive side (Fixed)
WBK10-01A (square)
WBK10-11 (round)

П	Init	· n	nm

	Lead accuracy		Shaft run-out**	Mass (kg)	Permissible rotational speed
Target compensation T	Deviation <i>e</i> ,	Variation $\upsilon_{\scriptscriptstyle 300}$		11-97	N (min ⁻¹)
0	0.060	0.052	0.070	0.26	3 000
0	0.085	0.052	0.100	0.34	3 000

Not case hardened	5 X-4	CO.3 The state of	M10×1 C0.5 C0.5 648
<> Max. 7	28 (hardened)	Max. 7	15
<	L ₀ ⁺² 0	→< +0 >	< 10 >

 $X \longrightarrow$

	Stro	oke	Carous chaft langth		
Ball screw No.	Nominal	Maximum	Screw shaft length		
	NOTTITIAL	(L_t -Nut length)	L_{t}	L_{\circ}	
RMA1202C7S-250	150	162	190	250	
RMA1202C7S-350	250	262	290	350	

Notes: 1. We recommend NSK support bearing kit (page B375).

2. Only rust preventive oil is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B335.

Screw shaft ø6

Lead 1
Screw shaft ø8
Lead 1, 1.5, 2
Screw shaft ø10, ø12
Lead 2

/4-*∮*4.5 drill thru

φĄ

View X-X View X-X (for screw shaft of 6 and 8 dia.) (for screw shaft of 10 and 12 dia.)

 $2-\phi 3.4$ drill thru

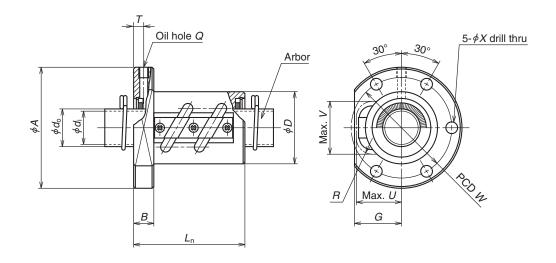
Н

Unit: mm

											OTHE. THILL				
	N	ut dim	ensior	ıs		Screw shaft dimensions			Lead accuracy			Shaft run-out**	Mass	Permissible rotational	
D	А	Н	В	Ln	W	Effective thread length - L,	Shaft L ₁	t end	Overall length L_{\circ}	Target compensation	Deviation $e_{\scriptscriptstyle p}$	Variation v_{300}	11	(Kg)	speed N (min ⁻¹)
12	24	16	3.5	15	18	250	50	4	300	0	0.085	0.052	0.09	0.075	
14	27	18		16	21									0.13	
15	28	19	4	22	22	250	50	6	300	0	0.085	0.052	0.09	0.14	3 000
16	29	20		26	23									0.15	
18	35	22	5	28	27	290	60	8	350	0	0.085	0.052	0.10	0.25	
20	37	24	5	28	29	290	60	10	350	0	0.085	0.052	0.10	0.35	

C0.3		C0.3 C0.3
Not case hardened Max. 7	L_{n} hardened) L_{0}^{+5}	Not case hardened Max. 7 L ₁ (un-carburizing area)

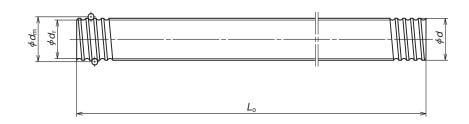
Ball screw No.	Stroke	Shaft			Ball circle	Root	Effective		ad rating N)	Axial
	Max. L _t -L _n	dia. d	Lead <i>l</i>	d Ball dia.	dia. <i>d</i> "	dia. <i>d</i> ,	turns of balls	Dynamic C _a	Static C _{0a}	play Max.
RMS0601C7S-300	235	6	1	0.800	6.2	5.3	3	520	925	0.02
RMS0801C7S-300	234		1	0.800	8.2	7.3		600	1 290	
RMS0801.5C7S-300	228	8	1.5	1.000	8.3	7.2	3	810	1 590	0.02
RMS0802C7S-300	224		2	1.200	8.3	7.0		1 070	1 950	
RMS1002C7S-350	262	10	2	1.200	10.3	9.0	3	1 210	2 510	0.02
RMS1202C7S-350	262	12	2	1.200	12.3	11.0	3	1 350	3 190	0.02


Notes: 1. We recommend NSK support unit (page B375) or support kit (page B387).

Only rust preventive agent is applied at time of delivery. Please apply lubricant (oil or grease) before use. See page D13 for details.

3. Seal is not installed.

4. Permissible rotational speed is determined by d·n value and critical speed. See pages B47 and B335.



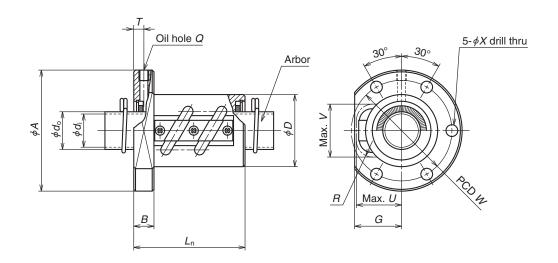
Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns		ad rating N) Static	Axial play	Ball nut dimensions Outside dia.
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d _r	× Circuits	C _a	C_{0a}	Max.	D
RNFTL 1003A3.5	10	3	2.381	10.65	8.1	3.5×1	3 780	6 730	0.10	20
RNFTL 1006A2.5S	10	6	2.381	10.65	8.1	2.5×1	2 830	4 810	0.10	20
RNFTL 1208A2.5S	12	8	2.778	12.65	9.6	2.5×1	3 730	6 560	0.10	25
RNFTL 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	5 370	10 800	0.10	25
RNFTL 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	5 260	9 720	0.10	30
RNFTL 1610A2.5 RNFTL 1610A2.5S	16	10	3.175	16.75	13.3	2.5×1	5 660	11 500	0.10	30
RNFTL 1808A3.5 RNFTL 1808A3.5S	18	8	4.762	18.5	13.6	3.5×1	13 200	25 800	0.15	34
RNFTL 2005A2.5 RNFTL 2005A2.5S	20	5	3.175	20.5	17.0	2.5×1	6 360	14 200	0.10	40
RNFTL 2010A2.5 RNFTL 2010A2.5S	20	10	4.762	21.25	16.2	2.5×1	10 900	21 800	0.15	40
RNFTL 2505A5 RNFTL 2505A5S	25	5	3.175	25.5	22.0	2.5×2	12 800	36 300	0.10	42
RNFTL 2510A2.5 RNFTL 2510A2.5S	- 25	10	6.25	26	10.0	2.5×1	17 500	35 200	0.20	44
RNFTL 2510A5 RNFTL 2510A5S	25	10	6.35	20	19.0	2.5×2	31 800	70 300	0.20	44

Notes: 1. Protruding portion of tube does no	t interfere with ball nut	housing if its dimensions	corresponding to U and \	/ are large
enough				

Actual screw shaft length may become slightly longer than nominal length L₀ due to manufacturing tolerance.
 Only ball nut part numbers ending "S" are equipped with seals. External dimensions of those with seals are the same as those without.

In ball nut side view drawing, above the center line there is a seal, and beneath it there is no seal. Seal for those with shaft diameter of 14 mm or less is made of synthetic resin. Seal for those of 16 mm or more is a "Brush" seal

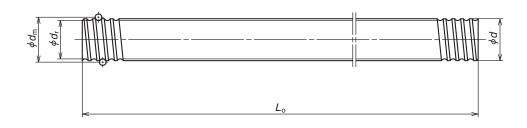
Unit: mm


			Pall put dimensions . Arbor Serous shaft a clintered Sardar																	
				Ва	ll nut	dimensio	ns				Nut	l .	bor			rew s		Shaft	Internal spatial	Standard volume
F	lang	е	Length	Bolt	hole	Oil ho	ole	Proje	ecting	tube	Mass.	Outside dia.	Bore	Stan	dard l	ength	Screw shaft	mass/m	volume of nut	of greas replenishing
Α	G	В	Ln	W	Χ	Q	T	U	V	R	(kg)	d _o	d		L。		No.	(kg)	(cm ³)	(cm³)
40	15	6	34	30	4.5	M3×0.5	3.0	15	15	7	0.092	8.1	6.1	400	800	-	RS1003A··	0.50	-	-
40	15	6	36	30	4.5	M3×0.5	3.5	15	15	5	0.095	8.1	6.1	400	800	-	RS1006A··	0.56	1.1	0.6
45	19	8	46	35	4.5	M3×0.5	5.5	19	18	7	0.18	9.6	7.6	400	800	-	RS1208A··	0.74	1.8	0.9
50	19	10	43	40	4.5	M6×1	5.0	19	20	7	0.20	11.5	9.5	500	1 000		RS1404A··	1.02	2.0	1.0
50	22	10	45	40	4.5	M6×1	5.0	22	21	8	0.26	11.0	9.0	500	1 000	-	RS1405A··	1.00	2.4	1.2
53	23	10	54	41	5.5	M6×1	5.5	23	22.5	8	0.28	13.3	11.3	500	1 000	1 500	RS1610A··	1.37	2.7	1.4
63	27	12	58	49	6.6	M6×1	6.0	27	27	8	0.43	13.6	11.6	500	1 000	1 500	RS1808A··	1.60	5.2	2.6
60	28	10	46	50	4.5	M6×1	5.0	28	27	10	0.42	17.0	14.6	500	1 000	2 000	RS2005A··	2.17	3.5	1.8
67	30	12	59	53	6.6	M6×1	6.0	30	29	12	0.55	16.2	13.8	500	1 000	2 000	RS2010A··	2.18	7.1	3.6
71	28	12	66	57	6.6	M6×1	6.0	28	31	10	0.62	22.0	19.6	1 000	2 000	2 500	RS2505A··	3.47	6.5	3.3
80	34	15	62	62	9	M6×1	7.5	34	37	17	0.75	10.0	16.6	1 000	2 000	2 500	RS2510A··	3.13	13	6.5
80	34	15	92	62	9	M6×1	7.5	34	37	17	0.75	19.0	10.0	1 000	2 000	2 300	11020TUA	0.10	18	9.0

4. Nut assembly with arbor and screw shaft are separate at time of delivery.5. Value obtained by diving standard screw shaft length by 100 mm will be entered at end of the part number where

6. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.

7. Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals. Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.


Ball nut No.	Shaft dia.	Lead l	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns × Circuits		oad rating (N) Static C _{0a}	Axial play Max.	Ball nut dimensions Outside dia. D
RNFTL 2806A2.5 RNFTL 2806A2.5S	- 28	6	3.175	28.5	25.0	2.5×1	7 430	20 300	0.10	50
RNFTL 2806A5 RNFTL 2806A5S	28	6	3.175	28.5	25.0	2.5×2	13 500	40 600	0.10	50
RNFTL 3210A5 RNFTL 3210A5S	32	10	6.35	33.75	27.0	2.5×2	35 700	92 200	0.20	55
RNFTL 3610A2.5 RNFTL 3610A2.5S	- 36	10	6.35	37	30.0	2.5×1	21 000	51 000	0.20	60
RNFTL 3610A5 RNFTL 3610A5S		10		37	30.0	2.5×2	38 100	102 000	0.20	60
RNFTL 4010A7 RNFTL 4010A7S	40	10	6.35	41.75	35.0	3.5×2	53 500	164 000	0.20	65
RNFTL 4512A5 RNFTL 4512A5S	45	12	7.144	46.5	39.0	2.5×2	49 600	147 000	0.23	70
RNFTL 5010A7 RNFTL 5010A7S	50	10	6.35	51.75	45.0	3.5×2	59 500	205 000	0.20	80
RNFTL 5016A5 RNFTL 5016A5S	50	16	9.525	52	42.0	2.5×2	99 900	293 000	0.23	85

Notes: 1. Protruding portion of tube does not interfere with ball nut housing if its dimensions corresponding to U and V are large

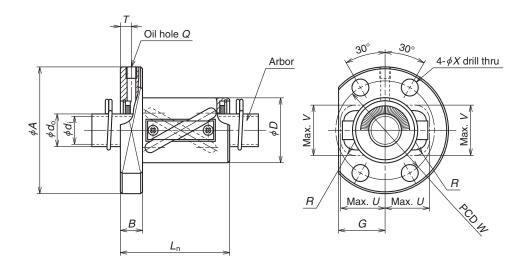
enough. 2. Actual screw shaft length may become slightly longer than nominal length L_0 due to manufacturing tolerance.

3. Only ball nut part numbers ending "S" are equipped with seals. External dimensions of those with seals are the same as those without

In ball nut side view drawing, above the center line there is a seal, and beneath it there is no seal. Seal for those with shaft diameter of 14 mm or less is made of synthetic resin. Seal for those of 16 mm or more is a "Brush" seal.

Unit: mm

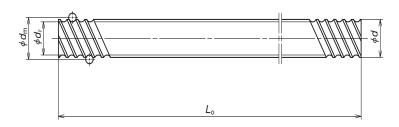
				Ва	ll nut	dimensio	ns				Nut	Arbor			Sc	rew sł	naft	Shaft	Internal spatial	Standard volume
F	lang	е	Length	Bolt	hole	Oil ho	ole	Proj	Projecting tube		Mass.	Outside dia. Bore		Standard length		Screw	mass/m	volume of nut	of greas replepishing	
Α	G	В	L	W	Χ	Q	T	U	V	R	(kg)	d ₀			L。		shaft No.	(kg)	(cm³)	(cm³)
79	33	15	55	65	6.6	M6×1	7.5	33	34	10	0.85	25.0	22.6	1 000	2 000	2 500	RS2806A··	4.47	5.9	3.0
79	33	15	79	65	6.6	M6×1	7.5	33	34	10	1.07	25.0	22.0	1 000	2 000	2 500	U25000A	4.47	8.4	4.2
97	39	18	97	75	11	M6×1	9.0	39	42	17	1.55	27.0	24.6	1 000	2 000	3 000	RS3210A··	5.53	29	15
102	42	18	68	80	11	M6×1	9.0	42	46	17	1.47	20.0	27.6	1 000	2 000	2 000	RS3610A··	6.91	21	11
102	42	18	98	80	11	M6×1	9.0	42	46	17	1.80	30.0	30.0 27.6	1 000	2 000	3 000	U23010A	0.91	33	17
114	44	20	120	90	14	M6×1	10.0	44	50	20	2.49	35.0	31.8	2 000	3 000	4 000	RS4010A··	8.87	42	21
130	47	22	116	100	18	M6×1	11.0	47	55	20	3.07	39.0	35.8	2 000	3 000	4 000	RS4512A··	11.16	49	25
140	52	22	122	110	18	M6×1	11.0	52	59	20	4.06	45.0	41.8	2 000	3 000	4 000	RS5010A··	14.15	53	27
163	57	28	146	125	22	M6×1	14.0	57	63	25	6.42	42.0	38.8	2 000	3 000	4 000	RS5016A··	13.48	94	47


4. Nut assembly with arbor and screw shaft are separate at time of delivery.

5. Value obtained by diving standard screw shaft length by 100 mm will be entered at end of the part number where marked with · · .

6. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.

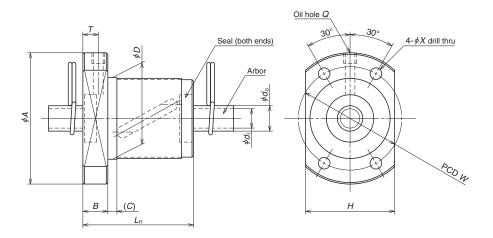
7. Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals.


Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.

Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls Turns	Dasicio	ad rating N)	Axial play	Ball nut dimensions Outside dia.
	d	l	D _w	dia. <i>d</i> _m	d _r	× Circuits	Dynamic C _a	Static $C_{\scriptscriptstyle 0a}$	Max.	D D
RNFTL 1212A3	12	12	2.381	12.65	10.1	1.5×2	3 360	6 270	0.10	24
RNFTL 1616A3 RNFTL 1616A3S	16	16	2.778	16.65	13.6	1.5 × 2	4 880	9 650	0.10	30
RNFTL 2020A3 RNFTL 2020A3S	20	20	3.175	20.75	17.3	1.5 × 2	7 010	15 400	0.10	35
RNFTL 2525A3 RNFTL 2525A3S	25	25	3.969	26	22.0	1.5 × 2	10 500	24 100	0.12	45
RNFTL 3232A3 RNFTL 3232A3S	32	32	4.762	33.25	28.0	1.5 × 2	15 300	37 100	0.15	55
RNFTL 4040A3 RNFTL 4040A3S	40	40	6.35	41.75	35.0	1.5 × 2	24 400	61 600	0.20	70

Notes: 1. Protruding portion of	f tube does not interfere with ball n	ut housing if its dimensions c	orresponding to U and V are large
enough.			

- Actual screw shaft length may become slightly longer than nominal length L₀ due to manufacturing tolerance.
 Only ball nut part numbers ending "S" are equipped with seals. External dimensions of those with seals are the same
 - In ball nut side view drawing, above the center line there is a seal, and beneath it there is no seal. Seal for those with shaft diameter of 14 mm or less is made of synthetic resin. Seal for those of 16 mm or more is a



	Ball nut dimensions										Nut	Arbor		Screw shaft				Shaft	Internal spatial	Standard volume
FI	ang	е	Length	Во	lt hole	Oil h	ole	Proje	cting	tube	Mass.	Outside dia.	Bore	Stand	lard le	ength	Screw	mass/m	volume of nut	of greas replenishing
Α	G	В	Ln	W	X	Q	T	U	V	R	(kg)	$d_{\scriptscriptstyle 0}$	di		L_{\circ}		shaft No.	(kg)	(cm³)	(cm³)
44	17	8	44	34	4.5	M3 × 0.5	4.0	17	16	5	0.16	10.1	8.1	400	800	-	RS1212A··	0.74	1.7	0.9
55	22	10	50	43	6.6	M6 × 1	5.0	22	22	7	0.29	13.6	11.6	500	1 000	1 500	RS1616A··	1.37	2.8	1.4
68	25	12	59	52	9	M6 × 1	6.0	25	27	8	0.49	17.3	14.9	500	1 000	2 000	RS2020A··	2.19	4.9	2.5
80	31	12	69	63	9	M6 × 1	6.0	31	32	10	0.80	22.0	19.6	1 000	2 000	2 500	RS2525A··	3.43	9.1	4.6
100	37	15	84	80	11	M6 × 1	7.5	37	40	12	1.46	28.0	25.6	1 000	2 000	3 000	RS3232A··	5.71	19	9.5
120	46	18	103	95	14	M6 × 1	9.0	46	49	15	2.69	35.0	31.8	2 000	3 000	4 000	RS4040A··	8.82	39	20

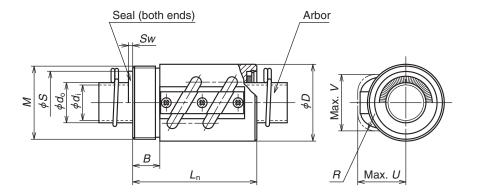
- 4. Nut assembly with arbor and screw shaft are separate at time of delivery.
- 5. Value obtained by diving standard screw shaft length by 100 mm will be entered at end of the part number where
- 6. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.
 7. Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals.
- Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.

Unit: mm

Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls Turns	(ad rating N)	Axial play	Bal rut dimensions Outside dia.
Buil Hat IVO.	d	l	$D_{\rm w}$	d _m	d _r	× Circuits	Dynamic <i>C</i> ₃	Static $C_{\circ \circ}$	Max.	D
RNFBL 1006A2.5S	10	6	2.381	10.65	8.1	2.5×1	2 830	4 810	0.10	26
RNFBL 1208A2.5S	12	8	2.778	12.65	9.6	2.5×1	3 730	6 560	0.10	29
RNFBL 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	5 370	10 800	0.10	31
RNFBL 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	5 260	9 720	0.10	32
RNFBL 1808A3.5S	18	8	4.762	18.5	13.6	3.5×1	13 200	25 800	0.15	50
RNFBL 2005A2.5S	20	5	3.175	20.5	17.0	2.5×1	6 360	14 200	0.10	40
RNFBL 2010A2.5S	20	10	4.762	21.25	16.2	2.5×1	10 900	21 800	0.15	52
RNFBL 2505A2.5S	25	5	3.175	25.5	22.0	2.5×1	7 070	18 200	0.10	43
RNFBL 2505A5S	25	ס	3.175	25.5	22.0	2.5×2	12 800	36 300	0.10	43
RNFBL 2510A2.5S	25	10	6.35	26	19.0	2.5×1	17 500	35 200	0.20	60
RNFBL 2510A5S	25	10	0.55	20	19.0	2.5×2	31 800	70 300	0.20	00
RNFBL 2806A2.5S	28	6	3.175	28.5	25.0	2.5×1	7 430	20 300	0.10	50
RNFBL 2806A5S	20	O	3.175	20.0	25.0	2.5×2	13 500	40 600	0.10	50
RNFBL 3210A2.5S	32	10	6.35	33.75	27.0	2.5×1	19 700	46 100	0.20	67
RNFBL 3210A5S	52	10	0.33	33.75	27.0	2.5×2	35 700	92 200	0.20	07
RNFBL 3610A2.5S	36	10	6.35	37	30.0	2.5×1	21 000	51 000	0.20	70
RNFBL 3610A5S	30	10	0.55	37	30.0	2.5×2	38 100	102 000	0.20	/0
RNFBL 4010A5S	40	10	6.35	41.75	35.0	2.5×2	40 100	116 000	0.20	76

Notes: 1. Actual screw shaft length may become slightly longer than nominal length L₀ due to manufacturing tolerance.

- 2. Nut assembly with arbor and screw shaft are separate at time of delivery.
- 3. Value obtained by diving standard screw shaft length by 100 mm will be entered at end of the part number where marked with · · .

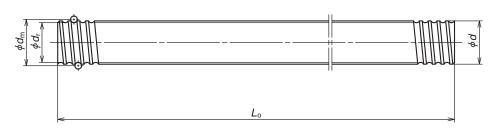

Unit: mm

			Rall	nut	dimer	nsions				Ark	or		Sc	rew sh	aft		Internal	Standard
F	lange)	Len			hole	Oil hol	e	Nut	Outside dia.	Bore	Star	ndard le			Shaft	spatial	volume
			Overall length						Mass. (kg)						Screw shaft		volume of nut	of greas replenishing
Α	Н	В	Ln	(C)	W	X	Q	T	(kg)	$d_{\scriptscriptstyle 0}$	d_i		L_{\circ}		No.	(kg)		(cm³)
42	29	8	36	3	34	4.5	M3×0.5	5.0	0.16	8.1	6.1	400	800	_	RS1006A··	0.56	1.1	0.6
45	32	8	44	3	37	4.5	M3×0.5	5.5	0.21	9.6	7.6	400	800	_	RS1208A··	0.81	1.6	0.8
50	37	10	40	4	40	4.5	M6×1	5.0	0.25	11.5	9.5	500	1 000	-	RS1404A··	1.02	2.4	1.2
50	38	10	40	4	40	4.5	M6×1	5.0	0.26	11.0	9.0	500	1 000	-	RS1405A··	1.00	1.9	1.0
80	60	12	61	4	65	6.6	M6×1	6.0	1.00	13.6	11.6	500	1 000	1 500	RS1808A··	1.60	5.8	2.9
60	46	10	40	4	50	4.5	M6×1	5.0	0.37	17.0	14.6	500	1 000	2 000	RS2005A··	2.17	2.8	1.4
82	64	12	61	5	67	6.6	M6×1	6.0	1.05	16.2	13.8	500	1 000	2 000	RS2010A··	2.18	7.6	3.8
67	50	10	40	4	55	5.5	M6×1	5.0	0.40	22.0	19.6	1 000	2 000	2 500	RS2505A··	3.47	3.5	1.8
07	50	10	55	4	55	5.5	IVIOXI	5.0	0.50	22.0	19.0	1 000	2 000	2 300	N32005A	3.47	4.7	2.4
96	72	15	66	5	78	9.0	M6×1	7.5	1.52	19.0	16.6	1 000	2 000	2 500	RS2510A··	3.13	14	7.0
90	12	15	96	5	/0	9.0	IVIOXI	7.5	1.99	19.0	10.0	1 000	2 000	2 300	N32310A	3.13	19	9.5
80	60	12	47	5	65	6.6	M6×1	6.0	0.70	25.0	22.6	1 000	2 000	2 500	RS2806A··	4.47	4.5	2.3
00	00	12	65	5	05	0.0	IVIOXI	0.0	0.87	25.0	22.0	1 000	2 000	2 300	N32000A	4.47	7.6	3.8
103	78	15	67	5	85	9.0	M6×1	7.5	1.72	27.0	24.6	1 000	2 000	3 000	RS3210A··	5.53	20	10
103	70	15	97	5	00	9.0	IVIOXI	7.5	2.25	27.0	24.0	1 000	2 000	3 000	nooziuA	0.03	28	14
110	82	17	69	5	90	11.0	M6×1	8.5	1.97	30.0	27.6	1 000	2 000	3 000	RS3610A··	6.91	21	11
110	02	17	99	ن ن	90	11.0	IVIOXI	0.5	2.53	30.0	27.0	1 000	2 000	3 000	nosoluA	0.91	29	15
116	88	17	99	5	96	11.0	M6×1	8.5	2.86	35.0	31.8	2 000	3 000	4 000	RS4010A··	8.87	36	18

- 4. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.
- 5. Seal for those with shaft diameter of 14 mm or less is made of synthetic resin. Seal for those of 16 mm or more is a "Brush" seal.
- 6. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

B365

Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	(ad rating N)	Axial play	Ball nut dimensions Outside dia.
	d	l	$D_{\rm w}$	d _m	d _r	× Circuits	Dynamic C _a	Static $C_{\circ\circ}$	Max.	D
RNCT 1003A3.5	10	3	2.381	10.65	8.1	3.5×1	3 780	6 730	0.10	20
RNCT 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	5 370	10 800	0.10	25
RNCT 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	5 260	9 720	0.10	30
RNCT 1808A3.5 RNCT 1808A3.5S	18	8	4.762	18.5	13.6	3.5 × 1	13 200	25 800	0.15	34
RNCT 2005A2.5 RNCT 2005A2.5S	20	5	3.175	20.5	17.0	2.5 × 1	6 360	14 200	0.10	40
RNCT 2505A5 RNCT 2505A5S	25	5	3.175	25.5	22.0	2.5 × 2	12 800	36 300	0.10	42
RNCT 2510A5 RNCT 2510A5S	25	10	6.35	26	19.0	2.5 × 2	31 800	70 300	0.20	44
RNCT 2806A5 RNCT 2806A5S	28	6	3.175	28.5	25.0	2.5 × 2	13 500	40 600	0.10	50
RNCT 3210A5 RNCT 3210A5S	32	10	6.35	33.75	27.0	2.5 × 2	35 700	92 200	0.20	55
RNCT 3610A5 RNCT 3610A5S	36	10	6.35	37	30.0	2.5 × 2	38 100	102 000	0.20	60
RNCT 4010A7 RNCT 4010A7S	40	10	6.35	41.75	35.0	3.5 × 2	53 500	164 000	0.20	65
RNCT 4512A5 RNCT 4512A5S	45	12	7.144	46.5	39.0	2.5 × 2	49 600	147 000	0.23	70
RNCT 5010A7 RNCT 5010A7S	50	10	6.35	51.75	45.0	3.5 × 2	59 500	205 000	0.20	80
RNCT 5016A5 RNCT 5016A5S	50	16	9.525	52	42.0	2.5 × 2	99 900	293 000	0.23	85


Notes: 1. Protruding portion of tube does not interfere with ball nut housing if its dimensions corresponding to U and V are large

2. Actual screw shaft length may become slightly longer than nominal length L₀ due to manufacturing tolerance.

3. Only ball nut part numbers ending "S" are equipped with seals. External dimensions of those with seals are the same

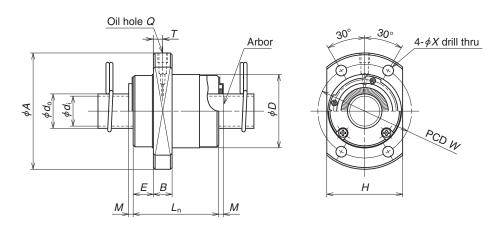
In ball nut side view drawing, above the center line there is a seal, and beneath it there is no seal.

Seal for those with shaft diameter of 14 mm or less is made of synthetic resin. Seal for those of 16 mm or more is a "Brush" seal.

Unit: mm

Ва	all nu	t dime	nsion	S		Nut	Seal dim	ensions	Ark	oor		Sc	rew s	haft	Shaft	Internal	Standard	
V-thread	ł	Length	Proje	ecting	tube	Mass.	Diameter	Thickness	Outside dia.	Bore	Stand	dard le	ength	Screw shaft	mass/m	volume	volume of greas replenishing	
М	В	Ln	U	V	R	(kg)	S	Sw	$d_{\scriptscriptstyle 0}$	d _i		L _o		No.	(kg)	(cm ³)	(cm ³)	
M18 × 1	10	38	15	15	7	0.049	-	-	8.1	6.1	400	800	-	RS1003A··	0.50	-	-	
M24 × 1	10	43	19	20	7	0.083	-	_	11.5	9.5	500	1 000		RS1404A	1.02	2.7	1.4	
M26 × 1.5	10	45	22	21	8	0.15	-	-	11.0	9.0	500	1 000	-	RS1405A	1.00	3.1	1.6	E
M32 × 1.5	12	58	27	27	8	0.21	28.5	2.5	13.6	11.6	500	1 000	1 500	RS1808A··	1.60	6.6	3.3	961169
M36 × 1.5	12	48	28	27	10	0.28	29.5	2.5	17.0	14.6	500	1 000	2 000	RS2005A··	2.17	4.8	2.4	
M40 × 1.5	15	69	28	31	10	0.38	34.5	2.5	22.0	19.6	1 000	2 000	2 500	RS2505A··	3.47	8.4	4.2	
M42 × 1.5	15	92	34	37	17	0.49	38.5	2.5	19.0	16.6	1 000	2 000	2 500	RS2510A··	3.13	21	1	
M45 × 1.5	15	79	33	34	10	0.68	37.5	2.5	25.0	22.6	1 000	2 000	2 500	RS2806A··	4.47	9.7	4.9	
M50 × 1.5	18	97	39	42	17	0.79	45.5	2.5	27.0	24.6	1 000	2 000	3 000	RS3210A··	5.53	32	16	
M55 × 2	18	98	42	46	17	0.97	50.5	3.0	30.0	27.6	1 000	2 000	3 000	RS3610A··	6.91	32	16	_
M60 × 2	25	125	44	50	20	1.37	54.5	3.0	35.0	31.8	2 000	3 000	4 000	RS4010A··	8.87	51	26	
M65 × 2	30	124	47	55	20	1.42	60.5	3.0	39.0	35.8	2 000	3 000	4 000	RS4512A··	11.16	60	30	
M75 × 2	40	140	52	59	20	2.41	64.5	3.0	45.0	41.8	2 000	3 000	4 000	RS5010A··	14.15	76	38	
M80 × 2	40	158	57	63	25	3.14	68.5	3.0	42.0	38.8	2 000	3 000	4 000	RS5016A··	13.48	114	57	•

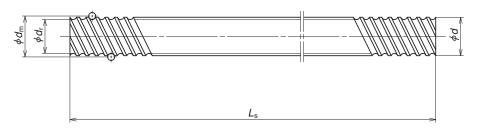
4. Nut assembly with arbor and screw shaft are separate at time of delivery.


5. Value obtained by diving standard screw shaft length by 100 mm will be entered at end of the part number where

6. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.

 Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals.
 Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.

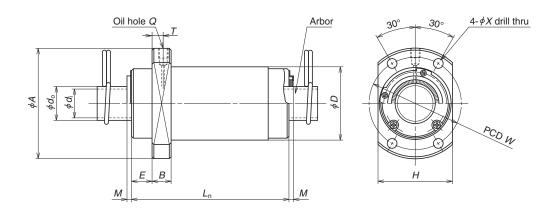
B367 B368



Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	[(1	ad rating N)	Axial	Ball nut dimensions Outside dia.
Dail Hut NO.	d	l	$D_{\rm w}$	dia. d _m	d,	× Circuits	Dynamic <i>C</i> ₃	Static $C_{\circ\circ}$	Max.	Dutside dia.
RNFCL 1212A3 RNFCL 1212A6	12	12	2.381	12.65	10.1	1.7 × 2 1.7 × 4	3 740 6 780	6 640 13 300	0.10	26
RNFCL 1520A3 RNFCL 1520A3S	15	20	3.175	15.5	12.2	1.7 × 2	6 730	12 300	0.10	33
RNFCL 1616A3 RNFCL 1616A3S	- 16	16	2.778	16.65	13.5	1.7 × 2	5 430	10 400	0.10	32
RNFCL 1616A6 RNFCL 1616A6S	- 10	10	2.778	10.05	13.5	1.7 × 4	9 860	20 800	0.10	32
RNFCL 2020A3 RNFCL 2020A3S	20	20	3.175	20.75	17.3	1.7 × 2	7 810	16 500	0.10	39
RNFCL 2020A6 RNFCL 2020A6S	20	20	3.175	20.75	17.3	1.7 × 4	14 200	33 000	0.10	39
RNFCL 2525A3 RNFCL 2525A3S	- 25	25	3.969	26	22.0	1.7 × 2	11 700	25 800	0.12	47
RNFCL 2525A6 RNFCL 2525A6S	25	25	3.909	20	22.0	1.7 × 4	21 200	51 500	0.12	47
RNFCL 3232A3 RNFCL 3232A3S	32	32	4.762	33.25	28.0	1.7 × 2	17 100	40 500	0.15	58
RNFCL 3232A6 RNFCL 3232A6S	32	32	4.702	33.23	20.0	1.7 × 4	31 000	81 000	0.13	30
RNFCL 4040A3 RNFCL 4040A3S	40	40	6.35	41.75	35.0	1.7 × 2	27 200	67 900	0.20	73
RNFCL 4040A6 RNFCL 4040A6S	40	40	0.55	41.73	33.0	1.7 × 4	49 300	136 000	0.20	73
RNFCL 5050A3 RNFCL 5050A3S	50	50	7.938	52.25	44.0	1.7 × 2	40 600	106 000	0.25	90
RNFCL 5050A6 RNFCL 5050A6S] 50	50	7.330	52.25	44.0	1.7 × 4	73 700	212 000	0.25	30

Notes: 1. Actual screw shaft length may become slightly longer than nominal length L_0 due to manufacturing tolerance.

- 2. Nut assembly with arbor and screw shaft are separate at time of delivery.
- 3. Value obtained by diving the standard screw shaft length by 100 mm will be entered at end of the part number where
- 4. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.
- 5. Length of nut becomes longer (2 x M) for those with "brush" seals.


Unit: mm

			Bal	l nut	dime	nsior	ıs			Nut	Arl	oor		Sci	ew sl	naft	Shaft	Internal	Standard	
F	lange	e	L	.engtl	h	Bolt	hole	Oil ho	le	Mass.	Outside dia.	Bore	Stan	dard le	ength	Screw shaft	mass/m	spatial volume	volume of greas replenishing	
Α	Н	В	Ε	Ln	М	W	Χ	Q	T	(kg)	$d_{\scriptscriptstyle 0}$	d _i		L。		No.	(kg)	of nut (cm³)		
44	28	6	9	30	-	35	4.5	M3 × 0.5	3.0	0.12	10.1	8.1	400	800	-	RS1212A··	0.74	-	-	
51	35	10	11	45	3	42	4.5	M6 × 1	5.0	0.28	12.2	10.2	500	1 000	1 500	RS1520A··	1.15	3.3	1.7	= 0
53	34	10	10	38	3	42	4.5	M6 × 1	5.0	0.23	13.5	11.5	500	1 000	1 500	RS1616A··	1.37	2.6	1.3	GIIG
55	0-1	10	10	50	3	72	4.0	1010 × 1	0.0	0.20	10.0	11.5	300	1 000	1 300	HOTOTOA	1.07	2.6	1.3	
62	41	10	11.5	46	3	50	5.5	M6 × 1	E 0	0.27	17.0	14.9	500	1 000	2 000	RS2020A··	2.19	4.4	2.2	
02	41	10	11.5	40	3	50	0.0	IVIO X I	5.0	0.37	17.3	14.9	500	1 000	2 000	N32020A**	2.19	4.9	2.5	
74	49	12	13	55	3	60	6.6	M6 × 1	6.0	0.62	22.0	10.6	1 000	2 000	2 500	RS2525A··	3.43	8.2	4.1	
74	40	12	13	55	3	00	0.0	IVIO X I	0.0	0.02	22.0	13.0	1 000	2 000	2 500	1132323A	3.43	8.9	4.5	
92	60	12	16	70	3	74	9	M6 × 1	E E	1 10	20.0	25.6	1 000	2 000	2 000	RS3232A··	5.71	16	8.0	
92	00	12	10	70	- 3	74	Э	IVIO X I	5.5	1.10	20.0	20.0	1 000	2 000	3 000	N33232A	5.71	17	8.5	•
114	7.5	1.	10.5	٥٦	- 3.5	93	11	MC1	٥.	2.00	25.0	01.0	2 000	2 000	4 000	RS4040A··	0.00	32	16	
114	75	15	19.5	85	- 3.5	93	11	M6 × 1	0.5	2.09	35.0	31.8	2 000	3 000	4 000	R54040A	8.82	33	17	
105	02	20	01 5	107	- 3.5	110	1.4	MG v 1	7.0	2.00	44.0	40.0	2 000	2 000	4 000	DCEOEOA	10.01	64	32	
135	92	20	21.5	107	3.5	112	14	M6 × 1	7.0	3.90	44.0	40.8	2 000	3 000	4 000	RS5050A··	13.81	68	34	
																				1

6. Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals. Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.

B369 B370

Unit: mm Internal Standard

2.4 1.2

4.1 2.1

4.1 2.1

8.4 4.2

15 7.5 12 24

52 26

6.3 3.2 7.0 3.5

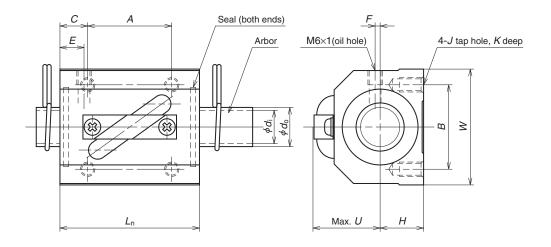
Shaft spatial mass/m volume of greas

(kg)

1.34 3.9 2.0

2.15

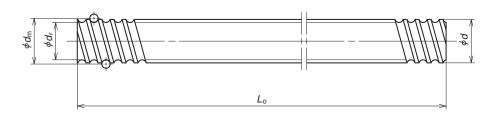
3.37 14 7.0


5.63 26 13

8.69 55 28

	01 (: 1:		5 " "	5	D	Effective turns of balls	Basic loa	ad rating		Ball nut dimensions				Ball	nut dir	nensio	ns			Nut	Arl	hor		S	Screw	shaf	t
Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Turns	1)	V)	Axial play	Outside dia.	F	lange	.		ength.		olt ho	ا ما	hole			Bore	Star		l lengt		
Dail Hut No.	d	l	$D_{\rm w}$	d _m	d,		Dynamic C _a	Static C_{oa}	Max.	D D	Λ.	Н	В	F	1			(0	T	(kg)	d d	2	Otai	I	ricingt		Screw shaft No.
RNFCL 1632A2						Circuits	O _a	O _{oa}		D	А	11	D	L	Ln	IVI I	V /	\	1		u_0	ui		L _o			0.10.10.1
RNFCL 1632A2S						0.7×4	4 600	8 460							34	3				0.21							
RNFCL 1632A3	1															_		_									
RNFCL 1632A3S	16	32	2.778	16.65	13.5	1.7 × 2	5 430	10 400	0.10	32	50	34	10	10	66	3 '	11 4	.5 M6	(1) 5.5	0.33	13.5	11.5	500	1 000	1 500	-	RS1632A··
RNFCL 1632A6						1.7 × 4	9 860	20 800	-						66	-				0.33	1						
RNFCL 1632A6S						1.7 X 4	9 000	20 600							00	3				0.53							
RNFCL 2040A2						0.7 × 4	6 610	13 600							41	-				0.31							
RNFCL 2040A2S	-								-							3				-	-						
RNFCL 2040A3 RNFCL 2040A3S	20	40	3.175	20.75	17.3	1.7 × 2	7 810	16 500	0.10	38	58	40	10	11	81	- 4	18 5	.5 M6	1 5.5	0.53	17.3	14.9	500	1 000	1 500 2	000	RS2040A··
RNFCL 2040A35	-								-							3					1						
RNFCL 2040A6S						1.7×4	14 200	33 000							81	3				0.53							
RNFCL 2550A2																-											
RNFCL 2550A2S						0.7×4	9 870	21 200							50	3				0.53							
RNFCL 2550A3	25	50	3.969	26	22.0	1772	11 700	25 800	0 12	46	70	48	12	13	100		8 6	.6 M6	, 1 7 (0.01	220	10.6	1 000	2 000	2 500		RS2550A··
RNFCL 2550A3S	_ 25	50	3.909	20	22.0	1.7 X Z	11 700	25 600	. 0.12	40	70	40	12	13	100	3 ,	00 0	.o livio	7.0	0.91	22.0	19.0	1 0001	2 000	2 500	-	N32000A
RNFCL 2550A6						1.7 × 4	21 200	51 500							100	-				0.91							
RNFCL 2550A6S																3											
RNFCL 3264A3 RNFCL 3264A3S						1.7 × 2	17 100	40 500							-	-											
RNFCL 3264A35	32	64	4.762	33.25	28.0				0.15	58	92	60	12	15.5	126		74 9) M6	1 7.5	5 1.76	28.0	25.6	1 000	2 000	3 000 4	000	RS3264A··
RNFCL 3264A6S						1.7 × 4	31 000	81 000							-	3											
RNFCL 4080A3						4 7 0	07.000	07.000								-											
RNFCL 4080A3S	40	00	0.050	41.75	25.0	1.7×2	27 200	6/900		70	114	75	15	10	150	3.5	1	1 140.	. 1 10		۵۶ ۵	21.0	2 000	2 000	4 000 5	000	DC 4000 A
RNFCL 4080A6	40	80	6.350	41.75	35.0	17 1	40.200	126 000	0.20	73	114	75	15	19	158		33 1	1 M6	1 10.	0 3.44	35.0	31.8	2 000	3 000 2	4 000 5	000	RS4080A··
RNFCL 4080A6S						1./ × 4	49 300	136 000								3.5											

6. Internal spatial volume of nut and volume of grease to be replenished are values for ball screws with seals. Recommended amount for replenishing is approximately 50% of nut's internal space. For ball screws without seals, apply grease to screw shaft surface or move ball nut by hand while filling them with grease so that grease permeates all areas. See page D16 for details.


- Notes: 1. Actual screw shaft length may become slightly longer than nominal length L_n due to manufacturing tolerance.
 - 2. Nut assembly with arbor and screw shaft are separate at time of delivery.
 - 3. Value obtained by diving the standard screw shaft length by 100 mm will be entered at end of the part number where
 - 4. Items in stock do not have surface treatment. For details of standard stock products, contact NSK.
 - 5. Length of nut becomes longer (2 x M) for those with "brush" seals.

Ball nut No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	Basic Ic	ad rating N)	Axial play	Ball nut dimensions Length
Buil Hut IVO.	d	l	$D_{\rm w}$	d _m	d _r	× Circuits	Dynamic C _a	Static $C_{\circ\circ}$	Max.	Ln
RNSTL 1404A3.5S	14	4	2.778	14.5	11.5	3.5×1	5 370	10 800	0.10	38
RNSTL 1405A2.5S	14	5	3.175	14.5	11.0	2.5×1	5 260	9 720	0.10	38
RNSTL 1808A3.5S	18	8	4.762	18.5	13.6	3.5×1	13 200	25 800	0.15	56
RNSTL 2005A2.5S	20	5	3.175	20.5	17.0	2.5 × 1	6 360	14 200	0.10	38
RNSTL 2010A2.5S	20	10	4.762	21.25	16.2	2.5×1	10 900	21 800	0.15	58
RNSTL 2505A2.5S	25	5	3.175	25.5	22.0	2.5 × 1	7 070	18 200	0.10	35
RNSTL 2510A5S	25	10	6.35	26	19.0	2.5×2	31 800	70 300	0.20	94
RNSTL 2806A2.5S	28	6	3.175	28.5	25.0	2.5×1	7 430	20 300	0.10	42
RNSTL 2806A5S	28	О	3.175	28.5	25.0	2.5 × 2	13 500	40 600	0.10	67
RNSTL 3210A2.5S	32	10	6.35	33.75	27.0	2.5×1	19 700	46 100	0.20	64
RNSTL 3210A5S	32	10	0.55	33.75	27.0	2.5 × 2	35 700	92 200	0.20	94
RNSTL 3610A2.5S	36	10	6.35	37	20.0	2.5 × 1	21 000	51 000	0.20	64
RNSTL 3610A5S	36	10	0.35	37	30.0	2.5 × 2	38 100	102 000	0.20	96
RNSTL 4512A5S	45	12	7.144	46.5	39.0	2.5×2	49 600	147 000	0.23	115

Notes: 1. Actual screw shaft length may become slightly longer than nominal length L_{σ} due to manufacturing tolerance. 2. Nut assembly with arbor and screw shaft are separate at time of delivery.

- 3. Value obtained by diving the standard screw shaft length by 100 mm will be entered at end of the part number where marked with ·

Unit: mm

			Ball	nut di	imens	ions				Nut	Ark	or		Sc	rew s	haft	Shaft	Internal	
Width	Center height		В	olt ho	le		Oil h	ole		Mass.	Outside dia.	Bore	Stan	dard le	ength	Screw shaft	mass/m	spatial volume	volume of greas
W	Н	Α	В	С	J	Κ	Ε	F	U	(kg)	$d_{\scriptscriptstyle 0}$	d _i		L。		No.	(kg)	of nut (cm ³)	replenishing
34	13	22	26	8	M4	7	7	3	20	0.20	11.5	9.5	500	1 000	-	RS1404A··	1.02	1.6	0.8
34	13	22	26	8	M4	7	7	3	21	0.20	11.0	9.0	500	1 000	-	RS1405A··	1.00	1.8	0.9
48	17	35	35	10.5	M6	10	8	3	26	0.31	13.6	11.6	500	1 000	1 500	RS1808A··	1.60	3.4	1.7
48	17	22	35	8	M6	9	6	2	27	0.24	17.0	14.6	500	1 000	2 000	RS2005A··	2.17	2.5	1.3
48	18	35	35	11.5	M6	10	10	2	28	0.35	16.2	13.8	500	1 000	2 000	RS2010A··	2.18	6.3	3.2
60	20	22	40	6.5	M8	10	6	0	27	0.31	22.0	19.6	1 000	2 000	2 500	RS2505A··	3.47	2.6	1.3
60	23	60	40	17	M8	12	10	0	32	1.32	19.0	16.6	1 000	2 000	2 500	RS2510A··	3.13	18	9.0
60	22	18	40	12	1.40	12	8		32	0.65	25.0	00.0	1 000	2 200	0 500	DCGGGGA	4 47	3.5	1.8
60	22	40	40	13.5	M8	12	8	0	32	1.04	25.0	22.6	1 000	2 000	2 500	RS2806A··	4.47	7.0	3.5
70	26	45	50	9.5	1.40	10	10	_	20	1.12	07.0	04.0	1 000	2 000	2 000	DC0010A	F F0	18	9.0
70	26	60	50	17	M8	12	10	0	38	1.75	27.0	24.6	1 000	2 000	3 000	RS3210A··	5.53	27	14
86	29	45	60	9.5	1410	1.0	11	_	4.1	1.76	20.0	07.0	1 000	2 000	2 000	DC0C10A	0.01	18	9.0
86	29	60	60	18	M10	16	11	0	41	2.64	30.0	27.6	1 000	2 000	3 000	RS3610A··	6.91	27	14
100	36	75	75	20	M12	20	13	0	46	1.22	39.0	35.8	2 000	3 000	4 000	RS4512A··	11.16	47	24

- 4. Items in stock do not have surface treatment. For details of standard stock products, contact NSK. 5. Length of nut becomes longer ($2 \times M$) for those with "Brush" seals.
- 6. Recommended quantity of grease is about 50% of ball nut's internal space. See page D16 for details.

B373 B374

B-3-1.6 Accessories

Accessories to use with NSK ball screws are available.

Table 1 Support unit categories

Application		Shape	Support side	Bearing in use	Bearing bore, Bearing seat diameter	Page
		WBK**-01*	Fixed support side	Angular contact ball bearing	φ6 – φ25	B381 -
Small equipment, S light load	Square	WBK**S-01*	Simple support	Deep groove ball bearing	φ6 – φ25	B385 -
		WBK**SF-01	side	Deep groove ball bearing	φ12, φ15 (exclusive for VFA type)	B388

1. Classification

Ball screw support units are classified into categories by their shape (**Table 1**). Select the type that best suits your particular needs.

Application		Shape	Support side	Bearing in use	Bearing bore, Bearing seat diameter	Page	
Small equipment,	Round	WBK**R-11 (Support kit)	Fixed support	Deep groove ball bearing (arranged to have angular contact)	φ4, φ6 (exclusive for RMA and RMS types)	B387	
equipment, light load	noullu	WBK**-11*	side	Angular contact ball bearing	\$\$6 - \$25	B383 -	
Machine tools, heavy load	Round	WBK**DF*-31	Fixed support side	Thrust angular contact ball bearing	φ17 – φ40	B391 -	Support unit

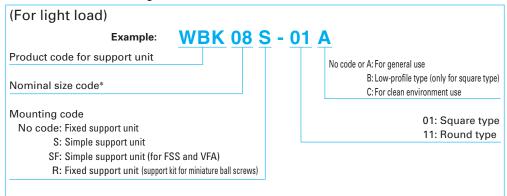
2. Features

Bearings and seals

On the fixed support side, the angular contact ball bearing is used. It has great rigidity and low friction torque, which match the rigidity of the ball screw. The thrust angular contact ball bearing with high precision and great rigidity is another choice for the fixed support side.

An oil seal is installed to the fixed support side used with an angular contact ball bearing. Fine clearance may occur with this seal.

A deep-groove ball bearing with a shield on both sides is used on the simple support side.


Lock nut is provided.

A lock nut with fine grade finish is provided to fix the bearing with high precision.

B375 B376

Support unit

3. Reference number coding

*) In case of simple support unit, please note that the nominal size code of 12 or less does not strictly represent internal bore of bearing in millimeters. Please refer to the dimensional table for internal bore of bearing.

(For heavy load) Example: WBK 25 DF - 31 Product code for support unit Nominal size code (internal bore of bearing) Bearing combination code DF: Face to face duplex combination DFD: Face to face triplex combination DFF: Face to face quadruplex combination

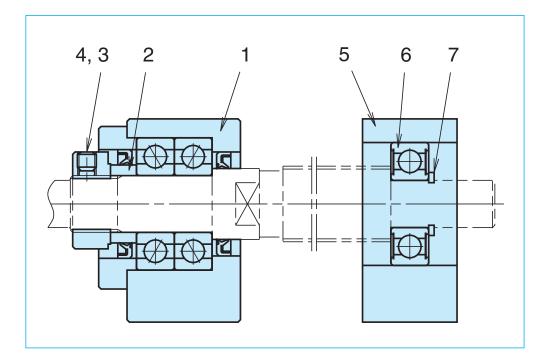
(1) Support Units for Light Load and Small Equipment

Support units for light load and small equipment provide both fixed and support side bearing assemblies to support screw shafts. They provide all required parts such as bearing locknuts so that you can mount them directly to NSK standard ball screws, of which shaft ends are machined.

Please refer to the dimensions listed on the dimension table for the configuration of standard screw shaft ends for NSK standard ball screws with blank shaft ends. For ball screws for transfer equipment, you require optional spacers when mounting fixed support side support units.

(a) Features

- Prompt delivery
 - All support units are standard products.
- Best selection of bearings for your application


General use support units for fixed support side are equipped with highly rigid angular contact ball bearings that have been assembled with proper preload, and packed with the appropriate volume of grease. On the other hand, clean support units for fixed support side uses low dust emission grease, and low torque special bearings. Sealed deep groove ball bearings are used for simple support side units for both general and clean environment use.

B377 B378

Support units provide everything necessary for mounting ball screws to machines.

(Please refer to the table below.)

* Do not disassemble fixed support side units as they are equipped with bearings and oil seals.

Antirust treatment

The table on the right shows the surface treatment for the bearing housing, and material of small parts.

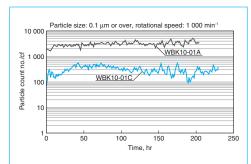
F	ixed support side	Siı	mple support side
Part No	. Name of parts	Part No.	Name of parts
1	Bearing housing	5	Bearing housing
2	Spacer	6	Bearing
3	Locknut	7	Snap ring
4	Set screw		
4	with brass pad		

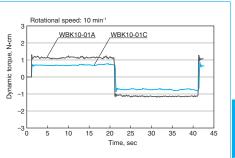
	General support unit
Bearings and grease	Angular contact ball bearings, PS2
Surface treatment	Black oxide
Screws and snap rings	Standard material

(b) Features of Clean Support Unit

Outstanding low dust emission
Clean support unit uses "NSK clean grease
LG2" which has a proven feature of low
dust emission. It reduces dust emission to
1/10 of general support units.

Low torque

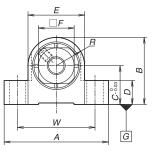

It features low torque characteristics because of special bearings. (50% lower than general support unit.)

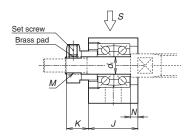

High antirust specification

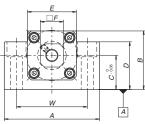
Low temperature chrome plating is applied to bearing housings, retaining plates, locknuts and spacers to improve antirust properties. Moreover, bolts and snap rings are made of stainless steel.

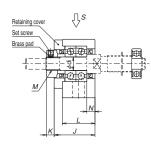
The table below shows the surface treatment of the bearing housing and material of small parts.

	Clean support unit
Bearing • grease	Special bearings, LG2
Surface treatment	Low temperature chrome plating
Set screw and snap ring material	Stainless steel

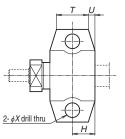


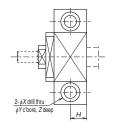


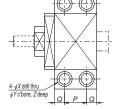

Support unit


B379 B380

Support Units for Light Load and Small Equipment




Fixed support side support unit (square type)

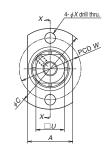

Reference No.	Use	d_1	Α	В	С	D	Ε	F	L	J	К	R	
WBK04-01M	General	4	27	17	10	6	14	10	_	14	5.5	7	
WBK06-01M	General	6	35	22.5	13	8	19	12	_	17	7.5	9.5	
WBK06-01A*1	General	6	42	25	13	20	18	12	20	20	5.5	_	
WBK08-01A*1	General		52	32	17	26	25		23	23	7		
WBK08-01B	Low type	8	62	31	15.5	31	_	14	21.5	25.5	4.5	-	
WBK08-01C*1	Clean environment		52	32	17	26	25		23	23	7		
WBK10-01A	General			43	25	35	36						
WBK10-01B	Low type	10	70	38	20	38	_	17	24	30	5.5	_	
WBK10-01C	Clean environment			43	25	35	36						
WBK12-01A	General			43	25	35	36						
WBK12-01B	Low type	12	12	70	38	20	38	_	19	24	30	5.5	-
WBK12-01C	Clean environment			43	25	35	36						
WBK15-01A	General			50	30	40	41						
WBK15-01B	Low type	15	80	42	22	42	_	22	25	31	12	_	
WBK15-01C	Clean environment			50	30	40	41						
WBK17-01A	General	17	86	64	39	55	50	24	35	44	7	_	
WBK20-01	General	20	95	58	30	45	56	30	42	52	10	_	
WBK25-01*2 WBK25-01W*2	General	25	105	68	35	25	66	36	48	61	13	_	

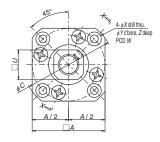
Notes: 1. Use datum surface A for mounting to machine base.

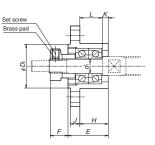
- 2. Tighten set screw after locknut has been adjusted and tightened.
- 3. Insert brass pad provided with unit into locknut set screw hole, then insert and tighten the set screw.
- 4. Deep groove ball bearing and snap ring are also provided for simple support side.

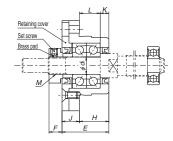
Tightening torque (reference) [N-cm] Reference No. Locknut Set screw WBK04-** 100 69 (M3) WBK06-** 190 69 (M3) WBK08-** 230 69 (M3) WBK10-** 280 147 (M4) WBK12-** 630 147 (M4) WBK15-** 790 147 (M4) WBK17-** 910 147 (M4) WBK20-** 1670 147 (M4) WBK25-** 2060 490 (M6)

View S (WBK06 - 15)

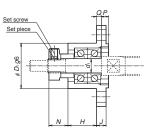

View S (WBK17 - 25)

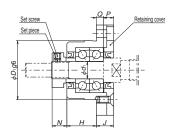

Units: mm


Т	U	N		Co	unterb	ore di	mensi	ons		Mass	Locknut screw	Attached bearing for support side	Support unit
			Н	Р	Q	W	X	Y	Z	(kg)	М	Support side	
9	1.5	2	7	_	_	21	3.5	_	_	0.03	M4×0.5	_	3
12	2.5	2.5	8.5	_	_	26	5.5	_	_	0.05	M6×0.75	_	
_	_	3.5	10	_	_	30	5.5	9.5	11	0.15	M6×0.75	_	
		4	11.5			38	6.6	11	12	0.25		606ZZ	
_	_	3.5	11	_	_	46	9	14	18	0.3	M8×1	606ZZ	
		4	11.5			38	6.6	11	12	0.25		606VV	
									11	0.5		608ZZ	
_	_	6	12	_	_	52	9	14	19	0.45	M10×1	608ZZ	
									11	0.5		608VV	
									11	0.5		6000ZZ	
_	_	6	12	_	_	52	9	14	19	0.4	M12×1	6000ZZ	
									11	0.5		6000VV	
									15	0.7		6002ZZ	
_	_	5	12.5	_	_	60	11	17	23	0.6	M15×1	6002ZZ	
									15	0.7		6002VV	
_	_	7	_	19	8	68	9	14	11	1.3	M17×1	6203ZZ	
_	_	10	_	22	10	75	11	17	15	1.4	M20×1	6204ZZ	
_	_	14	_	30	9	85	11	_	_	1.9	M25×1.5	6205ZZ	


- 5. Bearings for WBK04-01M and WBK06-01M are equipped with non-contact metal seal.
- *1) For retaining cover side of WBK06-01A, WBK08-01A, and WBK08-01C, there are no seals.
- *2) WBK25-01W is standard.

View X-X (example 1)


Fixed support side support unit (round type)


Reference No.	Use	$d_{\scriptscriptstyle 1}$	А	С	D_1	D_2	Ε	Н	L	К	F	N
WBK04-11M	General	4	14	26	14	14	13.5	8.5	7	1.5	5.5	6.6
WBK06-11M	General	6	19	34	19	18.5	17	12	9.5	2.5	7.5	8
WBK06-11*	General	6	28	35	22	_	20	13	9.5	3.5	5.5	6.5
WBK08-11B	High-load type		42	52	34		25.5	15.5	12	3.5	4.5	7
WBK08-11*	General	8	35	43	28	_	23	14	10	4	7	8
WBK08-11C*	Clean environment		33	43	20		23	14	10		,	3
WBK10-11	General	10	42	52	34		27	17	12	5	7.5	8.5
WBK10-11C	Clean environment	10	42	52	34	_	21	17	12	5	7.5	0.5
WBK12-11	General	12	44	54	36		27	17	12	5	7.5	8.5
WBK12-11C	Clean environment	12	44	34	30	_	21	17	12	5	7.5	0.5
WBK15-11	General	15	52	63	40		32	17	11	6	12	14
WBK15-11C	Clean environment	15	52	03	40		32	17	'	U	12	14
WBK20-11	General	20	68	85	57	_	52	30	20	10	10	14
WBK25-11	General	25	79	98	63	_	57	30	20	10	13	20

Notes: 1. Tighten set screw after locknut has been adjusted and tightened.

2. Insert brass pad provided with unit into locknut set screw hole, then insert and tighten the set screw.

3. Deep groove ball bearing and snap ring are also provided for simple support side. (except WBK04-01M and WBK06-01M)

View X-X (example 2)

30

36

14

17

8

10

22

27

70

80

Reference No.	Tightening torque	(reference) [N·cm]
nererence no.	Locknut	Set screw
WBK04-**	100	69 (M3)
WBK06-**	190	69 (M3)
WBK08-**	230	69 (M3)
WBK10-**	280	147 (M4)
WBK12-**	630	147 (M4)
WBK15-**	790	147 (M4)
WBK17-**	910	147 (M4)
WBK20-**	1670	147 (M4)
WBK25-**	2060	490 (M6)

Units: mm

U	Р	Q	С	ounterk	oore dir	nensior	าร	Mass	Locknut	Attached bearing for support side
			J	W	Χ	Y	Ζ	(kg)	М	support side
10	2.6	2.4	3	20	3.5	_	_	0.02	M4×0.5	_
12	3	2	4	26	4.5	_	_	0.04	M6×0.75	_
12	4.5	2.5	7	28	2.9	5.5	3.5	0.1	M6×0.75	_
	6		10	42	4.5	8		0.2		606ZZ
14	5	4	9	35	3.4	6.5	4	0.15	M8×1	606ZZ
	5		9	35	3.4	0.5		0.15		606VV
17	6	4	10	42	4.5	8	4	0.2	M10×1	608ZZ
17	0	4	10	42	4.5	0	4	0.2	IVITOXT	608VV
19	6	4	10	44	4.5	8	4	0.25	M12×1	6000ZZ
19	0	4	10	44	4.5	0	4	0.25	IVITZXT	6000VV
22	8	7	15	50	5.5	9.5	6	0.4	M15×1	6002ZZ
22	0	/	15	50	0.5	9.5	0	0.4	IVITOXI	6002VV

4. Bearings for WBK04-01M and WBK06-01M are equipped with non-contact metal seal.

11

15

10

13

1.1

1.5

M20×1

M25×1.5

*For retaining cover side of WBK06-01A, WBK08-01A, and WBK08-01C, there are no seals.

6.6

9

6204ZZ

6205ZZ

Specifications of support unit

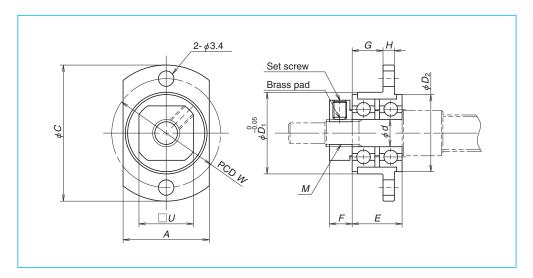
	Fixed s	support side si	upport unit			Simple supp	ort side su	pport unit
		Axia	al direction		Maximum			Radial direction
Reference No.	Use	Basic dynamic load rating <i>Ca</i> [N]	Load limit [N]	Rigidity [N/μm]	starting torque [N·cm]	Reference No.	Bearing reference No.	Basic dynamic loa rating C [N]
WBK04-01M	General	1 470	464	39	0.2	_	_	_
WBK04-11M	General	1 470	464	39	0.2	_	_	_
WBK06-01A	General	2 670	1 040	28	0.49	_	_	_
WBK06-01M	General	2 760	854	60	0.35	_	_	_
WBK06-11	General	2 670	1 040	28	0.49	_	_	_
WBK06-11M	General	2 760	854	60	0.35	_	_	_
WBK08-01A	General	4 400	1 450	49	0.88	WBK08S-01	606ZZ	2 260
WBK08-01B	Low type	6 600	2 730	94	1.9	WBK08S-01B	606ZZ	2 260
						WBK12SF-01B*1	6801ZZ	1 920
WBK08-01C	Clean environment	3 100	1 100	36	0.52	WBK08S-01C	606VV	2 260
WBK08-11	General	4 400	1 450	49	0.88	WBK08S-01	606ZZ	2 260
WBK08-11B	Low type	6 600	2 730	94	1.9	_	606ZZ	2 260
WBK08-11C	Clean environment	3 100	1 100	36	0.52	WBK08S-01C	606VV	2 260
WBK10-01A	General	6 600	2 730	94	1.9	WBK10S-01	608ZZ	3 300
						WBK12SF-01*2	6001ZZ	5 100
WBK10-01B	Low type	6 600	2 730	94	1.9	_	608ZZ	3 300
WBK10-01C	Clean environment	4 250	1 364	50	1.1	WBK10S-01C	608VV	3 300
WBK10-11	General	6 600	2 730	94	1.9	WBK10S-01	608ZZ	3 300
WBK10-11C	Clean environment	4 250	1 364	50	1.1	WBK10S-01C	608VV	3 300
WBK12-01A	General	7 100	3 040	104	2.1	WBK12S-01	6000ZZ	4 550
						WBK15SF-01*2	6902ZZ	4 350
WBK12-01B	Low type	7 100	3 040	104	2.1	WBK12S-01B	6000ZZ	4 550
						WBK15SF-01B*1	6902ZZ	4 350
WBK12-01C	Clean environment	4 700	2 443	57	1.2	WBK12S-01C	6000VV	4 550
WBK12-11	General	7 100	3 040	104	2.1	WBK12S-01	6000ZZ	4 550
WBK12-11C	Clean environment	4 700	2 443	57	1.2	WBK12S-01C	6000VV	4 550
WBK15-01A	General	7 600	3 380	113	2.4	WBK15S-01	6002ZZ	5 600
WBK15-01B	Low type	7 600	3 380	113	2.4	WBK15S-01B	6002ZZ	5 600
						WBK20SF-01B*1	6804ZZ	4 000
WBK15-01C	Clean environment	5 100	2 757	63	1.3	WBK15S-01C	6002VV	5 600
WBK15-11	General	7 600	3 380	113	2.4	WBK15S-01	6002ZZ	5 600
WBK15-11C	Clean environment	5 100	2 757	63	1.3	WBK15S-01C	6002VV	5 600
WBK17-01A	General	13 400	5 800	120	3.5	WBK17S-01	6203ZZ	9 550
WBK20-01	General	17 900	8 240	155	6.2	WBK20S-01	6204ZZ	12 800
						WBK25SF-01*1	6005ZZ	10 100
WBK20-11	General	17 900	8 240	155	6.2	WBK20S-01	6204ZZ	12 800
WBK25-01	General	20 200	10 000	192	7.2	WBK25S-01	6205ZZ	14 000
WBK25-11	General	20 200	10 000	192	7.2	WBK25S-01	6205ZZ	14 000
WBK04R-11	General	615	490	6.5	0.59	_	_	_
WBK06R-11	General	1 280	930	9	0.59	_	_	_

*1: Exclusive for FSS type. *2: Exclusive for VFA type.

2- φX drill thru. φY c'bore, Z deep

Simple support side support unit (square type)

Units: mm

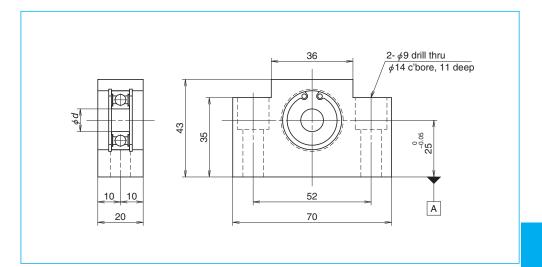

Reference No.	Use	$d_{\scriptscriptstyle 2}$	А	В	С	D	Ε	R	Coun	terbore	dimen	sions	Mass
									W	X	Y	Z	(kg)
WBK08S-01	General		52	32	17	26	25	15	38	6.6	11	12	0.15
WBK08S-01B	Low type	6	62	31	15.5	31	_	16	46	9	14	18	0.2
WBK08S-01C	Clean environment		52	32	17	26	25	15	38	6.6	11	12	0.15
WBK10S-01	General	8	70	43	25	35	36	20	52	9	14	11	0.4
WBK10S-01C	Clean environment	0	70	43	25	35	36	20	52	9	14		0.4
WBK12S-01	General			43	25	35	36					11	0.35
WBK12S-01B	Low type	10	70	38	20	38	_	20	52	9	14	19	0.4
WBK12S-01C	Clean environment			43	25	35	36			9		11	0.35
WBK12SF-01B	Low type	12	62	31	15.5	31	_	18	46			18	0.2
WBK15S-01	General			50	30	40	41					11	0.45
WBK15S-01B	Low type	15	80	42	22	42	_	20 60	60	9	14	23	0.4
WBK15S-01C	Clean environment	15		50	30	40	41			9	14	11	0.45
WBK15SF-01B	Low type		70	38	20	38	_	18	52			19	0.3
WBK17S-01	General	17	86	64	39	55	50	23	68	9	14	11	0.8
WBK20S-01	General	20	95	58	30	45	56	26	75	11	17	15	0.8
WBK20SF-01B	Low type	20	80	42	22	42	_	22	60] ''	17	23	0.4
WBK25S-01*			105	68	35	25	66	30	85	11			0.9
WBK25S-01W*	General	25	105	00	35	25	00	30	80	11		_	0.9
WBK25SF-01			95	58	30	45	56	22	75	11	17	15	0.55

Notes: 1. Use datum surface B for mounting to machine base. *) WBK25-01W is standard.

Support kits for ball screws for transfer equipment

Support kits are for RMA type ball screw.

In case of RMA1002 or larger rolled ball screws, please use support units for general use.



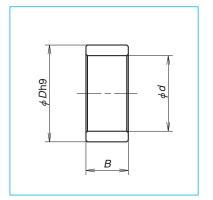
												Uni	its. mm
Reference No.	Α	С	d	D_1	D_2	Ε	F	G	Н	W	U	М	Mass (kg)
WBK04R-11	14	25	4	13	12.5	9	5	5	2.5	19	10	M4×0.5	0.13
WBK06R-11	19	30	6	18	17	11	5	6.8	2.5	24	12	M6×0.75	0.23

Reference No.	Applicable ball screw	Locknut tightening torque (reference) [N·cm]	Set screw tightening torque (reference) [N·cm]		
WBK04R-11	RMA0601	100	38 (M2.5)		
WBK06R-11	RMA0801 RMA0801.5 RMA0802	190	69 (M3)		

- 1. Oscillate bearings slowly so that they fall into place in which run-out of mounting surface is minimal, and then tighten locknut.
- 2. Support kit is on provisional shaft (bolt) during shipping.
- 3. When securing support unit on shaft, insert brass pad that is provided with support unit into lock nut hole, and then tighten set screw.

Simple support side support units for VFA type ball screws

			Units: mm
Reference no.	d	Mass (kg)	Applicable ball screw
WBK12SF-01*	12	0.3	VFA1210
WBK15SF-01*	15	0.3	VFA1510

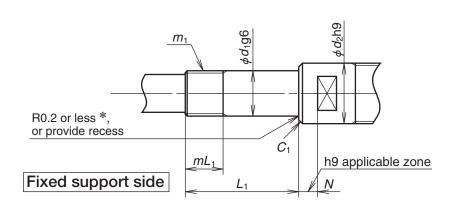

VFA1520

Notes:

- 1. Use datum surface A for mounting to machine base.
- This type of simple side support unit is made exclusively for NSK VFA ball screws. This unit simply supports outer diameter of screw shaft.
- 3. See page B386 for the reference numbers of bearings and radial direction basic dynamic load ratings.

Spacer

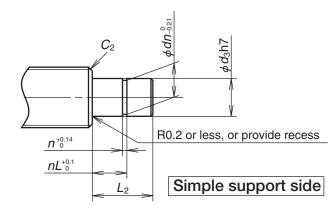
When using a fixed support unit, it may require an optional spacer to have an effective shoulder surface at where the ball thread is threaded to the end of the shoulder. This is common for the R series for transporting ball screws.


					Units: mm
Reference No.	Internal	Outside	Width	Mass	Applicable
	diameter, d	diameter, D	В	(g)	support unit
WBK06K	6	9.5	5.0	2	WBK06-**
WBK08K	8	11.5	5.5	2	WBK08-**
WBK10K	10	14.5	5.5	4	WBK10-**
WBK12K	12	15.0	5.6	3	WBK12-**
WBK15K	15	19.5	10.0	10	WBK15-**
WBK17K	17	24.4	7.0	13	WBK17-**
WBK20K	20	25.5	11.0	17	WBK20-**
WBK25K	25	32.0	14.0	34	WBK25-**

B387 B388

Screw shaft end configuration

Dimensions of the shaft end configurations for light load and small equipment support units are shown in the table below. When using a spacer


with a ball screw for transporting equipment, add the width of the spacer (B from the table of spacer dimensions on page B388) to L₁ dimension below.

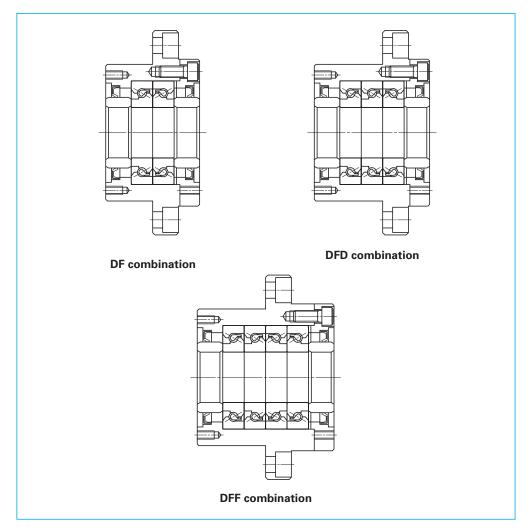
Radius marked with * above is 0.15 or less for WBK04R-11 and WBK06R-11.

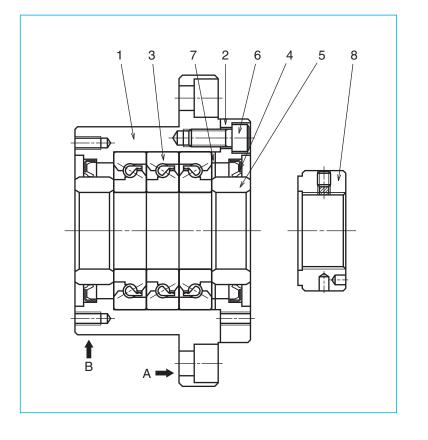
L	Inits:	mn

	Fixed support side								
Reference No.	Bearing journal		Locknut	t thread	Sealin	Chamfer			
neterence No.	d ₁	L ₁	m₁	mL₁	d ₂	N	C ₁		
WBK06- * *	6	22.5	M6×0.75	7	9.5	3.5	0.2		
WBK08- * *	8	27	M8×1	9	11.5	4	0.2		
WBK10- * *	10	30	M10×1	10	14	6	0.2		
WBK12- * *	12	30	M12×1	10	15	6	0.2		
WBK15- * *	15	40	M15×1	15	19.5	5	0.3		
WBK17- * *	17	46	M17×1	17	24	7	0.3		
WBK20- * *	20	53	M20×1	16	25	10	0.3		
WBK25- * *	25	62	M25×1.5	20	32	14	0.5		
WBK04R-11	4	15	M4×0.5	7.5	_	_	0.3		
WBK06R-11	6	17	M6×0.75	7.5	_	_	0.3		

Units: mm

	Simple support side									
Reference No.	Bearing	journal	S	Snap ring groove						
neierence No.	d ₃	L ₂	n	dn	nL	C ₂				
	_	_	_	_	_	_				
WBK08S- * *	6	9	0.8	5.7	6.8	0.2				
WBK10S- * *	8	10	0.9	7.6	7.9	0.2				
WBK12S- * *	10	22	1.15	9.6	9.15	0.5				
WBK15S- * *	15	25	1.15	14.3	10.15	0.5				
WBK17S- * *	17	16	1.15	16.2	13.15	0.5				
WBK20S- * *	20	19	1.35	19	15.35	0.5				
WBK25S- * *	25	20	1.35	23.9	16.35	0.5				


B389 B390

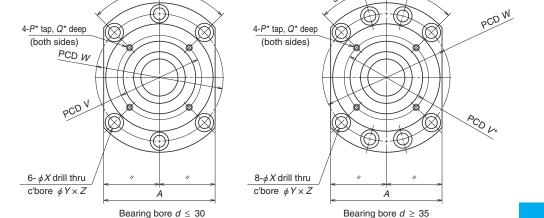

(2) Dimensions of support unit for ball screws for heavy-load/machine tools

Support units for heavy-load/machine tools use a thrust angular contact ball bearing (TAC Series) with high rigidity and accuracy. The thrust angular contact ball bearing has very

suitable functions and structure as a ball screw support bearing.

There are three bearing combinations as shown below.

Parts list


Part No.	Part name	Quantity
1	Housing	1
2	Retaining cover	1
3	High accuracy thrust angular contact ball bearing	One set
4	Dust seal	2
5	Collar	2
6	Preload bolt	6 or 8
7	Shim	One set
8	Lock nut	1

Notes:

- Surface A and B are the datum surfaces to mount a support unit to machine housing.
- NSK support units are precisely preloaded and adjusted. Do not disassemble the components 1, 2, 3, 4, 5, 6 and 7.
- 3. Grease is packed into the bearings.
- 4. Lock nut 8 is exclusively prepared for ball screws. End surface of nut is in strict control being precisely perpendicular to the V thread. Secure lock nut using set screw.

Lock nut is also available as accessory. (See page B395.) See page B399 as well for high-precision thrust angular contact ball bearings (TAC Series).

B391 B392

36 Q \$\phi\$ \$\frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}		
	Lock nut	Dimensions of bearing seat

Support unit		Support unit															
140.	d	D	D_1	D_2	L	L ₁	L ₂	Α	W	Χ	Y	Z	d ₁ *	l*	V*	P*	Q*
WBK 17DF-31	17	70	106	72	60	32	15	80	88	9	14	8.5	45	3	58	M5	10
WBK 20DF-31	20	70	106	72	60	32	15	80	88	9	14	8.5	45	3	58	M5	10
WBK 25DF-31 WBK 25DFD-31	25	85	130	90	66 81	33 48	18	100	110	11	17.5	11	57	4	70	M6	12
WBK 30DF-31 WBK 30DFD-31	30	85	130	90	66 81	33 48	18	100	110	11	17.5	11	57	4	70	M6	12
WBK 35DF-31 WBK 35DFD-31 WBK 35DFF-31	35	95	142	102	66 81 96	33 48 48	18	106	121	11	17.5	11	69	4	80	M6	12
WBK 40DF-31 WBK 40DFD-31 WBK 40DFF-31	40	95	142	102	66 81 96	33 48 48	18	106	121	11	17.5	11	69	4	80	M6	12

Notes: 1. Rigidity

Values in the table are theoretical values obtained from the elastic deformation between ball groove and balls.

2. Starting torque

Starting torque indicates torque due to the preload of the bearing. It does not include seal torque.

3. The tolerance of the shaft bearing seat We recommend h5 class of the fits tolerance.

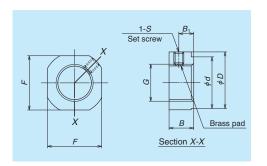
Onit: mm													
Basic dynamic load rating	Permissible axial load	Preload	Axial rigidity	Maximum Starting torque	Lock nut		Lock nut M			Mass		aring s for uni	
C _a (N)	(N)	(N)	(N/μm)	(N · cm)	М	D_3	L ₃	(kg)	d	L_4	L ₅		
21 900	26 600	2 150	750	19	M17×1	37	18	1.9	17	81	23		
21 900	26 600	2 150	750	19	M20×1	40	18	1.9	20	81	23		
28 500	40 500	3 150	1 000	29	M25×1.5	45	20	3.1	25	89	26		
46 500	81 500	4 300	1 470	39	IVIZUX I.U		20	3.4	25	104	20		
29 200	43 000	3 350	1 030	30	M30×1.5	ΕO	20	3.0	30	89	26		
47 500	86 000	4 500	1 520	40	0.1 XU&IVI	50	20	3.3	30	104	20		
31 000	50 000	3 800	1 180	34				3.4		92			
50 500	100 000	5 200	1 710	45	M35×1.5	55	22	4.3	35	107	30		
50 500	100 000	7 650	2 350	59				5.0		122			
31 500	52 000	3 900	1 230	36				3.6		92			
51 500	104 000	5 300	1 810	47	M40×1.5	.5 60	22	4.2	40	107	30		
51 500	104 000	7 850	2 400	61				4.7		122			

4. Dimensions with * (asterisk) mark

*Pilot diameter and tapped screws marked with asterisk are used for seal unit installation for NSK standard hollow shaft ball screws. They also can be used for dust cover and damper installation.

5. Grease is packed into bearing. It is not necessary to apply grease before use.

6. Allowable axial load is 0.7 times of load limit.


Unit: mm

In addition to the support units, NSK has other components for ball screws as shown below.

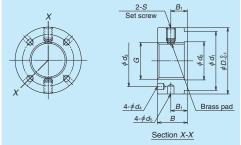
(3) Lock nuts

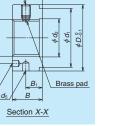
Ball screw support bearings must be installed

with minimum inclination against ball screw center. NSK lock nuts exclusive for ball screw support bearings help to reduce this inclination.

A Type Shapes and dimensions

A Type lock nuts


A Type lock nuts


Lock nut reference No.	G	D	F	В	d
WBK06L-01	M6×0.75	14.5	12	5	10
WBK08L-01	M8×1	17	14	6.5	13
WBK10L-01	M10×1	20	17	8	16
WBK12L-01	M12×1	22	19	8	17
WBK15L-01	M15×1	25	22	10	21
WBK17L-01	M17×1	29	24	13	24
WBK20L-01	M20×1	35	30	13	26
WBK25L-01	M25×1.5	42	36	16	34

Note: Insert brass pad and then tighten securing set screw.

S Type lock nuts

**						
Lock nut reference No.	G	D-0.1	В	d ₁	d ₂	d ₃
WBK17L-31	M17×1	37	18	30	18	27
WBK20L-31	M20×1	40	18	30	21	30
WBK25L-31	M25×1.5	45	20	40	26	35
WBK30L-31	M30×1.5	50	20	40	31	40
WBK35L-31	M35×1.5	55	22	50	36	45
WBK40L-31	M40×1.5	60	22	50	41	50

S Type Shapes and dimensions

S Type lock nuts

U	ınıt:	mm

B ₁	S	Tightening torque (N · cm) (for reference)	Set screw tightening torque (reference) [N · cm]	Mass (g)
2.75	M3, with a brass pad	190	69 (M3)	3.8
4	M3, with a brass pad	230	69 (M3)	6.4
5	M4, with a brass pad	280	147 (M4)	11.2
5	M4, with a brass pad	630	147 (M4)	12.8
6	M4, with a brass pad	790	147 (M4)	20.0
8	M4, with a brass pad	910	147 (M4)	33.1
8	M4, with a brass pad	1670	147 (M4)	50.0
10	M6, with a brass pad	2060	490 (M6)	87.0

Unit: mm

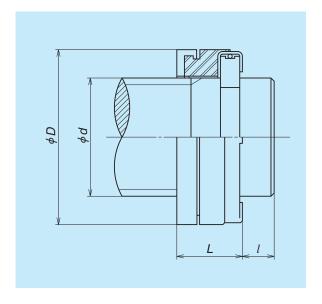
d_4	d ₅	B ₁	S	Tightening torque (N · cm) (for reference)	Set screw tightening torque (reference) [N · cm]	Mass (g)
4.3	4	10	M6	4 100	490 (M6)	108.4
4.3	4	10	M6	4 500	490 (M6)	119.0
4.3	4	11	M6	8 500	490 (M6)	125.2
4.3	5	11	M6	10 100	490 (M6)	182.0
4.3	5	12	M6	13 800	490 (M6)	235.0
4.3	5	12	M6	15 500	490 (M6)	255.6

B395 B396

(4) Grease unit

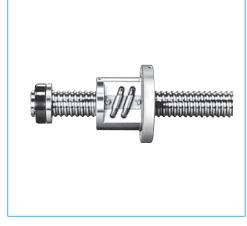
NSK has numerous grease types that are exclusive for ball screw lubrication. They come in bellows-shaped tubes, which can be attached to a hand grease pump quickly. For details of grease types, see page D13 and for a hand grease pump and nozzles, see page D19.

NSK greases


Lubricant greases

Name	Use	Base oil viscosity mm²/s (40°C)		
NSK Grease AS2	For heavy load	130		
NSK Grease PS2	High-speed, light load	15		
NSK Grease LR3	High-speed, medium load	30		
NSK Grease LG2	Clean environment	30		
NSK Grease LGU	Clean environment	100		

(5) Travel stopper (made-to-order)


A travel stopper is installed in some cases to prevent the ball nut from overrunning to the end of ball thread due to a malfunction of the safety system of the equipment or by a human error. NSK has several series of shock-absorbing travel stoppers. The travel stopper is not sold as a single item since it is not for general use.

Also, a travel stopper cannot be used for ball screw with the end cap type ball recirculation system, because the stopper would come directly into contact with the component for ball recirculation. Please request NSK for the installation of the travel stoppers when ordering a ball screw.

				Unit: mm
Stopper No.	Applicable shaft dia.	Outer dia.	Length	Shaft end width (Min.)
	d	D	L	l
BSR 20	20	32	16	5
BSR 25	25	38	16	5
BSR 32	32	46	20	6
BSR 40	40	60	22	6
BSR 50	50	72	24	7
BSR 63	63	85	25	7

Note: This stopper is patented by NSK Ltd.

Shock-absorbing travel stopper

B397

Thrust Angular Contact Ball Bearings for Ball Screw

(1) Features

This is highly rigid and accurate ball screw support bearing often used for the machine tools driving mechanism.

(a) High axial rigidity

High-rigidity achieved by higher contact angle at 60 degrees and an increased number of smaller-diameter balls.

(b) Small friction torque

Friction torque is far less than that of tapered or cylindrical roller bearing. This contributes to accurate rotation by a smaller driving power.

(c) Pre-adjusted axial play

Combination bearings are already adjusted to a suitable preload. Universal combination bearing (SU) furnishes certain preload for all combinations (DB, DF, and other).

(d) Simple mounting structure

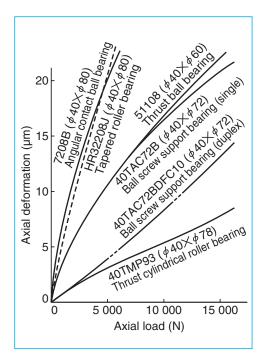
A duplex combination of bearings can receive axial and radial loads. Therefore, the installation structure is simpler than when both a thrust bearing and a radial bearing are used.

(e) Easy handling

Inner and outer rings are inseparable, and are easy to handle.

(f) Superb polyamide resin retainer

Uses polyamide resin retainer which is superb to friction and furnishes high precision rotations.



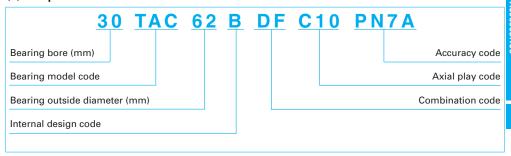

Fig. 1 Axial rigidity of various bearings

Table 2 Comparison with other types of bearings

Bearing type	Bearing rigidity (See Fig. 1) Starting torque		Preload adjustment	Installation structure
Thrust angular contact ball bearing for NSK precision ball screw support unit	High	Low	Not required	Simple
Combined angular contact ball bearing	Low	Low	Not required	Simple
Combination of tapered roller bearings	Low	High	Complicated	Simple
Thrust ball bearing and radial bearing	High	Low	Complicated	Complicated
Thrust cylindrical roller bearing and radial bearing	Extremely high	Extremely high	Complicated	Complicated

Note: Consult NSK when you use these bearings other than the purpose of ball screw support.

(2) Composition of reference number

Note: As "30 TAC 62 B," any part of the first half of the reference number is referred to as "nominal size" in this catalog.

B399

(3) Combinations of bearings

Generally, a set uses more than two pieces (referred to as 'two rows') of bearings and, thus the preload is applied.

There are two types of combination:

Combined bearings

Bearings are adjusted as a single combined set. Since the bearing alignment is pre-set, there is no interchangeability between the bearing set.

Universal combination bearing (SU)

Single bearings are manufactured under strict control of component accuracy so that they can be universally assembled as a combination of ball screw support bearing set.

(a) Combined bearings

- Fig. 2 shows examples of combinations. There is "V" mark on the outside surface of the bearing to avoid misarrangement. A complete letter "V" should be formed when all bearings align correctly to form a set.
- DF combination which easily absorbs misalignment with the ball screw nut is used in general.

(b) Universal combination bearing (SU)

 Unlike the above case, the marks on the outside surface of bearings do not form a letter "V." The tip of the "V" on each bearing simply indicates the direction to which axial load can be applied.

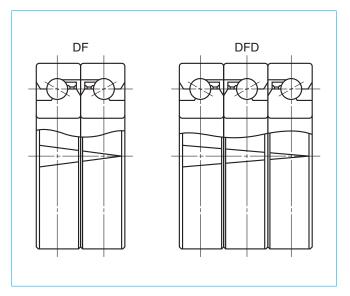


Fig. 2 Examples of combination and "V" mark

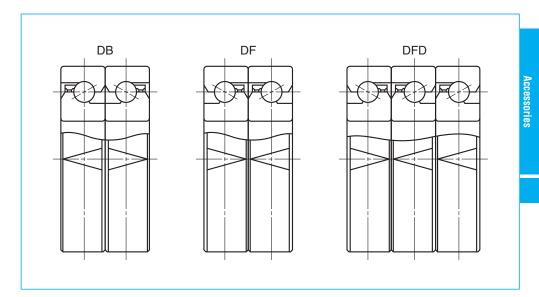


Fig. 3 Example of universal combination (SU) and "V" mark

B401 B402

(4) Preload, rigidity, and starting torque

The **Table 3** shows preload, rigidity (spring modulus), and starting torque with grease lubrication. (The starting torque should be 1.4 times higher when oil is used as a lubricant.) Consult NSK for the bearing combinations not included in the table below.

(5) Accuracy

(a) Accuracy grades

Table 3 Preload, rigidity, and starting torque

Reference		Duplex com	bination DF		Triplex comb	pination DFD
No.	Axial play code	Preload (N)	Rigidity (N/µm)	Starting torque (N · m)	Axial play code	Preload (N)
15TAC 47B	C10	2 150	750	0.14	C10	2 950
17TAC 47B	C10	2 150	750	0.14	C10	2 950
20TAC 47B	C10	2 150	750	0.14	C10	2 950
25TAC 62B	C10	3 150	1 000	0.23	C10	4 300
30TAC 62B	C10	3 350	1 030	0.24	C10	4 500
35TAC 72B	C10	3 800	1 180	0.28	C10	5 200
40TAC 72B	C10	3 900	1 230	0.28	C10	5 300
40TAC 90B	C10	5 000	1 320	0.48	C10	6 750
45TAC 75B	C10	4 100	1 270	0.29	C10	5 600
45TAC 100B	C10	5 900	1 520	0.58	C10	8 050
50TAC 100B	C10	6 100	1 570	0.60	C10	8 250
55TAC 100B	C10	6 100	1 570	0.60	C10	8 250
55TAC 120B	C10	6 650	1 810	0.64	C10	9 100
60TAC 120B	C10	6 650	1 810	0.64	C10	9 100

Table 4 Tolerance: thrust angular contact ball bearing for ball screw support

													Unit: µm
	Nomina			Tolerand	e of bore		Tol	Tolerance of outside diameter				e of inner width	Axial run out of inner or outer ring
	bearing	bore or		Accurac	cy grade			Accuracy grade				cy grade	Accuracy grade
outside diameter (mm)			PN7A		PN7B		PN.	PN7A		PN7B		17A 17B	PN7A PN7B
Ī	over	or less	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	Maximum
ı	10	18	0	-4	0	-4	-	-	-	-	0	-80	2.5
	18	30	0	-5	0	-4	-	-	-	-	0	-120	2.5
	30	50	0	-6	0	-4	0	-6	0	-4	0	-120	2.5
	50	80	0	-7	0	-5	0	-7	0	-5	0	-150	2.5
	80	120	0	-8	0	-6	0	-8	0	-6	0	-200	2.5

Note: The tolerance of the outer ring width is the same as that of the inner ring width of the same bearing.

(b) Fits

Table 5 shows recommended values of the tolerance of shaft and housing bore.

			Quadruplet co	mbination DFF	
Rigidity (N/μm)	Starting torque (N · m)	Axial play code	Preload (N)	Rigidity (N/µm)	Starting torque (N · m)
1 080	0.20	C10	4 300	1 470	0.29
1 080	0.20	C10	4 300	1 470	0.29
1 080	0.20	C10	4 300	1 470	0.29
1 470	0.31	C10	6 250	1 960	0.46
1 520	0.33	C10	6 650	2 010	0.49
1 710	0.37	C10	7 650	2 350	0.55
1 810	0.38	C10	7 850	2 400	0.57
1 960	0.65	C10	10 300	2 650	0.96
1 910	0.40	C10	8 250	2 550	0.59
2 210	0.78	C10	11 800	3 000	1.16
2 300	0.80	C10	12 300	3 100	1.18
2 300	0.80	C10	12 300	3 100	1.18
2 650	0.86	C10	13 200	3 550	1.27
2 650	0.86	C10	13 200	3 550	1.27

Table 5 Tolerance of shaft bearing seat and housing bore Unit: µm

Size of shaft bor (mr	re	bearin	e of shaft g seat 5	Tolerance of housing hole H6		
over	or less	upper	lower	upper	lower	
10	18	0	-8	-	-	
18	30	0	-9	-	-	
30	50	0	-11	+16	0	
50	80	0	-13	+19	0	
80	120	0	-15	+22	0	

B403

TACB

Nominal contact angle 60 degrees

	Permissible rotational speed (min ⁻¹)		Dimensions (mm)			;	External dimensions (mm)				
Bearing No.	Oil lubrication	Grease lubrication	D_2	D_1	d_2	d ₁	r₁ Min.	r Min.	В	D	d
15TAC 47B	8 000	6 000	39.6	34	34	27.2	0.6	1	15	47	15
17TAC 47B	8 000	6 000	39.6	34	34	27.2	0.6	1	15	47	17
20TAC 47B	8 000	6 000	39.6	34	34	27.2	0.6	1	15	47	20
25TAC 62B	6 000	4 500	50.7	45	45	37	0.6	1	15	62	25
30TAC 62B	5 600	4 300	53.2	47	47	39.5	0.6	1	15	62	30
35TAC 72B	5 000	3 600	60.7	55	55	47	0.6	1	15	72	35
40TAC 72B	4 800	3 600	62.7	57	57	49	0.6	1	15	72	40
40TAC 90B	4 000	3 000	77.2	68	68	57	0.6	1	20	90	40
45TAC 75B	4 300	3 200	67.7	62	62	54	0.6	1	15	75	45
45TAC 100B	3 600	2 600	84.2	75	75	64	0.6	1	20	100	45
50TAC 100B	3 400	2 600	87.7	79	79	67.5	0.6	1	20	100	50
55TAC 100B	3 400	2 600	87.7	79	79	67.5	0.6	1	20	100	55
55TAC 120B	3 000	2 200	102.2	93	93	82	0.6	1	20	120	55
60TAC 120B	3 000	2 200	102.2	93	93	82	0.6	1	20	120	60

Notes: 1. Values are based on a standard preload (C10).

_				\/E =
I)vnam	IC EUIIII	valent ic	nad P.	$= XF_r + F_a$

Bearing configurati		Duplex		Triplex			Quadruplet		
Combination (20de	DF	DT	DFD		DTD	DFT	DFF	DFT
Number of the row that receives a $e = 2.17$	Xial load	One row	Two rows	One row	Two rows	Three rows	One row	Two rows	Three rows
$F_a/F_r \le e$	Χ	1.9	-	1.43	2.33	1	1.17	2.33	2.53
T _a /T _r ≤ E	Y	0.54	-	0.77	0.35	-	0.89	0.35	0.26
$F_{a}/F_{r} > e$	Χ	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
I a/I r / E	Y	1	1	1	1	1	1	1	1

Basic	dynamic load ratii	ng $C_{\rm a}$	Р	ermissible axial load	L L	Mass
One row	Two rows	Three rows	One row	Two rows	Three rows	(kg)
sustaining load	sustaining load	sustaining load	sustains load	sustain load	sustain load	
DF	DT, DFD, DFF	DTD, DFT	DF	DT, DFD, DFF	DTD, DFT	
(N)	(N)	(N)	(N)	(N)	(N)	
21 900	35 500	47 500	26 600	53 000	79 500	0.144
21 900	35 500	47 500	26 600	53 000	79 500	0.144
21 900	35 500	47 500	26 600	53 000	79 500	0.135
28 500	46 500	61 500	40 500	81 500	122 000	0.252
29 200	47 500	63 000	43 000	86 000	129 000	0.224
31 000	50 500	67 000	50 000	100 000	150 000	0.310
31 500	51 500	68 500	52 000	104 000	157 000	0.275
59 000	95 500	127 000	89 500	179 000	269 000	0.674
33 000	53 500	71 000	57 000	114 000	170 000	0.270
61 500	100 000	133 000	99 000	198 000	298 000	0.842
63 000	102 000	136 000	104 000	208 000	310 000	0.778
63 000	102 000	136 000	104 000	208 000	310 000	0.714
67 500	109 000	145 000	123 000	246 000	370 000	1.23
67 500	109 000	145 000	123 000	246 000	370 000	1.16

^{2. &}quot;Row" means the quantity of bearings that receive axial load. "Two rows" means two bearings are receiving axial load.

1. End Deflector Type B409

2. Tube Type B415

3. Deflector Type B449

4. End Cap Type B463

B-3-2 Dimension Table and Reference Number of Standard Nut Ball Screws

B407 B408

B-3-2.1 End Deflector Type Ball Screws

This product is being applied for a patent.

1. Features

Low and less offensive noise

The average noise level is reduced by more than 6 dB compared with our existing products. At low-speed rotation, the ball screws are nearly silent, while their noise is unprecedentedly low at high-speed rotation.

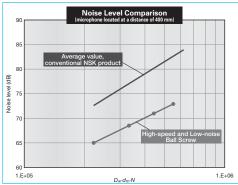


Fig. 1 Comparison of noise level

High-speed operation

Realizes the d-n of 180 000, outstanding for ball screws and far surpassing the 100 000 d-n performance of existing return tube type products. For high-lead ball screws, high-speed operation at over 200 m/min is also possible.

■Compact

The external diameter of the ball nut is 30% smaller than our existing models. Compact configurations are possible for low-profile XY tables as well as for other devices and equipment.

Grease fitting provided as standard equipment

The ball screws with shaft diameters equal to or less than $\emptyset 25$ are equipped with a grease fitting (M5 \times 0.8) as a standard. Lubrication ports are provided in 2 places for ease of maintenance. The ball screws can be easily connected to an integrated lubrication system.

2. Specifications

(1) Ball recirculation system

Fig. 2 shows the structure of the end-deflector recirculation system.

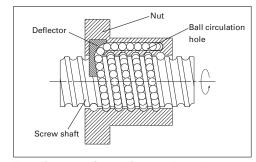


Fig. 2 Structure of end-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

	C0, C1, C2, C3, C5, Ct7
Avial play	Z, 0 mm (preloaded); T, 0.005 mm or less;
Axial play	S, 0.020 mm or less; N, 0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value : 180 000 or less Standard of rotational speed: 5 000 min⁻¹

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Seal

A compact and thin plastic seal is used. Nut outside diameter is compact compare with the return tube recirculation system.

(5) Option

Optional NSK K1 lubrication unit, molded from resin and impregnated with lubrication oil, supplies fresh oil onto ball rolling surfaces, ensuring long-term, maintenance-free operation. Please contact NSK when using NSK K1.

3. Design precautions

When designing the shaft end of a ball screw which diameter is 25 mm or less, or 32 mm or over, and the lead is the same as its shaft diameter, one end of the screw must meet either one of the following conditions. If not, we

cannot install the ball nut on the screw shaft.

- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

For general precautions regarding ball screws, refer to "Design Precautions"(page B80) and "Handling Precautions"(page B99).

4. Product categories

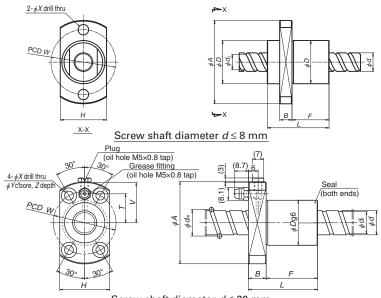
End deflector type ball screws have the model as follows.

Table 2 End-deflector type ball screw product categories

Nut model	Shape	Flang shape	Nut shape	Preload system
BSS		Circular Ⅱ, Ⅲ	Circular	Non-preload, Slight axial play P-preload (light preload)

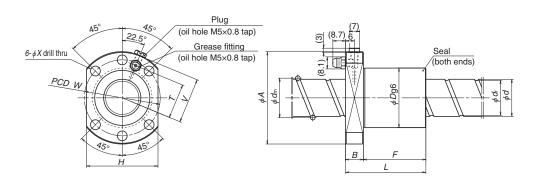
5. Structure of model number and reference number

The following describe the structure of "Model number" and "Reference number for ball screw".



♦ Reference number for ball screw

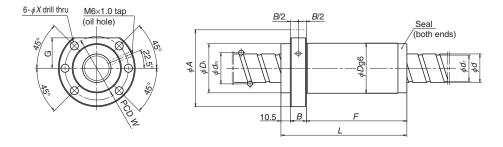
B409 B410

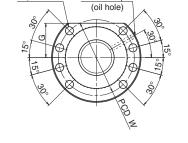


Screw shaft diameter $d \le 20 \text{ mm}$

	a			Ball circle		E4445	Basic load	rating (N)	Axial rigidity	
Model No.	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Effective turns of	Dynamic	Static	K	
	d	l	$D_{\rm w}$	d _m	d _r	balls	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle \mathrm{0a}}$	(N/µm)	
BSS0608-2E		8				2	550	715	24	
BSS0608-4E	6	8	1.2	6.2	4.9	4	1 180	1 760	55	
BSS0612-2E	0	12	1.2	0.2	4.9	2	550	715	22	
BSS0612-4E		12				4	1 180	1 760	51	
BSS0810-2E		10				2	910	1 260	31	
BSS0810-4E	8	10	1 500	1.588 8.3	6.6	4	1 950	3 080	72	
BSS0815-2E	0	15	1.500		0.0	0.0	2	910	1 260	29
BSS0815-4E		15				4	1 950	3 080	68	
BSS1005-3E	10	5	2.000	10.3	8.2	3	2 930	4 790	126	
BSS1010-2E	10	10	2.000	10.3	0.2	2	1 970	3 010	77	
BSS1205-3E		5				3	3 200	5 860	146	
BSS1210-3E	12	10	2.000	12.3	10.2	3	3 200	5 860	142	
BSS1220-2E	12	20	2.000	12.3	10.2	2	2 150	3 610	83	
BSS1230-2E		30				2	2 150	3 610	75	
BSS1505-3E		5	2.778	15.5	12.6	3	5 460	10 200	183	
BSS1510-3E	15	10	2.778		12.6	3	5 460	10 200	181	
BSS1520-2E	15	20	3.175	10.0	12.2	2	5 070	8 730	127	
BSS1530-2E		30	3.175		12.2	2	5 070	8 730	116	
BSS2005-3E		5				3	8 790	18 500	268	
BSS2010-3E		10				3	8 790	18 500	268	
BSS2020-2E	20	20	3.175	20.5	17.2	2	5 900	11 700	167	
BSS2030-2E	20	30	3.175	20.5	17.2	2	5 900	11 700	159	
BSS2040-2E		40				2	5 900	11 700	147	
BSS2060-2E		60				2	5 900	11 700	128	
BSS2505-3E		5				3	9 760	23 600	325	
BSS2510-4E		10				4	12 800	32 300	437	
BSS2520-2E	25	20	0 175	25.5	22.2	2	6 560	14 600	203	
BSS2525-2E	25	25	3.175	25.5	22.2	2	6 560	14 600	197	
BSS2530-2E		30				2	6 560	14 600	194	
BSS2550-2E		50				2	6 560	14 600	177	

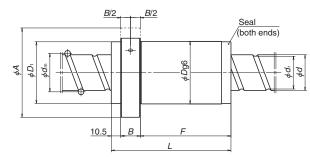
Note: 1) The axial rigidity K in the table above is a theoretical value derived from elastic displacement between screw grooves and balls when axial load is applied to a ball nut for which preload is set at 3% of the basic dynamic load rating (C_a). For ball screws with shaft diameters less than 0.25, the standard Compact FA PSS type can be available.


Screw shaft diameter d = 25 mm


											Unit: mm																														
Nut entire		Flange	Flange	Nut	Flange d	imension		Bolt	hole dimer	nsion	Oil hole	E																													
length	diameter	diameter	width	length			PCD				distance	르																													
L	D	Α	В	F	Н	V	W	X	Y	Z	T	deflector type																													
16				8								먪																													
24	14	27	4	16	15 (10)	_	21	3.4	_	_	_	물																													
20			·	12	10 (10)			0				¥																													
32 18				24 10								. "																													
28				20																																					
22	18	31	4	14	19 (13)	_	25	3.4	_	_	_																														
37				29																																					
29	23	43	11	18	26	21	33	4.5	8	4.5	14																														
32	23	43	11	21	20	21	33	4.5	0	4.0	14																														
30				19																																					
43 50	24	44	11	32 39	27	21.5	34	4.5	8	4.5	14.5																														
70				59																																					
30	28	51		19	31	25	39				18																														
43	28	51	4.4	32	31	25	39		0.5		18																														
51	32	55	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	40	33	27	43	5.5	9.5	5.5	20	
71	32	55		60	33	27	43				20																														
31				18																																					
45				32																																					
54 74	36	62	13	41 61	38	30.5	49	6.6	11	6.5	23.5																														
92				79																																					
129				116																																					
32				20								-																													
56				44																																					
54	40	62	12	42	48	30.5	51	6.6			23.5																														
63	40	02	12	51	40	30.5	51	0.0	_	_	23.0																														
74				62																																					
114				102																																					

2) Dimensions in parentheses are for flat nut configurations.

B411 B412



M6×1.0 tap

8- *ϕX* drill thru

Screw shaft diameter d = 32 mm

	Cl f+ -l:-	11	D-II-II-	Ball circle	D+ -l'-	Effective	Basic load	rating (N)	Axial rigidity
Model No.	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	turns of	Dynamic	Static	K
1110001110.	d	l	$D_{\rm w}$	d _m	d,	balls	, C _a	$C_{\scriptscriptstyle 0a}$	(N/µm)
BSS3205-4E		5	3.175	32.5	29.2	4	14 200	41 400	534
BSS3210-6E		10	5.556	33	27.2	6	43 300	111 000	865
BSS3212-5E		12	5.556	33	27.2	5	36 700	90 800	716
BSS3216-5E	32	16	5.556	33	27.2	5	36 700	90 800	716
BSS3220-5E		20	5.556	33	27.2	5	36 700	90 800	708
BSS3232-2E		32	5.556	33	27.2	2	15 300	32 400	261
BSS3264-2E		64	5.556	33	27.2	2	15 300	32 400	232
BSS3605-3E		5	3.175	36.5	33.2	3	11 400	34 100	433
BSS3610-6E		10	6.35	37	30.4	6	55 200	142 000	970
BSS3612-6E	36	12	6.35	37	30.4	6	55 200	142 000	967
BSS3616-6E		16	6.35	37	30.4	6	55 200	142 000	961
BSS3620-6E		20	6.35	37	30.4	6	55 200	142 000	959
BSS4010-5E		10				5	49 300	130 000	875
BSS4012-5E		12				5	49 300	130 000	873
BSS4016-5E		16				5	49 300	130 000	875
BSS4020-5E	40	20	6.35	41	34.4	5	49 300	130 000	868
BSS4025-4E	40	25		41	34.4	4	40 100	103 000	686
BSS4030-3E		30				3	30 600	74 000	505
BSS4040-2E		40				2	20 600	46 600	319
BSS4080-2E		80				2	20 600	46 600	286
BSS4510-5E		10				5	51 400	146 000	961
BSS4512-5E		12				5	51 400	146 000	959
BSS4516-5E	45	16	6.35	46	39.4	5	51 400	146 000	955
BSS4520-5E	45	20	0.55	40	33.4	5	51 400	146 000	950
BSS4525-5E		25				5	51 400	146 000	954
BSS4530-4E		30				4	41 800	116 000	752
BSS5010-4E		10				4	44 600	129 000	836
BSS5012-4E		12				4	44 600	129 000	944
BSS5016-4E		16				4	44 600	129 000	832
BSS5016-4E BSS5020-4E	50	20	6.35	51	44.4	4	44 600	129 000	837
BSS5025-4E	50	25	0.55	31	44.4	4	44 600	129 000	828
BSS5030-4E		30				4	44 600	129 000	821
BSS5050-2E		50				2	22 800	58 300	383
BSS50100-2E		100				2	22 800	58 300	342

Note: The axial rigidity K in the table above is a theoretical value derived from elastic displacement between screw grooves and balls when axial load is applied to a ball nut for which preload is set at 3% of the basic dynamic load rating (C_a).

Screw shaft diameter $d \ge 36$ mm

Unit: mm

Nut entire	Nut	Seal section	Flange	Flange	Nut	Notched	Bolt hole PCD	Bolt hole																										
length	diameter	diameter	diameter	width	length	flange	PCD	dimension																										
L	D	D_1	Α	В	F	G	W	X																										
55				12	32.5																													
104				18	75.5																													
103				18	74.5																													
122	56	55	86	18	93.5	34	71	9																										
141				18	112.5																													
94				18	65.5																													
153				18	124.5																													
50				12	27.5																													
109				22	76.5																													
120	65	64	95	22	87.5	36	80	9																										
143				22	110.5																													
166				22	133.5																													
99					66.5																													
108					75.5																													
127		70 69	100	22	94.5																													
146	70				113.5	38.5	85	9																										
145	, ,			100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100		112.5	00.0	00
134																							101.5											
110					77.5																													
184					151.5																													
99					66.5																													
108					75.5																													
127	75	74	110	22	94.5	43	93	11																										
146					113.5																													
170					137.5																													
164 89					131.5																													
					56.5																													
96					63.5																													
111 126					78.5 93.5																													
145	82	81	118	22	112.5	46	100	11																										
145					131.5																													
130					97.5																													
224					191.5																													
ZZ4					ט.ופו																													

B413 B414

B-3-2.2 Return Tube Type Ball Screws

1. Features

Return tube type is a standard way of ball recirculation system for ball screws. It has various combinations of shaft diameter and lead.

2. Specifications

(1) Ball recirculation system

The structure of return tube recirculation system is shown below.

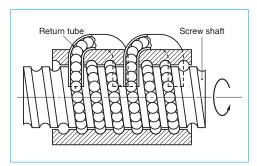


Fig.1 Structure of return tube recirculation system

Table 1 Accuracy grade and axial play

Accuracy grade	SFT, PFT, ZFT, DFT:
Axial play	Z, 0 mm (preloaded); T, 0.005 mm or less; S, 0.020 mm or less; N, 0.050 mm or less

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are shown in **Table 1**. Please consult NSK for other grades.

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below. Basic measures must be taken for the high-speed ball screws respectively.

Allowable d·n value:

Standard specification ; 70 000 or less High-speed specification; 100 000 or less

Standard of rotational speed: 3 000 min⁻¹

Note: Please also review the critical speed. Refer
to "Technical Description: Permissible
Rotational Speed" (page B47) for details.

(4) Option

A type equipped with NSK K1 lubrication unit is also available.

(5) Other specifications

Please consult NSK for other specifications not listed in the dimension tables.

3. Product categories

There are four different preloaded systems with several models. Since the leads are in the range from 1/2 to the same length of the shaft

Table 2 Return tube type ball screws product categories

Nut model	Shape	Flange shape	Nut shape	Preload system
SFT		Flanged d=16mm or under	والمعالم الما	Non-preload, Slight axial play
PFT		Rectangle d=20mm or over Circular I, II	Circle dia.	P-preload (light preload) Spacer ball 1:1
ZFT	10000	Flanged Circular I, II	Circle dia.	Z-preload (medium preload)

Nut model	Shape	Flange shape	Nut shape	Preload system
DFT	100 00 min	Flanged Circular I, II	Circular	D-preload (medium preload) (heavy preload)
LSFT		Flanged d=20mm or under	d=20mm or under Circular	Non-preload, Slight axial play
LPFT		Rectangle d=25mm or over Circular II	d=25mm or over Tube- projecting type	P-preload (light preload) Spacer ball 1:1
LDFT		Flanged Circular II	Circular	D-preload (medium preload) (heavy preload)

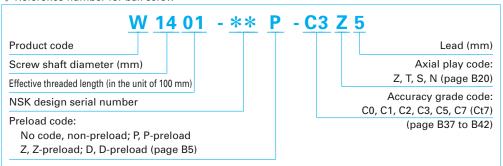
diameter (medium-high helix lead), LSFT, LPFT, LDFT Type ball screws are suitable for high-speed operation.

4. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".

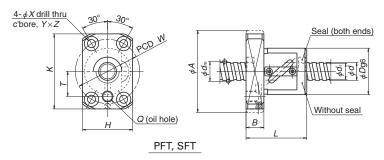
♦ Model number

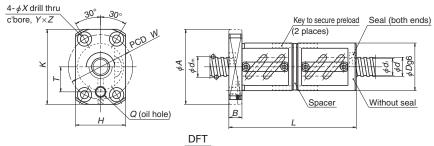
Nut model:
SFT, PFT, ZFT, DFT
LSFT, LPFT, LDFT
Screw shaft diameter (mm)


SFT 14 05 - 2.5

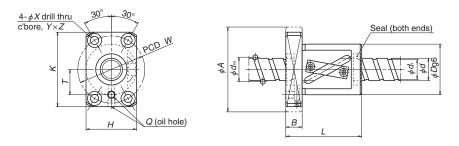
Effective turns of balls (Note)

Lead (mm)


Note: In case of Z-preload, the number here is twice as large as the effective turns of balls.


Reference number for ball screw

B415 B416



	Model	No.	Preload	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Tuitio	Basic load Dynamic	rating (N) Static	Axial rigidity <i>K</i>	
			system	d	l	D_{w}	d _m	d _r	× Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)	
*	PFT 1004	4-2.5	Р	10	4	2.000	10.3	8.2	2.5×1	1 730	2 230	76	
	SFT 1004		Clearance	10	4	2.000	10.5	0.2		2 740	4 450	90	
	PFT 1204		Р						2.5×1	2 370	3 160	89	
	PFT 1204		Р		4	2.381	12.3	9.8	1.5×2	2 770	3 790	106	
	SFT 1204		Clearance		-	2.501	12.0	3.0	2.5×1	3 760	6 310	106	
	SFT 1204		Clearance						1.5×2	4 390	7 580	126	
*	PFT 120!		Р	12					2.5×1	2 370	3 160	89	
	PFT 120!		Р	12	5	2.381	12.3	9.8	1.5×2	2 770	3 790	106	
	SFT 120!		Clearance			"	2.501	12.0	3.0	2.5×1	3 760	6 310	106
	SFT 120!		Clearance						1.5×2	4 390	7 580	126	
*	LPFT 121		Р		10	2.381	12.5	10.0	2.5×1	2 360	3 240	90	
	LSFT 121		Clearance		10	2.001	12.0	10.0		3 750	6 480	110	
*	PFT 140!		Р						2.5×1	4 280	5 840	116	
	SFT 140		Clearance		5	3.175	14.5	11.2	2.5×1	6 790	11 700	140	
	PFT 140!		Р	14					2.5×2	7 770	11 700	225	
	SFT 140		Clearance	'					2.5×2	12 300	23 400	274	
*	LPFT 140		Р		8	3.175	14.5	11.2	2.5×1	4 280	5 840	120	
	LSFT 140		Clearance			0.170	1 1.0	11.2	2.0/(1	6 790	11 700	140	
*	LPFT 151		Р	15	10	3.175	15.5	12.2	2.5×1	4 450	6 380	127	
	LSFT 151		Clearance	10		0.170	10.0	12.2		7 070	12 800	150	
	PFT 1604		Р						1.5×2	3 170	5 150	135	
	SFT 1604		Clearance						2.5×1	4 300	8 530	134	
	DFT 1604		D	16	4	2.381	16.3	13.8	2.5×1	4 300	8 530	263	
	PFT 1604-5	Р		'		. 5.0	. 5.0	2.5×2	4 920	8 530	215		
		Clearance						1.5×2	5 040	10 300	160		
		D						1.5×2	5 040	10 300	315		

Notes: 1. Nut flange for shaft diameter 16 mm or smaller comes in rectangular shape.

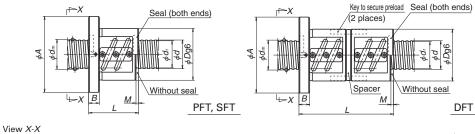
LPFT, LSFT

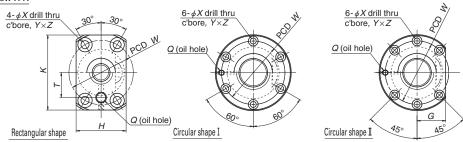
Unit: mm

	Dell'aut disconsisse													
	Ball nut dimensions													
Nut entire		Flanged	Flanged	Rectangle flanged diameter		tangle flanged diameter Bolt hole dimension			Bolt hole	Oil hole	Oil hole			
length	diameter	diameter A	width <i>B</i>	Н	К	Χ	Y	Z	PCD W	length				
L	D	Α	В	П	Λ	Χ	Y		VV	I	Q			
34	26	46	10	28	42	4.5	8	4.5	36	14	M6×1			
38														
44	30	50	10	32	45	4.5	8	4.5	40	15	M6×1			
38	00	30	10	02	45	4.5		4.5	40	13	1010/1			
44														
40 48														
40	30	50	10	32	45	4.5	8	4.5	40	15	M6×1			
48														
50	30	50	10	32	45	4 E	8	4.5	40	1.5	M6×1			
	30	50	10	32	45	4.5	Ö	4.5	40	15	IVIOXI			
40														
40	34	57	11	34	50	5.5	9.5	5.5	45	17	M6×1			
55	-													
55														
46	34	57	11	34	50	5.5	9.5	5.5	45	17	M6×1			
51	34	57	11	34	50	5.5	9.5	5.5	45	17	M6×1			
45	34			34										
38	34			34										
70	36	57	11	36	50	5.5	9.5	5.5	45	17	M6×1			
50	34	57	57	'''	34	50	0.0	9.5	5.5	40	'/	IVIOAI		
45	34			34										
85	36			36										

4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_i) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.

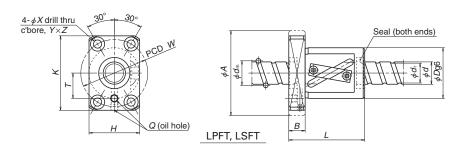
5. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.


6. The models marked with * (asterisk) are available in the FA type standard ball screws with finished shaft end.


7. Preload system: P, Oversize ball preload; D, Double nut preload (See page B5.)

^{2.} Seals are equipped as a standard for LSFT and LPFT of shaft diameter 20 mm or smaller. The outside dimensions are the same as those of without seals.

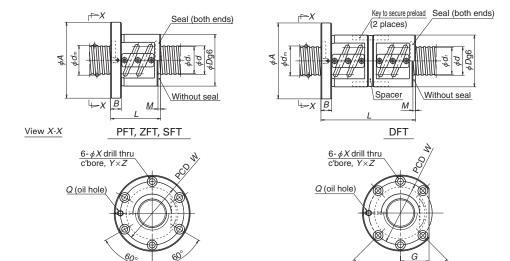
^{3.} The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.



-			Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial rigidity
	Model No.	Preload	Shart dia.	Leau	Dali dia.	dia.	noot dia.	Tuitio	Dynamic	Static	K
		system	d	l	$D_{\rm w}$	d _m	d_{r}	× Circuits	C _a	C_{0a}	(N/µm)
	PFT 1605-3	Р						1.5×2	5 400	8 100	158
	SFT 1605-2.5	Clearance						2.5×1	7 330	13 500	158
	DFT 1605-2.5	D			3.175			2.5×1	7 330	13 500	311
	PFT 1605-5	Р		5		16.5	13.2	2.5×2	8 380	13 500	258
	SFT 1605-3	Clearance		5	3.175	10.5	13.2	1.5×2	8 570	16 200	188
	DFT 1605-3	D						1.5×2	8 570	16 200	370
	SFT 1605-5	Clearance						2.5×2	13 300	27 000	307
	DFT 1605-5	D	16					2.5×2	13 300	27 000	603
	PFT 1606-2.5	Р						2.5×1	4 620	6 750	133
	SFT 1606-2.5	Clearance				16.5		2.5×1	7 330	13 500	158
	DFT 1606-2.5	D		6	3.175		13.2	2.5×1	7 330	13 500	311
	SFT 1606-3	Clearance		0	0.170	10.0	10.2	1.5×2	8 570	16 200	188
	DFT 1606-3	D						1.5×2	8 570	16 200	370
	LPFT 1616-1.5	Р		16	3.175	16.75	13.4	1.5×1	3 600	5 410	110
	LSFT 1616-1.5	Clearance			0.170	10.70			4 710	8 110	100
	SFT 2004-2.5	Clearance						2.5×1	4 740	10 700	160
	DFT 2004-2.5	D P			0.004	00.0	47.0	2.5×1	4 740	10 700	315
	PFT 2004-5			4	2.381	20.3	17.8	2.5×2	5 420	10 700	260
	SFT 2004-5	Clearance						2.5×2	8 600	21 500	309
	DFT 2004-5 PFT 2005-3	D P						2.5×2	8 600 6 060	21 500	608
	SFT 2005-3		20					1.5×2	8 230	17 100	191 190
	DFT 2005-2.5	Clearance	20					2.5×1 2.5×1	8 230	17 100	376
	PFT 2005-2.5	P						2.5×1 2.5×2	9 410	17 100	311
	SFT 2005-3	Clearance		5	3.175	20.5	17.2	1.5×2	9 620	20 600	227
	DFT 2005-3	D						1.5×2	9 620	20 600	446
	SFT 2005-5	Clearance						2.5×2	14 900	34 300	370
	DFT 2005-5	D						2.5×2 2.5×2	14 900	34 300	726

Notes: 1. Nut flange for shaft diameter 16 mm or smaller comes in rectangular shape. It comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal for PFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- Seals are equipped as a standard for LSFT and LPFT of shaft diameter 20 mm or smaller. The outside dimensions are the same as those of without seals.
- 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

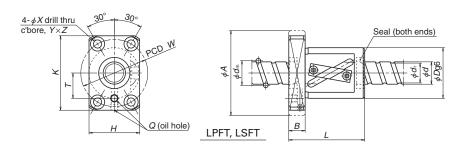

Unit: mm

Nut entire length diameter diameter diameter width B							nut dime	nsions							
97 57 107 44 44 48 86 40 63 110 56 40 63 12 — 40 55 — 55 9.5 5.5 51 20 M6×1 56 110 56 40 63 12 — 40 55 — 5.5 9.5 5.5 51 17 M6×1 37 69 49 49 40 63 11 24 — 3 55 56 40 63 40 63 11 24 — 3 55 56 50 40 55 55 50 50 50 50 50 50 50 5		diameter	diameter	width	flange			dimension				PCD	length		Ret
97 57 107 44 44 48 86 40 63 110 56 40 63 12 — 40 55 — 55 9.5 5.5 51 20 M6×1 56 110 56 40 63 12 — 40 55 — 5.5 9.5 5.5 51 17 M6×1 37 69 49 49 40 63 11 24 — 3 55 56 40 63 40 63 40 63 40 63 40 63 40 40 40 40 40 40 40 40 40 40	L	D	A	В	G	Н	K	М	X	Y		W	1	Q	1
97 57 107 44 44 48 86 40 63 110 56 40 63 12 — 40 55 — 55 9.5 5.5 51 20 M6×1 56 110 56 40 63 12 — 40 55 — 5.5 9.5 5.5 51 17 M6×1 37 69 49 49 40 63 11 24 — 3 55 56 40 63 40 63 40 63 40 63 40 63 40 40 40 40 40 40 40 40 40 40															=
97 57 107 44 44 48 86 40 63 110 56 40 63 12 — 40 55 — 55 9.5 5.5 51 20 M6×1 56 110 56 40 63 12 — 40 55 — 5.5 9.5 5.5 51 17 M6×1 37 69 49 49 40 63 11 24 — 3 55 56 40 63 40 63 40 63 40 63 40 63 40 40 40 40 40 40 40 40 40 40															튱
97 57 107 44 44 48 86 40 63 110 56 40 63 12 — 40 55 — 55 9.5 5.5 51 20 M6×1 56 110 56 40 63 12 — 40 55 — 5.5 9.5 5.5 51 17 M6×1 37 69 49 49 40 63 11 24 — 3 55 56 40 63 40 63 40 63 40 63 40 63 40 40 40 40 40 40 40 40 40 40															=
97 57 107 44 44 48 86 40 63 110 56 40 63 12 — 40 55 — 55 9.5 5.5 51 20 M6×1 56 110 56 40 63 12 — 40 55 — 5.5 9.5 5.5 51 17 M6×1 37 69 49 49 40 63 11 24 — 3 55 56 40 63 40 63 40 63 40 63 40 63 40 40 40 40 40 40 40 40 40 40		40	62	11		40	55		65	0.5	55	E1	20	M6v1	돌
57 107 44 44 486 40 63 11 — 40 55 — 5.5 9.5 5.5 51 20 M6x1 56 40 63 12 — 40 55 — 5.5 9.5 5.5 51 17 M6x1 37 69 49 40 63 11 24 — — 3 5.5 9.5 5.5 51 — M6x1 49 93 52 41 76 56 52 44 67 11 26 — — 3 5.5 9.5 5.5 55 — M6x1		40	03	''		40	33	_	0.5	9.5	0.5	31	20	IVIOXI	æ
107 44 44 48 86 40 63 11 - 40 55 - 5.5 9.5 5.5 51 20 M6×1 56 110 56 40 63 12 - 40 55 - 5.5 9.5 5.5 51 17 M6×1 37 69 49 40 63 11 24 - 3 5.5 9.5 5.5 51 - M6×1 M6×1 76 56 52 41 76 56 52 97 56															
44 44 86 56 110 40 63 11 — 40 55 — 5.5 9.5 5.5 51 20 M6×1 56 110 40 63 12 — 40 55 — 5.5 9.5 5.5 51 17 M6×1 37 69 49 49 93 52 41 76 56 52 97 56 44 67 67 11 24 — — 3 5.5 9.5 5.5 51 — M6×1															
44 86 40 63 11 — 40 55 — 5.5 9.5 5.5 51 20 M6x1 56 40 63 12 — 40 55 — 5.5 9.5 5.5 51 17 M6x1 37 69 49 40 63 11 24 — — 3 5.5 9.5 5.5 51 — M6x1 49 49 40 63 11 24 — — 3 5.5 9.5 5.5 51 — M6x1 93 52 41 76 7 <															
86 40 63 11 — 40 55 — 5.5 9.5 5.5 51 20 M6×1 56 40 63 12 — 40 55 — 5.5 9.5 5.5 51 17 M6×1 37 69 49 40 63 11 24 — — 3 5.5 9.5 5.5 51 — M6×1 49 93 52 41 76 56 52 97 56 44 67 11 26 — — 3 5.5 9.5 5.5 55 — M6×1															
56 110 56 40 63 12 — 40 55 — 5.5 9.5 5.5 51 17 M6×1 37 69 49 49 40 63 11 24 — — 3 5.5 9.5 5.5 51 — M6×1 93 52 41 76 56 52 97 56 65 52 97 56															
110 56 40 63 12 — 40 55 — 5.5 9.5 5.5 51 17 M6×1 37 69 49 40 63 11 24 — — 3 5.5 9.5 5.5 51 — M6×1 49 93 52 41 76 56 52 44 67 11 26 — — 3 5.5 9.5 5.5 55 — M6×1 97 56		40	63	11	_	40	55	_	5.5	9.5	5.5	51	20	M6×1	
56 40 63 12 — 40 55 — 5.5 9.5 5.5 51 17 M6×1 37 69 49 40 63 11 24 — — 3 5.5 9.5 5.5 51 — M6×1 49 93 52 41 76 56 52 9.5 5.5 9.5 5.5 55 — M6×1 97 56															
37 69 49 40 63 11 24 - 3 5.5 9.5 51 - M6×1 M6×1 M6×1 M6×1 M6×1 M6×1 M6×1 M6×1	110														
69 49 49 93 52 41 76 56 52 97 56	56	40	63	12	_	40	55	_	5.5	9.5	5.5	51	17	M6×1	
49 40 63 11 24 — — 3 5.5 9.5 5.5 51 — M6×1 49 93 52 41 76 56 52 97 56	37														
49 40 63 11 24 — — 3 5.5 9.5 5.5 51 — M6×1 49 93 52 41 76 56 52 97 56	69														
93 52 41 76 56 52 97 56	49	40	63	11	24	_	_	3	5.5	9.5	5.5	51	_	M6×1	
52 41 76 56 52 97 56	49														
41 76 56 52 97 56	93														
76 56 52 97 56	52														
56 52 97 56 44 67 11 26 — — 3 5.5 9.5 5.5 55 — M6×1	41														
52 97 56	76														
52 97 56	56	4.4	07	11	200					ا م د				N 101	
56	52	44	0/	11	26	_	_	3	5.5	9.5	5.5	55	_	IVIOXI	
56	97														

- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. The models marked with * (asterisk) are available in the FA or SA type standard ball screws with finished shaft end.
- 8. Preload system: P, Oversize ball preload; D, Double nut preload (See page B5.)

Circular shape I

			01 (1)		D	Ball circle		Effective turns of balls	Basic load	rating (N)	Axial
	Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
	Model No.	system						×			K
			d	l	D_{w}	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)
	PFT 2006-2.5	Р						2.5×1	6 900	10 500	164
	PFT 2006-3	Р						1.5×2	8 080	12 700	195
	SFT 2006-2.5	Clearance		6	3.969	20.5	16.4	2.5×1	11 000	21 100	195
	DFT 2006-2.5	D		O	3.909	20.5	10.4	2.5×1	11 000	21 100	384
	SFT 2006-3	Clearance						1.5×2	12 800	25 300	232
	DFT 2006-3	D]					1.5×2	12 800	25 300	456
	PFT 2008-2.5	Р						2.5×1	6 900	10 500	164
	SFT 2008-2.5	Clearance		_				2.5×1	11 000	21 100	195
	DFT 2008-2.5	D	20	8	3.969	20.5	16.4	2.5×1	11 000	21 100	384
	SFT 2008-3	Clearance						1.5×2	12 800	25 300	232
-10	DFT 2008-3	D P	-					1.5×2	12 800	25 300	456
4	LPFT 2010-2.5			10	3.969	21.0	16.9	2.5×1	6 800	10 800	169 202
	LSFT 2010-2.5 LPFT 2016-2.5	Clearance	-						10 900 6 880	21 700 10 800	169
	LSFT 2016-2.5	Clearance		16	3.969	21.0	16.9	2.5×1	10 900	21 700	202
*	LPFT 2020-1.5	P	1						5 370	8 450	137
•	LSFT 2020-1.5	Clearance		20	3.969	21.0	16.9	1.5×1	7 040	12 700	127
	SFT 2504-2.5	Clearance						2.5×1	5 270	13 600	193
	ZFT 2504-5	Z						2.5×1	5 270	13 600	379
*	PFT 2504-5	P		4	2.381	25.3	22.8	2.5×2	6 020	13 600	312
	SFT 2504-5	Clearance						2.5×2	9 560	27 200	374
	ZFT 2504-10	Z	1					2.5×2	9 560	27 200	735
	PFT 2505-3	Р	1 1					1.5×2	6 730	12 800	223
	SFT 2505-2.5	Clearance]					2.5×1	9 130	21 900	231
	ZFT 2505-5	Z	25					2.5×1	9 130	21 900	454
*	PFT 2505-5	Р						2.5×2	10 400	21 900	372
	SFT 2505-3	Clearance	[5	3.175	25.5	22.2	1.5×2	10 700	25 700	271
	DFT 2505-3	D		J	0.173	20.0	~~.~	1.5×2	10 700	25 700	532
	PFT 2505-7.5	Р	[2.5×3	14 800	32 800	544
	SFT 2505-5	Clearance						2.5×2	16 600	43 700	447
	ZFT 2505-10	Z						2.5×2	16 600	43 700	876
	SFT 2505-7.5	Clearance					1	2.5×3	23 500	65 600	654


Circular shape I

Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.

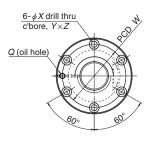
2. If there is no seal for PFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".

3. Seals are equipped as a standard for LSFT and LPFT of shaft diameter 20 mm or smaller. The outside dimensions are the same as those of without seals.

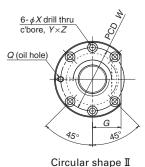
4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

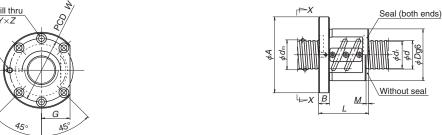
Unit: mm

Ball nut dimensions														
Nut entire		Flanged diameter	Flanged	Notched flange				Bolt h	ole dim	ension	Bolt hole PCD	Oil hole length	Oil hole	æ
lengin I	D	A	B	G	Н	K	M	X	Y	Z	W	T	0	Return tube type
44		71	D	Ü	- / /	K	777	Λ	,			,	Q	3
56														重
44	48	71	11	27			3	5.5	9.5	5.5	59		M6×1	96
86	40	'	11	21			3	0.0	9.5	0.5	39	_	IVIOXI	\$
56														9
110														
54 54														
102	48	75	13	28			5	6.6	11	6.5	61	_	M6×1	
64	40	/3	10	20				0.0		0.5	"		1010/1	
120														
54	46	74	13	_	46	66	_	6.6	11	6.5	59	24	M6×1	
72	46	74	13		46	66	_	6.6	11	6.5	59	24	M6×1	
63	46	74	13	_	46	66	_	6.6	11	6.5	59	24	M6×1	
36														
48														
48	46	69	11	26	_	_	3	5.5	9.5	5.5	57	—	M6×1	
48														
72 52							2							
40							3							
55							3							
55							3							
52		73	11	20			3 3 3 3 3	5.5	9.5	5.5	01		N 4 C 1	
102	50	/3	11	28	_	_	3	0.5	9.5	0.5	61	_	M6×1	
70							_							
55							3 3							
85							3							
70														

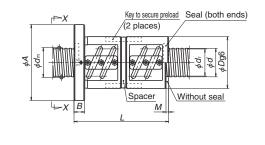

5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.

6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.


7. The models marked with * (asterisk) are available in the FA or SA type standard ball screws with finished shaft end.


8. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

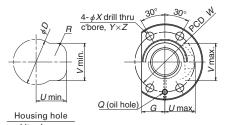
View X-X

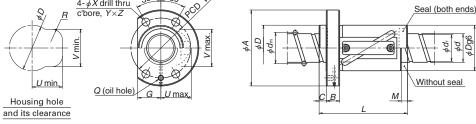


PFT, ZFT, SFT

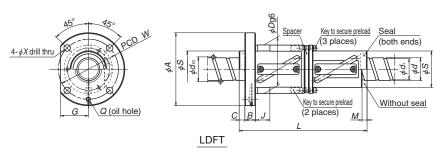
DFT

						Ball circle		Effective turns of balls	Basic load	rating (N)	Axial
	Model No.	rreibau	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
	Wiodol Wo.	system	d	l	D _w	d _m	d _r	× Circuits	C _a	C_{0a}	<i>Κ</i> (N/μm)
	PFT 2506-3	Р						1.5×2	9 070	16 100	235
	SFT 2506-2.5	Clearance						2.5×1	12 300	26 800	235
	ZFT 2506-5	Z						2.5×1	12 300	26 800	462
*	PFT 2506-5	Р		6	2 000	۵۶.۶	01.4	2.5×2	14 100	26 800	383
	SFT 2506-3	Clearance		б	3.969	25.5	21.4	1.5×2	14 400	32 100	280
	DFT 2506-3	D						1.5×2	14 400	32 100	551
	SFT 2506-5	Clearance						2.5×2	22 300	53 500	456
	ZFT 2506-10 PFT 2508-2.5 PFT 2508-3	Z						2.5×2	22 300	53 500	896
		Р						2.5×1	9 940	16 000	203
		Р						1.5×2	11 600	19 000	234
	SFT 2508-2.5	Clearance		8	4.762	25.5	20.5	2.5×1	15 800	32 000	242
	ZFT 2508-5	Z	25	0	4.702	25.5	20.5	2.5×1	15 800	32 000	476
	SFT 2508-3	Clearance						1.5×2	18 500	38 100	286
	DFT 2508-3	D						1.5×2	18 500	38 100	562
	PFT 2510-2.5	Р						2.5×1	9 940	16 000	203
	ZFT 2510-3	Z						1.5×1	10 200	19 000	291
	PFT 2510-3	Р						1.5×2	11 600	19 000	234
	SFT 2510-2.5	Clearance						2.5×1	15 800	32 000	242
	DFT 2510-2.5	D		10	4.762	25.5	20.5	2.5×1	15 800	32 000	475
	SFT 2510-3	Clearance						1.5×2	18 500	38 100	286
	DFT 2510-3	D						1.5×2	18 500	38 100	562
	SFT 2510-3.5	Clearance						3.5×1	21 100	44 200	330
	DFT 2510-3.5	D						3.5×1	21 100	44 200	649

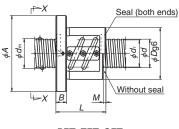

- Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.
 - 2. If there is no seal for PFT, ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
 - 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.


				Ball	nut dimens	ions				
Nut entire	Nut	Flanged	Flanged	Notched	. Seal	Bolt	hole dimer	sion	Bolt hole	Oil hole
length /	diameter D	diameter A	width <i>B</i>	flange <i>G</i>	dimension <i>M</i>	X	Y	Z	PCD W	Q
56	D	/1	٥	U	171	Λ	,		v V	Q
44										
62										
62		7.0		00			0.5		0.4	1.40 4
56	53	76	11	29	3	5.5	9.5	5.5	64	M6×1
110										
62										
98										
56										
69										
56	58	85	13	32	5	6.6	11	6.5	71	M6×1
80 69										
133										
67										
81										
81										
67										
127	58	58 85	15	32	8	6.6	11	6.5	71	M6×1
81										
151										
77										
147										

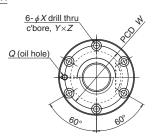
- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. For PFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 6. The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

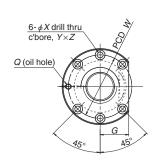

Unit: mm

B423 B424


LPFT, LSFT

Return tube type


															Unit: mm
						Ball	nut dir	mensic	ns						
Nut dia		Flanged diameter		Notched flange	Tube p	rojectin	g type	Seal dir	nension	Diameter g6	Bolt h	ole dim	ension	Bolt hole PCD	Oil hole
D	S	A	В	G	U	V	R	М	С	J	X	Y	Z	W	Q
44	_	71		23	31	35	12			_				57	
44	_	71		23	31	35	12			_				57	
44	_	71	12	23	31	35	12	6	8	_	6.6			57	M6×1
62	44	89	12	34	_	_	_	О	8	18	0.0	_	-	75	IVIOXI
44	_	71		23	31	35	12			_				57	
62	44	89		34	_	_	_			18				75	
44	_	71		23	31	35	12			_				57	
44	_	71		23	31	35	12			_				57	
44	_	71	12	23	31	35	12	7	8	_	6.6	l		57	M6×1
62	44	89	12	34	_	_	_	_ ′	0	18	0.0			75	1010/1
44	_	71		23	31	35	12			_				57	
62	44	89		34		_				18				75	
44	_	71		23	32	34	12			_				57	
62	44	89	12	34	_	_	_	10	10	18	6.6	—	—	75	M6×1
44	_	71		23	32	34	12			_				57	
55	_	85	12	31	_	_	_	3	_	_	6.6	11	6.5	69	M6×1

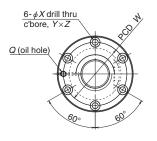

- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. The models marked with * (asterisk) are available in the FA or SA type standard ball screws with finished shaft end.
- 8. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

PFT, ZFT, SFT

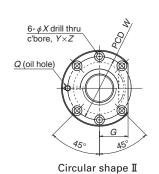
View X-X

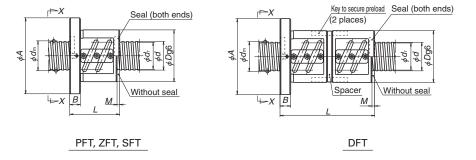
Circular shape I

Circular shape I


			Shaft	Lead	Ball dia.	Ball	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial	
	Model No.	Preload	dia.	Leau	Dali ula.	circle	li loot dia.	Tullis	Dynamic	Static	rigidity	Nut entire
		system	d	l	D_{w}	dia. <i>d</i> ,,	d,	X X	C _a	C_{0a}	(N1/)	length
			u	ι	$\nu_{\rm w}$	u _m	u _r	Circuits	C _a	C _{Oa}	(N/µm)	L
	LPFT 2516-2.5	Р						2.5×1	9 900	16 400	210	84
	LPFT 2516-3	P						1.5×2	11 600	19 100	247	100
	LSFT 2516-2.5	Clearance		16	4.762	26.25	21.3	2.5×1	15 700	32 800	250	84
	LDFT 2516-2.5	D		10	4.702	20.25	21.3	2.5×1	15 700	32 800	490	152
	LSFT 2516-3	Clearance						1.5×2	18 400	38 200	295	100
	LDFT 2516-3	D						1.5×2	18 400	38 200	577	181
*	LPFT 2520-2.5	Р						2.5×1	9 900	16 400	210	96
	LPFT 2520-3	Р	25					1.5×2	11 600	19 100	247	116
	LSFT 2520-2.5	Clearance		20	4.762	26.25	21.3	2.5×1	15 700	32 800	250	96
	LDFT 2520-2.5	D		20	4.702	20.25	21.3	2.5×1	15 700	32 800	490	177
	LSFT 2520-3	Clearance						1.5×2	18 400	38 200	295	116
	LDFT 2520-3	D						1.5×2	18 400	38 200	577	217
*	LPFT 2525-1.5	Р							6 380	9 540	127	90
	LDFT 2525-1.5	D		25	4.762	26.25	21.3	1.5×1	10 100	19 100	308	166
	LSFT 2525-1.5	Clearance							10 100	19 100	157	90
	SFT 2805-2.5	Clearance						2.5×1	9 600	24 400	252	41
	ZFT 2805-5	Z						2.5×1	9 600	24 400	495	56
	PFT 2805-5	Р	28	5	3.175	28.5	25.2	2.5×2	11 000	24 400	410	56
	SFT 2805-5	Clearance						2.5×2	17 400	48 800	487	56
*	ZFT 2805-10	Z						2.5×2	17 400	48 800	959	86

Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.


- 2. If there is no seal for PFT, ZFT, and SFT, the nut length "L" is shortened by dimension "M".
- 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension
- 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

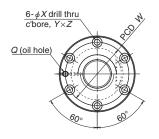

B425

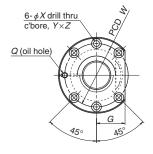
View X-X

Unit: mm

Model No.	Preload	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls Turns		rating (N)	Axial rigidity
Model No). system				dia.		X	Dynamic	Static	K
	System	d	l	$D_{\rm w}$	d _m	d _r	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
PFT 2806-3	Р						1.5×2	7 080	14 600	252
SFT 2806-2.5	Clearance						2.5×1	9 600	24 400	252
ZFT 2806-5	Z						2.5×1	9 600	24 400	495
PFT 2806-5	P		6	0 175	20 5	25.2	2.5×2	11 000	24 400	410
SFT 2806-3	Clearance		О	3.175	28.5	25.2	1.5×2	11 200	29 300	300
DFT 2806-3	D						1.5×2	11 200	29 300	590
SFT 2806-5	Clearance						2.5×2	17 400	48 800	487
ZFT 2806-10		28					2.5×2	17 400	48 800	959
PFT 2810-2.							2.5×1	10 500	18 000	220
ZFT 2810-3	Z						1.5×1	10 800	21 500	320
PFT 2810-3	P						1.5×2	12 300	21 500	265
SFT 2810-2.5 DFT 2810-2.5 SFT 2810-3	Clearance		10	4.762	28.5	23.5	2.5×1	16 700	36 100	265
	5 D						2.5×1	16 700	36 100	522
	Clearance						1.5×2	19 500	43 000	314
DFT 2810-3	D						1.5×2	19 500	43 000	618
SFT 3204-2.5	Clearance						2.5×1	5 800	17 500	234
ZFT 3204-5	Z						2.5×1	5 800	17 500	461
PFT 3204-5	P		4	2.381	32.3	29.8	2.5×2	6 630	17 500	382
SFT 3204-5	Clearance						2.5×2	10 500	35 100	454
ZFT 3204-10	Z						2.5×2	10 500	35 100	892
PFT 3205-3							1.5×2	7 490	16 800	281
SFT 3205-2.5							2.5×1	10 200	28 000	281
ZFT 3205-5	Z	32					2.5×1	10 200	28 000	552
PFT 3205-5	P	J 22					2.5×2	11 600	28 000	455
SFT 3205-3	Clearance						1.5×2	11 900	33 600	333
DFT 3205-3	D		5	3.175	32.5	29.2	1.5×2	11 900	33 600	655
PFT 3205-7.5							2.5×3	16 500	42 100	672
SFT 3205-5	Clearance						2.5×2	18 500	56 100	543
ZFT 3205-10	Z						2.5×2	18 500	56 100	1 070
SFT 3205-7.5							2.5×3	26 200	84 100	799
DFT 3205-7.5	5 D						2.5×3	26 200	84 100	1 572

Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.

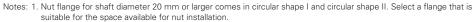

- 2. If there is no seal for PFT, ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

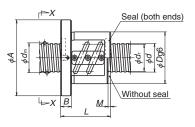

Ball nut dimensions													
Nut entire		Flanged	Flanged	Notched	Seal	Bolt	hole dimer	sion	Bolt hole	Oil hole			
length	diameter	diameter	width	flange	dimension				PCD				
L	D	Α	В	G	М	Χ	Y	Ζ	W	Q			
57													
45													
63													
63	55	85	12	31	3	6.6	11	6.5	69	M6×1			
57	33	00	12	51	5	0.0	' '	0.5	0.5	1010/1			
111													
63													
99 68													
68													
82													
82													
68	60	94	15	36	7	9	14	8.5	76	M6×1			
128													
82													
1 <u>52</u> 37													
49													
49	54	81	12	31	3	6.6	11	6.5	67	M6×1			
49													
73 53													
53										_			
41													
56													
56													
53													
103	58	85	12	32	3	6.6	11	6.5	71	M6×1			
71													
56													
86													
71													
136													

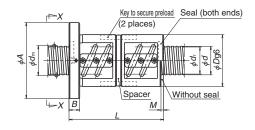
- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. For PFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 6. The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

B427

View X-X

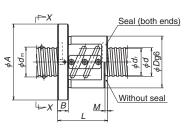


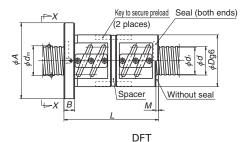

Circular shape I


Circular shape I

			Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial
	Model No.	Preload system	Silait ula.	Leau	Dali ula.	dia.	1100t ula.	Turns ×	Dynamic	Static	rigidity <i>K</i>
		System	d	l	$D_{\rm w}$	d _m	d _r	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
	PFT 3206-3	Р						1.5×2	10 000	20 600	285
	SFT 3206-2.5	Clearance						2.5×1	13 600	34 700	287
	ZFT 3206-5	Z						2.5×1	13 600	34 700	563
	PFT 3206-5	Р		6	3.969	32.5	28.4	2.5×2	15 500	34 700	468
	SFT 3206-3	Clearance		U	3.303	32.3	20.4	1.5×2	15 900	41 200	339
	DFT 3206-3	D						1.5×2	15 900	41 200	666
	SFT 3206-5	Clearance						2.5×2	24 700	69 400	555
*	ZFT 3206-10	Z						2.5×2	24 700	69 400	1 090
	PFT 3208-3							1.5×2	12 900	24 800	294
	SFT 3208-2.5 ZFT 3208-5	Clearance						2.5×1 2.5×1	17 500 17 500	41 000 41 000	292 573
	PFT 3208-5	P						2.5×1 2.5×2	20 000	41 000	470
	SFT 3208-3	Clearance		8	4.762	32.5	27.5	1.5×2	20 400	49 500	349
	ZFT 3208-6	Z		0	4.702	32.5	27.5	1.5×2	20 400	49 500	686
	SFT 3208-5	Clearance						2.5×2	31 700	82 000	565
	SFT 3208-5 DFT 3208-5 ZFT 3208-10	D						2.5×2	31 700	82 000	1 102
		Z						2.5×2	31 700	82 000	1 102
	PFT 3210-2.5	P						2.5×1	16 100	27 000	255
	ZFT 3210-3	Z	32					1.5×1	16 400	32 400	365
	PFT 3210-3	Р						1.5×2	18 800	32 400	303
	SFT 3210-2.5	Clearance						2.5×1	25 500	54 000	302
*	ZFT 3210-5	Z						2.5×1	25 500	54 000	594
	PFT 3210-5	Р						2.5×2	29 200	54 000	494
	SFT 3210-3	Clearance		10	6.35	33.0	26.4	1.5×2	29 900	64 800	360
	DFT 3210-3	D						1.5×2	29 900	64 800	707
	SFT 3210-3.5	Clearance						3.5×1	34 100	77 000	422
	DFT 3210-3.5	D						3.5×1	34 100	77 000	829
	SFT 3210-5	Clearance						2.5×2	46 300	108 000	585
*		D						2.5×2	46 300	108 000	1 156
	ZFT 3210-10	Z						2.5×2	46 300	108 000 27 000	1 156 255
	PFT 3212-2.5 ZFT 3212-3	Z						2.5×1 1.5×1	16 100 16 400	32 400	365
	PFT 3212-3	P						1.5×1	18 800	32 400	303
	SFT 3212-3	Clearance		12	6.35	33.0	26.4	2.5×1	25 500	54 000	303
	DFT 3212-2.5	D		12	0.55	33.0	20.4	2.5×1	25 500	54 000	603
	SFT 3212-3	Clearance						1.5×2	29 900	64 800	360
	DFT 3212-3	D						1.5×2	29 900	64 800	707

- 2. If there is no seal for PFT, ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

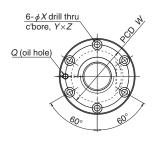

PFT, ZFT, SFT

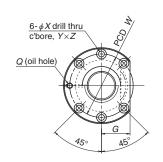

DFT

Unit: mm

				Ball	nut dimens	ions				
Nut entire length L	Nut diameter D	Flanged diameter A	Flanged width B	Notched flange	Seal dimension M		hole dimer Y	nsion Z	Bolt hole PCD W	Oil hole
57 45 63 63 57 111 63 99	62	89	12	34	3	6.6	11	6.5	75	M6×1
71 58 82 82 71 111 82 154 130	66	100	15	38		9	14	8.5	82	M6×1
70 87 87 70 100 100 87 167 80 150 100 190	74	108	15	41	7 7 7 7 7 7 7 7 7 7	9	14	8.5	90	M6×1
97 97 81 153 97 181	74	108	18	41	9	9	14	8.5	90	M6×1

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_J) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. For PFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 6. The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

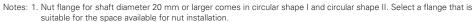


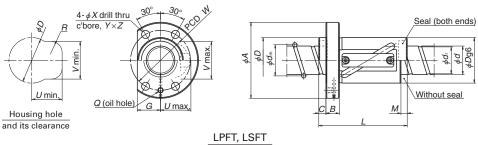


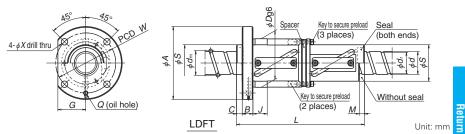
PFT, ZFT, SFT

View X-X

B431

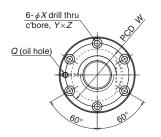


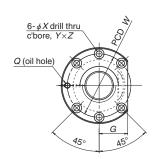

Circular shape I


Circular shape I

			Shaft	1 1	D-11-1:-	Ball	D + -1:-	Effective turns of balls	Basic load	rating (N)	Axial	
	Model No.	Preload	dia.	Lead	Ball dia.	circle	Root dia.	Turns	Dynamic	Static		Nut entire
	Model No.	system	,			dia.	١,	×	′		Κ	length
			d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)	L
	LPFT 3220-2.5	Р						2.5×1	11 300	20 900	251	99
	LPFT 3220-3	Р						1.5×2	13 200	24 800	297	119
	LSFT 3220-2.5	Clearance		20	4.762	33.25	28.3	2.5×1	17 900	41 800	300	99
	LDFT 3220-2.5	D						2.5×1	17 900	41 800	604	179
		Clearance						1.5×2	21 000	49 600	360	119
	LDFT 3220-3	D						1.5×2	21 000	49 600	708	219
*	LI I I 0220 2.0	Р						2.5×1	11 300	20 900	251	117
	LPFT 3225-3	Р	32					1.5×2	13 200	24 800	297	142
		Clearance		25	4.762	33.25	28.3	2.5×1	17 900	41 800	300	117
	LDFT 3225-2.5	D						2.5×1	17 900	41 800	604	218
	LSFT 3225-3	Clearance						1.5×2	21 000	49 600	360	142
-1-	LDFT 3225-3	D						1.5×2	21 000	49 600	708	268
*	LPFT 3232-1.5	Р							7 280	12 400	161	109
	LSFT 3232-1.5	Clearance		32	4.762	33.25	28.3	1.5×1	11 500	24 800	190	109
	LDFT 3232-1.5	D							11 500	24 800	376	205
	ZFT 3605-5	Z						2.5×1	10 700	31 700	607	59
	PFT 3605-5	Р						2.5×2	12 200	31 700	504	59
	PFT 3605-7.5 SFT 3605-5	Р		_				2.5×3	17 300	47 500	740	74
		Clearance	36	5	3.175	36.5	33.2	2.5×2	19 400	63 300	597	59
	ZFT 3605-10	Z						2.5×2	19 400	63 300	1 170	89
	SFT 3605-7.5	Clearance						2.5×3	27 500	95 000	878	74
	DFT 3605-7.5	D						2.5×3	27 500	95 000	1 730	139

- 2. If there is no seal for PFT, ZFT, SFT, and DFT the nut length "L" is shortened by dimension "M".
- 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension "M" and "C"
- 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

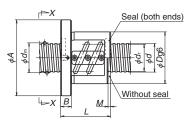


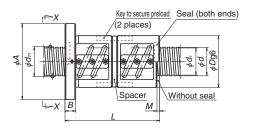

	Ball nut dimensions														
Nut dia	ameter	Flanged	Flanged		Tube p	rojectir	ig type	Seal din	nension		Bolt ho	ole dim	ension	Bolt hole	Oil hole
		diameter		flange						g6				PCD	
D	S	A	В	G	U	V	R	M	С	J	X	Y	Z	W	Q
51	_	85		26	34	42	12			_				67	
51	_	85		26	34	42	12		8	_				67	
51	_	85	15	26	34	42	12	7		_				67	M6×1
68	51	102	15	39	_	—	—	/		20	9		_	84	IVIOXI
51	_	85		26	34	42	12			_				67	
68	51	102		39	_	_	_			20				84	
51	_	85		26	34	42	12			_				67	
51	_	85		26	34	42	12		_	_			_	67	M6×1
51	_	85	15	26	34	42	12	10	10	_	9	-		67	
68	51	102	15	39	_	—	—	10	10	20	9			84	
51	_	85		26	34	42	12			_				67	
68	51	102		39	_	_	_			20				84	
51	_	85		26	34	42	12			_				67	
51	_	85	15	26	34	42	12	13	12	_	9	l —	l —	67	M6×1
68	51	102		39	_	_	_			20				84	
65	_	100	15	38	_	_	_	3	_	_	9	14	8.5	82	M6×1

- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_i) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 6. For PFT and LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. The models marked with * (asterisk) are available in the FA type standard ball screws with finished shaft end.
- 8. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

B432

View X-X

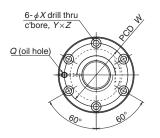


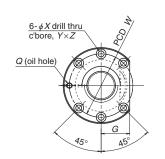

Circular shape I

Circular shape I

										_	
						Ball circle		Effective turns of balls	Basic load	rating (N)	Axial
	N.I.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
Model	INO.	system				Gia.		×	Dynamic	Static	K
		.,	d	l	D_w	$d_{\scriptscriptstyle m}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
ZFT 3606	6-5	Z						2.5×1	14 600	39 300	625
PFT 3606	6-5	Р						2.5×2	16 700	39 300	518
PFT 3606	6-7.5	Р						2.5×3	23 700	58 900	763
SFT 3606	6-5	Clearance		6	3.969	36.5	32.4	2.5×2	26 500	78 500	615
ZFT 3606	6-10	Z						2.5×2	26 500	78 500	1 210
SFT 3606	6-7.5	Clearance						2.5×3	37 600	118 000	905
DFT 3606		D						2.5×3	37 600	118 000	1 780
PFT 3610		Р						2.5×1	17 100	30 600	278
ZFT 3610		Z						1.5×1	17 500	36 800	404
PFT 3610		Р	36					1.5×2	20 000	36 800	327
SFT 3610		Clearance	50					2.5×1	27 200	61 300	334
ZFT 3610		Z		10			20.4 2.5	2.5×1	27 200	61 300	657
PFT 3610		Р			6.35	37.0		2.5×2	31 100	61 300	537
SFT 3610		Clearance				07.0	00.4	1.5×2	31 800	73 500	397
DFT 3610		D						1.5×2	31 800	73 500	781
PFT 3610		Р						2.5×3	43 700	96 000	782
SFT 3610		Clearance						2.5×2	49 300	123 000	647
DFT 3610		D						2.5×2	49 300	123 000	1 259
ZFT 3610		Z						2.5×2	49 300	123 000	1 259
SFT 3610		Clearance						2.5×3	69 900	184 000	945
PFT 4005		Р						1.5×2	8 210	21 200	337
SFT 4005		Clearance		5	3.175		37.2	2.5×1	11 100	35 300	336
ZFT 4005 PFT 4005		Z P						2.5×1	11 100 12 700	35 300	661 548
SFT 4005								2.5×2 1.5×2	13 000	35 300 42 400	399
DFT 4005		D				40.5		1.5×2	13 000	42 400	785
PFT 4005		P		5				2.5×3	18 100	53 000	806
SFT 4005		Clearance						2.5×2	20 200	70 600	649
* ZFT 4005		Z						2.5×2	20 200	70 600	1 280
SFT 4005		Clearance	40					2.5×3	28 700	106 000	956
DFT 4005		D	70					2.5×3	28 700	106 000	1 870
ZFT 4006		Z						2.5×1	15 200	43 800	679
PFT 4006		P						2.5×2	17 400	43 800	564
SFT 4006		Clearance						1.5×2	17 800	52 600	411
DFT 4006	-	D						1.5×2	17 800	52 600	807
PFT 4006		P		6	3.969	40.5	36.4	2.5×3	24 600	65 700	827
SFT 4006		Clearance		Ŭ	5.000	40.5		2.5×2	27 600	87 600	668
ZFT 4006		Z						2.5×2	27 600	87 600	1 320
SFT 4006		Clearance						2.5×3	39 100	131 000	984
DFT 4006		D						2.5×3	39 100	131 000	1 940

PFT, ZFT, SFT

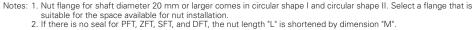

DFT

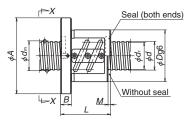

Unit: mm

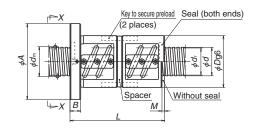
					nut dimens					
Nut entire	Nut Flanged Flange diameter diameter width		Flanged	Notched	Seal	Bolt	hole dimer	sion	Bolt hole	Oil hole
length				flange	dimension		.,	_	PCD	
L	D	Α	В	G	М	Χ	Y	Ζ	W	Q
66										
66 84										
66	65	100	15	38	3	9	14	8.5	82	M6×1
102	65	100	15	38	3	9	14	8.5	82	IVIOXI
84										
162										
73					7					
90					7					
90					7		17.5			M6×1
73					7			11	98	
103					7	11				
103	75	120	18	45	7					
90	, 0	120			7					
170 133					7 —					
103					7					
193					7					
163					<u>,</u>					
133					_					
56										
44										
59										
59										
56	07	404	4.5					0.5		D 4/0
106	67	101	15	39	3	9	14	8.5	83	Rc1/8
74 59										
89										
74										
139										
66										
66										
60										
114										
84	70	104	15	40	3	9	14	8.5	86	Rc1/8
66										
102 84										
162										
102	l	ļ								

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_J) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. For PFT, the basic load ratings differ from the other models as the spacer balls are installed.
 6. The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end.
 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

View X-X





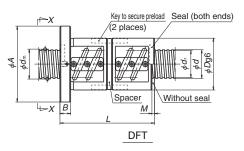

Circular shape I

Circular shape I

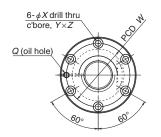
			CL ft l		D 11 11	Ball circle	Б . Г	Effective turns of balls	Basic load rating (N		
	Model No.	Preload system	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns ×	Dynamic	Static	rigidity <i>K</i>
		<i>'</i>	d	l	D_{w}	d _m	d _r	Circuits	C _a	C_{0a}	(N/µm)
	PFT 4008-3	Р						1.5×2	14 200	31 300	352
	SFT 4008-2.5	Clearance						2.5×1	19 200	51 600	349
	ZFT 4008-5	Z						2.5×1	19 200	51 600	687
	PFT 4008-5	Р		8	4.762	40.5	35.5	2.5×2	22 000	51 600	570
	SFT 4008-3	Clearance		0	4.702	+0.5	00.0	1.5×2	22 500	62 600	418
	DFT 4008-3	D						1.5×2	22 500	62 600	822
	SFT 4008-5	Clearance						2.5×2	34 900	103 000	675
	ZFT 4008-10	Z						2.5×2	34 900	103 000	1 330
	PFT 4010-2.5	Р						2.5×1	18 000	34 300	307
	PFT 4010-3	Р						1.5×2	21 100	41 100	366
	SFT 4010-2.5	Clearance					2.5×1	28 600	68 600	365	
	ZFT 4010-5	Z						2.5×1	28 600	68 600	717
	PFT 4010-5	Р						2.5×2	32 800	68 600	595
	SFT 4010-3	Clearance						1.5×2	33 500	82 300	434
	ZFT 4010-6	Z	40	10	6.35	41	34.4	1.5×2	33 500	82 300	854
	ZFT 4010-7	_						3.5×1	38 300	96 000	988
	SFT 4010-3.5	Clearance						3.5×1	38 300	96 000	503
	PFT 4010-7							3.5×2	43 700	96 000	813 706
*	SFT 4010-5 DFT 4010-5	Clearance						2.5×2 2.5×2	52 000 52 000	137 000 137 000	1 376
*	ZFT 4010-10	Z						2.5×2 2.5×2	52 000	137 000	1 376
	SFT 4010-10	Clearance						3.5×2	69 400	192 000	976
	PFT 4012-2.5	P						2.5×1	21 200	38 800	310
	SFT 4012-2.5	Clearance						2.5×1	33 600	77 500	373
	ZFT 4012-5	Z						2.5×1	33 600	77 500	733
	PFT 4012-5	P						2.5×2	38 400	77 500	600
	PFT 4012-7.5	P		12	7.144	41.5	34.1	2.5×3	54 400	116 000	872
	SFT 4012-5	Clearance			'	0	0	2.5×2	61 000	155 000	722
*		D						2.5×2	61 000	155 000	1 404
	ZFT 4012-10	Z						2.5×2	61 000	155 000	1 404
	SFT 4012-7.5	Clearance						2.5×3	86 400	233 000	1 054
	ZFT 4016-3	Z	1					1.5×1	21 700	46 500	451
	SFT 4016-2.5	Clearance						2.5×1	33 600	77 500	373
	DFT 4016-2.5	D		16	7.144	41.5	34.1	2.5×1	33 600	77 500	733
	SFT 4016-3	Clearance						1.5×2	39 300	93 100	440
	DFT 4016-3	D						1.5×2	39 300	93 100	872

PFT, ZFT, SFT

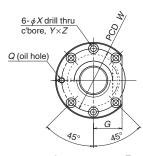
DFT


Unit: mm

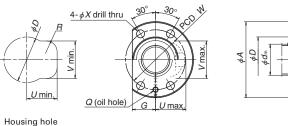
				Rall	nut dimens	ions				
Nut entire	Nut	Flanged	Flanged	Notched	Seal		hole dimer	sion	Bolt hole	Oil hole
length	diameter	diameter	width	flange	dimension				PCD	
L	D	Α	В	G	М	Χ	Y	Ζ	W	Q
71										
58										
82										
82	74	108	15	41	5	9	14	8.5	90	Rc1/8
71 135					-					
82										
130										
73					7					
90					7					
73				47	7	11				
103					7					
103		124			7					
90					7					
140	82		18		7		17.5	11	102	Rc1/8
123					7					
83					7					
123 103					— 7					
193					7					
163					_					
123										
81					9					
81					9					
117					9					
117					9					
153	86	128	18	48	_	11	17.5	11	106	Rc1/8
117					9					
225					9					
189					_					
153					_					
118 102										
182	86	128	22	48	14	11	17.5	11	106	Rc1/8
118	00	120	22	40	14	1.1	17.5	11	100	1701/0
214										
217										

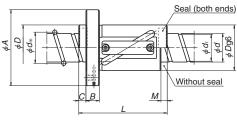

^{4.} The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.

^{3.} The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

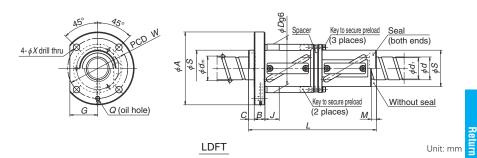

^{5.} For PFT, the basic load ratings differ from the other models as the spacer balls are installed.
6. The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end.
7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

View X-X

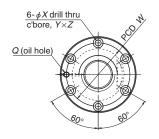


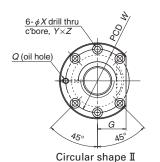

Circular shape I

		01. 1			Б. II		Effective turns of balls	D : . I	L + ' /N IV	Axial	
	Preload	Shaft	Lead	Ball dia.	Ball	Root dia.	Turns		rating (N)		NI i i
Model No.		dia.			circle dia.		Tullis	Dynamic	Static	rigidity <i>K</i>	Nut entire
	system	d	l	D_{w}	$d_{\rm m}$	d _r	X Circuits	C _a	C_{0a}	(N/µm)	length /
LPFT 4025-2.5	Р						2.5×1	18 000	35 000	315	123
LPFT 4025-3	P						1.5×2	21 000	41 200	347	148
LSFT 4025-2.5	Clearance	40					2.5×1	28 500	70 000	375	123
LDFT 4025-2.5	D		25	6.35	41.75	35.1	2.5×1	28 500	70 000	737	223
LSFT 4025-3	Clearance						1.5×2	33 400	82 400	444	148
LDFT 4025-3	D	40					1.5×2	33 400	82 400	873	273
LPFT 4032-2.5	Р	40						18 000	35 000	315	146
LSFT 4032-2.5	Clearance		32	6.35	41.75	35.1	2.5×1	28 500	70 000	375	146
LDFT 4032-2.5	D							28 500	70 000	737	274
LPFT 4040-1.5	Р							11 600	20 600	199	133
LSFT 4040-1.5	Clearance		40	6.35	41.75	35.1	1.5×1	18 400	41 200	237	133
LDFT 4040-1.5	D				, 0	00.1		18 400	41 200	465	253
ZFT 4510-5	Z						2.5×1	29 900	77 300	784	103
PFT 4510-7	P						3.5×2	45 600	109 000	887	123
PFT 4510-7.5	P						2.5×3	48 400	116 000	950	133
SFT 4510-5	Clearance		10	6.35	46.0	39.4	2.5×2	54 200	155 000	772	103
DFT 4510-5	D		10	0.00	+0.0	00.4	2.5×2	54 200	155 000	1 520	193
SFT 4510-7	Clearance	45					3.5×2		218 000	1 064	123
SFT 4510-7.5	Clearance						2.5×3		232 000	1 140	133
DFT 4510-7.5	D						2.5×3		232 000	2 230	253
SFT 4512-2.5	Clearance						2.5×1	35 400	88 500	412	83
ZFT 4512-5	Z		12	7.144	46.5	39.1	2.5×1	35 400	88 500	811	119
SFT 4512-5	Clearance			7.144	46.5	39.1	2.5×2	64 200	177 000	798	119
DFT 4512-5	D						2.5×2	64 200	177 000	1 570	227


- Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.
 - 2. If there is no seal for ZFT, SFT, and DFT the nut length "L" is shortened by dimension "M".
 - 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension "M" and "C"
 - 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

and its clearance

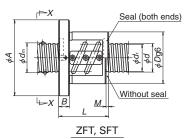

LPFT, LSFT

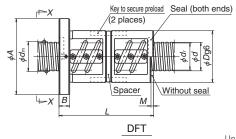


	Ball nut dimensions Nut diameter Flanged Flanged Notched Tube projecting type Seal dimension Diameter Bolt hole dimension Bolt hole Oil hole														
Nut dia	meter	Flanged	Flanged	Notched	Tube p	rojectir	ig type	Seal dir	nension		Bolt he	ole dim	ension	Bolt hole	Oil hole
0		diameter <i>A</i>	width <i>B</i>	flange G	ļ ,,	l _V	_		_	g6	\ _V		_	PCD W	Q
D	S		В		U		R	М	С	J	X	Υ	Z		Q
64	_	106		33	42	52	15			_				84	
64	_	106		33	42	52	15			_				84	
64	_	106	18	33	42	52	15	10	10	_	11			84	Rc1/8
84	64	126	10	48	_	_	_	10	10	22				104	1101/0
64	_	106		33	42	52	15			_				84	
84	64	126		48	_	_	_			22				104	
64	_	106		33	42	52	15			_				84	
64	_	106	18	33	42	52	15	13	12	_	11	l —	l —	84	Rc1/8
84	64	126		48	_	_	_			22				104	
64	_	106		33	42	52	15			_				84	
64	_	106	18	33	42	52	15	16	14	_	11	l —	_	84	Rc1/8
84	64	126		48	_	_	_			22				104	
								7							
								_							
								_							
00		400	4.0					7				47.		440	D 4/0
88	_	132	18	50	—	—	—	7	_	_	11	17.5	11	110	Rc1/8
								_							
								7							
								7							
90		132	18	50				8			11	17.5	11	110	Do1/0
90	_	132	18	00	_	_	-	0	_		' '	17.5	' '	110	Rc1/8

- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 6. For LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

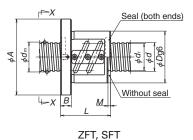
View X-X

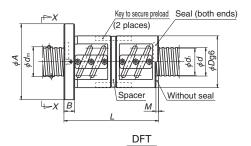



Circular shape I

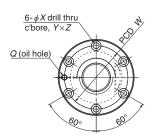
					Ball circle		Effective turns of balls	Basic load	I rating (N)	Axial
Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
Model No.	system		1		_,		_ ×	,		K
		d	l	$D_{\rm w}$	$d_{\scriptscriptstyle m}$	d _r	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
SFT 5005-3	Clearance						1.5×2	14 200	52 500	472
ZFT 5005-6	Z		5	3.175	50.5	47.2	1.5×2	14 200	52 500	930
SFT 5005-4.5	Clearance		0	0.170	30.5	77.2	1.5×3	20 200	78 800	696
ZFT 5005-9	Z						1.5×3	20 200	78 800	1 360
SFT 5006-3	Clearance						1.5×2	19 500	65 100	486
DFT 5006-3	D						1.5×2	19 500	65 100	956
PFT 5006-7.5	Р		0	0.000	F0 F	40.4	2.5×3	27 000	81 900	988
SFT 5006-5	Clearance		6	3.969	50.5	46.4	2.5×2	30 300	109 000	794
ZFT 5006-10	Z						2.5×2	30 300	109 000	1 562
SFT 5006-7.5	Clearance						2.5×3	42 900	164 000	1 170
DFT 5006-7.5	D	-					2.5×3	42 900	164 000	2 300
SFT 5008-3	Clearance						1.5×2	25 000	77 400	496 975
DFT 5008-3 SFT 5008-5	D Clearance						1.5×2 2.5×2	25 000 38 700	77 400 131 000	815
ZFT 5008-10	Z		8	4.762	50.5	45.5	2.5×2	38 700	131 000	1 600
SFT 5008-7.5	Clearance						2.5×2 2.5×3	54 900	197 000	1 200
DFT 5008-7.5	D						2.5×3	54 900	197 000	2 350
SFT 5010-2.5	Clearance	1					2.5×1	31 800	87 400	440
ZFT 5010-2.5	Z						2.5×1	31 800	87 400	866
SFT 5010-3	Clearance	50					1.5×2	37 200	103 000	517
DFT 5010-3	D						1.5×2	37 200	103 000	1 010
ZFT 5010-7	Z	50					3.5×1	42 500	122 000	1 190
PFT 5010-7.5	P		10	6.35	51.0	44.4	2.5×3	51 500	131 000	1 039
SFT 5010-5	Clearance						2.5×2	57 700	175 000	853
₹ ZFT 5010-10	Z						2.5×2	57 700	175 000	1 677
SFT 5010-7.5	Clearance						2.5×3	81 800	262 000	1 250
DFT 5010-7.5	D						2.5×3	81 800	262 000	2 460
SFT 5012-2.5	Clearance	1 [2.5×1	42 800	107 000	449
ZFT 5012-5	Z						2.5×1	42 800	107 000	883
SFT 5012-5	Clearance		12	7.938	51.5	43.2	2.5×2	77 600	214 000	869
DFT 5012-5	D						2.5×2	77 600	214 000	1 718
ZFT 5012-10	Z						2.5×2	77 600	214 000	1 718
SFT 5016-2.5	Clearance					43.2	2.5×1	42 800	107 000	449
ZFT 5016-5	Z					43.2	2.5×1	42 800	107 000	883
PFT 5016-7.5	Р		16	7.938	51.5	44.4	2.5×3	69 300	161 000	1 066
SFT 5016-5	Clearance		10	/.000	01.0	43.2	2.5×2	77 600	214 000	869
DFT 5016-5	D					43.2	2.5×2	77 600	214 000	1 710
SFT 5016-7.5	Clearance					43.2	2.5×3	110 000	321 000	1 286
ZFT 5020-3	Z						1.5×1	27 600	64 300	542
SFT 5020-2.5	Clearance		20	7 000		40.0	2.5×1	42 800	107 000	449
DFT 5020-2.5	Classanaa		20	7.938	51.5	43.2	2.5×1	42 800	107 000	883
SFT 5020-3	Clearance						1.5×2	50 000	129 000	534
DFT 5020-3	D				l		1.5×2	50 000	129 000	1 050

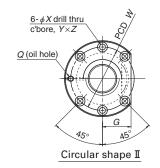
- 2. If there is no seal for ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.



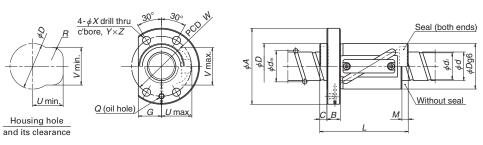

Unit: mm

				Ball	nut dimens	ions				
Nut entire	Nut	Flanged	Flanged	Notched	Seal		hole dimer	sion	Bolt hole	Oil hole
length	diameter	diameter	width	flange	dimension			_	PCD	
L	D	Α	В	G	М	Χ	Y	Ζ	W	Q
58										
83 68	80	114	15	43	3	9	14	8.5	96	Rc1/8
103										
62					3					
116					3					
86					_					
68	84	118	15	45	3	9	14	8.5	100	Rc1/8
104					3					
86 164					3					
74					3					
138										
85	07	100	10	40	_	1.1	17.5	11	107	D - 1 /O
133	87	129	18	49	5	11	17.5	11	107	Rc1/8
109										
205										
73 103					7					
90					7					
170					7					
123	00	105	10		7	1.1	17.5	11	110	D - 1 /O
133	93	135	18	51	_	11	17.5	11	113	Rc1/8
103					7					
163					7					
133 253					7					
87					8					
123					8					
123	100	146	22	55	8	14	20	13	122	Rc1/8
231					8					
195					_					
104 152					14 14		20 20	13 13		
200					14 —		17.5	11		
152	100	146	22	55	14	14	20	13	122	Rc1/8
280					14		20	13		
200					_		17.5	11		
147										
127	400	4.40						4.0	100	D 4/0
227	100	146	28	55	17	14	20	13	122	Rc1/8
147 267										
207		Pr. 12: 11			ļ.					


- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_b) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.


 5. The models marked with * (asterisk) are available in the SA type standard ball screws with finished shaft end.
- 6. Preload system: Z, Offset preload; D, Double nut preload (See page B5.)

View X-X

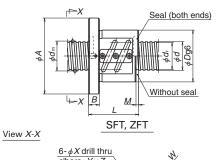


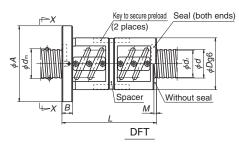
Circular shape I

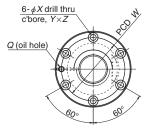

Model No.	Preload	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Tullis	Basic load Dynamic		Axial rigidity	Nut entire
	system	d	l	$D_{\rm w}$	dia. <i>d</i> _m	d _r	× Circuits	C_{a}	$C_{\scriptscriptstyle 0a}$	<i>Κ</i> (N/μm)	length L
LPFT 5025-2.5	Р						2.5×1	26 900	54 700	388	129
LPFT 5025-3	P						1.5×2	31 400	66 500	450	154
LSFT 5025-2.5	Clearance		25	7.938	52.25	44	2.5×1	42 700	109 000	462	129
LDFT 5025-2.5	D		25	7.938	52.25	44	2.5×1	42 700	109 000	905	229
LSFT 5025-3	Clearance						1.5×2	49 900	133 000	547	154
LDFT 5025-3	D						1.5×2	49 900	133 000	1 070	279
LPFT 5032-2.5	Р						2.5×1	26 900	54 700	388	151
LPFT 5032-3	Р						1.5×2	31 400	66 500	450	183
LSFT 5032-2.5	Clearance	50	32	7.938	52.25	44	2.5×1		109 000	462	151
LDFT 5032-2.5	D		32			44	2.5×1		109 000	905	279
LSFT 5032-3	Clearance						1.5×2	49 900	133 000	547	183
LDFT 5032-3	D						1.5×2	49 900	133 000	1 070	343
LPFT 5040-2.5	Р							26 900	54 700	388	178
LSFT 5040-2.5	Clearance		40	7.938	52.25	44	2.5×1		109 000	462	178
LDFT 5040-2.5	D								109 000	922	338
LPFT 5050-1.5	Р							17 300	33 200	245	161
LSFT 5050-1.5	Clearance		50	7.938	52.25	44	1.5×1	27 500	66 500	290	161
LDFT 5050-1.5	D							27 500	66 500	572	312
ZFT 5510-5	Z						2.5×1	32 800	96 100	929	103
SFT 5510-5	Clearance						2.5×2	59 500	192 000	916	103
ZFT 5510-10	Z	55	10	635	56.0	19.1	2.5×2		192 000	1 800	163
DFT 5510-5	D		10	6.35	56.0	49.4	2.5×2		192 000	1 800	193
SFT 5510-7.5	Clearance						2.5×3		288 000	1 350	133
DFT 5510-7.5	D						2.5×3	84 300	288 000	2 650	253

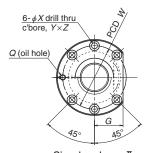
Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal for ZFT, SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension
- 4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

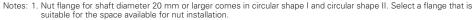



LPFT, LSFT

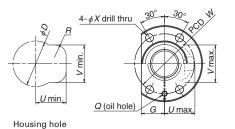



						Ball	nut dir	nensic	ns						
Nut dia	ameter				Tube p	rojectir	g type	Seal din	nension		Bolt h	ole dim	ension	Bolt hole	Oil hole
		diameter		flange						g6				PCD	
D	S	A	В	G	U	V	R	M	С	J	X	Y	Z	W	Q
80	_	126		41	52	64	19			_				102	
80	_	126		41	52	64	19			_				102	
80	—	126	22	41	52	64	19	11	11	_	14			102	Rc1/8
106	80	152		56	_	_	_	' '	11	25	14	_	_	128	1101/0
80	—	126		41	52	64	19			_				102	
106	80	152		56	_	_	_			25				128	
80	_	126		41	52	64	19			_				102	
80	_	126		41	52	64	19			_				102	
80	—	126	22	41	52	64	19	14	12	_	14			102	Rc1/8
106	80	152		56	_	_	_	14	12	25	14	_	_	128	1101/0
80	—	126		41	52	64	19			_				102	
106	80	152		56	_	_	_			25				128	
80	_	126		41	52	64	19			_				102	
80	_	126	22	41	52	64	19	17	14	_	14	—	—	102	Rc1/8
106	80	152		56	_	_	—			25				128	
80	_	126		41	52	64	19			_				102	
80	—	126	22	41	52	64	19	21	16	_	14	—	—	102	Rc1/8
106	80	152		56						25				128	
102	_	144	18	54	_	_	_	7	_	_	11	17.5	11	122	Rc1/8

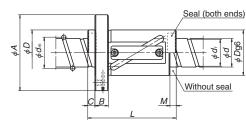
- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (Ca) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 6. For LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)



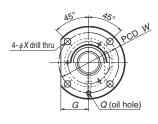
Circular shape I

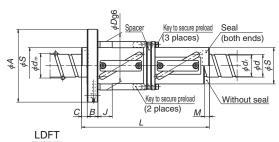

Circular shape I

N.4. N.1.	Preload	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls Turns	Basic load	rating (N) Static	Axial rigidity	Nut entire
Model No.	system	aia.			dia.		×	Dynamic	Static	K	length
	Systom	d	l	$D_{\rm w}$	$d_{\rm m}$	d _r	Circuits	C _a	C_{0a}	(N/µm)	L
SFT 6310-2.5	Clearance						2.5×1	34 800	111 000	528	77
ZFT 6310-5	Z						2.5×1	34 800	111 000	1 038	107
PFT 6310-7.5	Р						2.5×3	56 400	166 000	1 250	137
SFT 6310-5	Clearance		10	6.35	64.0	57.4	2.5×2	63 200	221 000	1 020	107
ZFT 6310-10	Z						2.5×2	63 200	221 000	2 000	167
SFT 6310-7.5	Clearance						2.5×3	89 500	332 000	1 500	137
DFT 6310-7.5	D Z						2.5×3	89 500	332 000	2 950	257
ZFT 6312-5							2.5×1		137 000	1 060	123
SFT 6312-2.5	Clearance		12	7.938	64.5	56.2	2.5×1		137 000	542	87
SFT 6312-5	Clearance		12	7.330	04.5	30.2	2.5×2		273 000	1 050	123
DFT 6312-5	D						2.5×2		273 000	2 060	231
SFT 6316-2.5	Clearance						2.5×1	79 500	228 000	713	110
DFT 6316-2.5	D						2.5×1	79 500	228 000	1 400	206
PFT 6316-5	Р		16	9.525	65.0	55.2	2.5×2		228 000	1 136	158
SFT 6316-5	Clearance						2.5×2	144 000	455 000	1 380	158
DFT 6316-5	D						2.5×2		455 000	2 710	302
SFT 6320-2.5	Clearance	63					2.5×1		228 000	713	127
DFT 6320-2.5	D						2.5×1		228 000	1 400	227
PFT 6320-5	Р		20	9.525	65.0	55.2	2.5×2		228 000	1 132	187
SFT 6320-5	Clearance						2.5×2		455 000	1 380	187
DFT 6320-5	D						2.5×2		<u>455 000</u>	2 710	347
LPFT 6340-2.5	Р						2.5×1	30 600	69 500	466	178
LPFT 6340-3	Р						1.5×2	35 800		551	218
LSFT 6340-2.5	Clearance		40	7.938	65.25	57	2.5×1		139 000	560	178
LDFT 6340-2.5	D			7.000	00.20	0,	2.5×1		139 000	1 100	339
LSFT 6340-3	Clearance						1.5×2		165 000	667	218
LDFT 6340-3	D						1.5×2		165 000	1 310	419
LPFT 6350-1.5	P						1.5×1	19 700	41 200	285	161
LPFT 6350-2.5							2.5×1	30 600	69 500	478	211
LSFT 6350-1.5	Clearance		50	7.938	65.25	57	1.5×1	31 300	82 500	346	161
LDFT 6350-1.5	Classones					-	1.5×1	31 300	82 500	678	311
LSFT 6350-2.5	Clearance						2.5×1		139 000	560	211
LDFT 6350-2.5	D			1	1		2.5×1	1 48 500	139 000	1 120	411



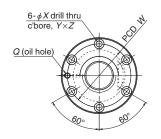
- 2. If there is no seal for ZFT, SFT, and DFT the nut length "L" is shortened by dimension "M".
- 3. If there is no seal for LSFT and LDFT of shaft diameter 25 mm or larger, the nut length "L" is shortened by dimension "M" and "C".

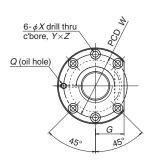

4. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.



and its clearance

LPFT, LSFT

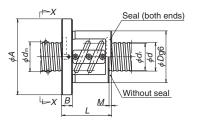


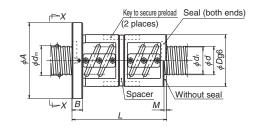

Onit. mm

	Ball nut dimensions diameter Flanged Flanged Notched Tube projecting type Seal dimension Diameter Bolt hole dimension Bolt hole Oil hol														
Nut dia	meter	Flanged	Flanged	Notched	Tube p	rojectin	g type	Seal din	nension	Diameter	Bolt ho	ole dim	ension	Bolt hole	Oil hole
D	S	diameter <i>A</i>	width <i>B</i>	flange G	U	V	R	М	С	g6 J	X	Y	Z	PCD W	Q
D	5	A	D	G	U	V	l H		C	J	X	Υ		VV	U
								7 7 —							
108	_	154	22	58	—	—	_	7	_	_	14	20	13	130	Rc1/8
								7							
								7							
115	_	161	22	61	_	_	_	8	_	_	14	20	13	137	Rc1/8
400		400	00	00							4.0		47.5	450	D 4/0
122	_	180	28	69	_	_	_	_	_	_	18	26	17.5	150	Rc1/8
								17							
								17							
122	_	180	28	69	l	l	l		_	_	18	26	17.5	150	Rc1/8
122		100						17			'	20	17.0	100	110170
								17							
97	_	144		49	58	77	19			_				120	
97	_	144		49	58	77	19			_				120	
97	_	144	22	49	58	77	19	15	14	_	14	l		120	Rc1/8
122	97	168		62	_		_	15	14	29	'4			144	1101/0
97		144		49	58	77	19			_				120	
122	97	168		62						29				144	
97	_	144		49	58	77	19			_				120	
97	_	144		49	58	77 77	19			_				120	
97	0.7	144 168	22	49 62	58		19	19	16	20	14	l —	_	120 144	Rc1/8
122 97	97	144		49	— 58	— 77	— 19			29 —				120	, -
122	97	168		62	50		19			29				144	
122	07	100		02						20				144	

- 5. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_J) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 6. For LPFT, the basic load ratings differ from the other models as the spacer balls are installed.
- 7. Preload system: P, Oversize ball preload; Z, Offset preload; D, Double nut preload (See page B5.)

View X-X


Circular shape I


Circular shape I

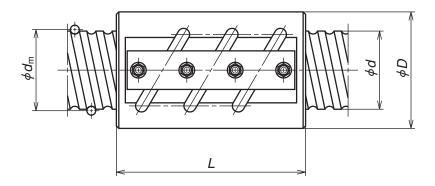
	1									
		Cl f+ -l:-	11	D-II-II-	Ball circle	D + -1'-	Effective turns of balls	Basic load	rating (N)	Axial
Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
Model No.	system						×	l '		K
		d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d_{r}	Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
SFT 8010-5	Clearance						2.5×2	70 500	282 000	1 240
DFT 8010-5	D		10	6.35	81.0	74.4	2.5×2	70 500	282 000	2 430
SFT 8010-7.5	Clearance		10	0.55	01.0	74.4	2.5×3	99 800	424 000	1 830
DFT 8010-7.5	D						2.5×3	99 800	424 000	3 590
SFT 8012-5	Clearance						2.5×2	96 000	350 000	1 280
DFT 8012-5	D		12	7.938	81.5	73.2	2.5×2	96 000	350 000	2 500
SFT 8012-7.5	Clearance		12	7.556	01.5	/5.2	2.5×3	136 000	526 000	1 880
DFT 8012-7.5	D	80					2.5×3	136 000	526 000	3 690
SFT 8016-5	Clearance	00					2.5×2	162 000	582 000	1 680
DFT 8016-5	D		16	9.525	82.0	72.2	2.5×2	162 000	582 000	3 300
SFT 8016-7.5	Clearance		10	0.020	02.0	/ 2.2	2.5×3	230 000	874 000	2 470
DFT 8016-7.5	D						2.5×3	230 000	874 000	4 850
SFT 8020-5	Clearance						2.5×2	162 000	582 000	1 680
DFT 8020-5	D		20	9.525	82.0	72.2	2.5×2	162 000	582 000	3 300
SFT 8020-7.5	Clearance		20	0.020	02.0	/ 2.2	2.5×3	230 000	874 000	2 470
DFT 8020-7.5	D						2.5×3	230 000	874 000	4 850
SFT 10012-5	Clearance						2.5×2	105 000	441 000	1 530
DFT 10012-5	D		12	7.938	101.5	93.2	2.5×2	105 000	441 000	2 990
SFT 10012-7.5	Clearance		12			00.2	2.5×3	149 000	662 000	2 250
DFT 10012-7.5	D						2.5×3	149 000	662 000	4 400
SFT 10016-5	Clearance						2.5×2	176 000	737 000	2 010
DFT 10016-5	D	100	16	9.525	102	92.2	2.5×2	176 000	737 000	3 930
SFT 10016-7.5	Clearance			0.020		02.2	2.5×3	250 000	1 100 000	2 950
DFT 10016-7.5	D						2.5×3	250 000	1 100 000	5 790
SFT 10020-5	Clearance						2.5×2	176 000	737 000	2 010
DFT 10020-5	D		20	9.525	102	92.2	2.5×2	176 000	737 000	3 930
SFT 10020-7.5	Clearance						2.5×3		1 100 000	2 950
DFT 10020-7.5	D						2.5×3		1 100 000	5 780
SFT 12516-5	Clearance						2.5×2	195 000	918 000	2 390
DFT 12516-5	D	16 9	16	9.525	127	117.2	2.5×2	195 000	918 000	4 690
SFT 12516-7.5	Clearance					2.5×3		1 380 000	3 520	
DFT 12516-7.5	D						2.5×3	277 000	1 380 000	6 890
SFT 12520-5	Clearance						2.5×2	195 000	918 000	2 390
DFT 12520-5	D		9.525	5 127	117.2	2.5×2	195 000	918 000	4 690	
SFT 12520-7.5	Clearance					117.2	2.5×3		1 380 000	3 520
DFT 12520-7.5	D						2.5×3	2// 000	1 380 000	6 890

Notes: 1. Nut flange for shaft diameter 20 mm or larger comes in circular shape I and circular shape II. Select a flange that is suitable for the space available for nut installation.

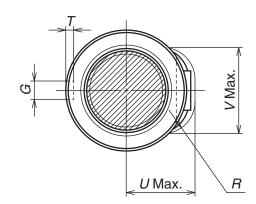
- 2. If there is no seal for SFT, and DFT, the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

SFT

DFT


Unit: mm

										Unit: mm	
				Ball	nut dimens	ions					
Nut entire		Flanged	Flanged	Notched	Seal	Bolt	hole dimer	nsion	Bolt hole	Oil hole	
length	diameter	diameter	width	flange	dimension		Y	_	PCD		
L	D	Α	В	G	М	Χ	Υ	Z	W	Q	
107 197											
137	130	176	22	66	7	14	20	13	152	Rc1/8	
257											
123											-
231	126	182	22	60	8	14	20	13	150	Rc1/8	공
159	136	182	22	68	0	14	20	13	158	NC1/8	Ĕ
303											
158											Return tube type
302	143	204	28	77	10	18	26	17.5	172	Rc1/8	e
206 398											¥
187											
347											
247	143	204	28	77	17	18	26	17.5	172	Rc1/8	
467											
129											
237	160	220	28	82	8	18	26	17.5	188	Rc1/8	
165	100	220	20	02		10	20	17.5	100	1101/0	
309											-
162 306											
210	170	243	32	91	10	22	32	21.5	205	Rc1/8	
402											
191											-
351	170	242	32	91	17	22	32	01 5	205	D = 1 /O	
251	170	243	32	91	17	22	32	21.5	205	Rc1/8	
471											-
170											
314	200	290	36	109	10	26	39	25.5	243	Rc1/8	
218 410											
199											-
379											
259	200	290	36	109	12	26	39	25.5	243	Rc1/8	
499											
4 7	The axial rigid	dity K in the	table above	is a theoreti	cal value oht	ained from	the elastic d	eformation l	hetween scr	ew aroove	•


- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. Preload system: D; Double nut preload (See page B5.)

B445 B446

	Axial	Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)
Model No.	play	Silait ula.	Leau	Dali ula.	dia.	1100t ula.	Turns	Dynamic	Static
1110001110.	(Max.)	d	l	$D_{\rm w}$	d _m	d _r	X Circuits	C _a	C_{0a}
GSCT14025-5			0.5	45.075	4.40	400.0	2.5×2	272 000	1 400 000
GSCT14025-7.5	0.25		25	15.875	143	126.0	2.5×3	362 000	2 090 000
GSCT14032-5	0.35		32	22.225	144	121.0	2.5×2	428 000	1 920 000
GSCT14032-7.5	0.35	140	32	22.225	144	121.0	2.5×3	568 000	2 880 000
GSCT14040-5	0.35	140	40	22.225	144	121.0	2.5×2	428 000	1 920 000
GSCT14040-7.5	0.55	_	40	22.220	144	121.0	2.5×3	568 000	2 880 000
GSCT14050-5	0.40		50	25.4	145	119.0	2.5×2	518 000	2 190 000
GSCT14050-7.5	0.40		30	20.4	145	110.0	2.5×3	688 000	3 290 000
GSCT16032-5	0.35	160	32	22.225	164	141.0	2.5×2	458 000	2 210 000
GSCT16032-7.5	0.00						2.5×3	608 000	3 310 000
GSCT16040-5	0.35		40	22.225	164	141.0	2.5×2	458 000	2 210 000
GSCT16040-7.5		-	100 40 22.220 104 141.0			2.5×3	608 000	3 310 000	
GSCT16050-5	0.40		50	25.4	165	139.0	2.5×2	544 000	2 560 000
GSCT16050-7.5							2.5×3	722 000	3 840 000
GSCT20032-5 GSCT20032-7.5	0.35		32	22.225	204	181.0	2.5×2	509 000	2 820 000
		-					2.5×3	676 000	4 230 000
GSCT20040-5 GSCT20040-7.5	0.35	200	40	22.225	204	181.0	2.5×2 2.5×3	509 000 676 000	2 820 000 4 230 000
GSCT20040-7.5 GSCT20050-5		1					2.5×3 2.5×2	604 000	3 200 000
GSCT20050-5 GSCT20050-7.5	0.40		50	25.4	205	179.0	2.5×2 2.5×3	802 000	4 800 000
GSCT25040-5		250					2.5×2	662 000	4 000 000
GSCT25040-7.5	0.40		40	25.4	255	229.0	2.5×3	879 000	6 000 000
GSCT25050-5			50 31.75				2.5×2	825 000	5 000 000
GSCT25050-7.5	0.51			256	223.0	2.5×3		7 500 000	
G3C123030-7.3		1	I	1	1		2.083	1 100 000	/ 500 000

Unit: mm

Citik. Tilli												
			Nut dim	ensions								
Nut entire length	Nut diameter	Key din	nension	Tube	projecting dime	ension	Seal dimension					
L	D	G	Т	U	V	R	(MS)					
200 275	210			115	154	50	40					
252 348	220	0.0		135	163	60	48					
306 426	220	32	11	135	163	60	58					
377 527	225			141	167	70	70					
252 348	245		12	141	180	60	48					
306 426	245	36		141	180	60	58					
377 527	250			147	185	70	70					
252 348	295			162	216		48					
306 426	295	45	15	162	216	70	58					
377 527	300			168	221		70					
312 432	355	50	17	194	266	70	58					
385 535	370	50	17	206	274	90	70					

B447 B448

Notes: 1. Precision grade is equivalent to Ct10 grade of JIS B1192 (see page B37).

2. The entire nut length (L) is the size without seal. The size with a seal is longer by the size of "MS."

B-3-2.3 Deflector Type Ball Screws

1. Features

The deflector type has the smallest ball nut compared to the other recirculation systems, and suitable for fine lead operation.

2. Specifications

(1) Ball recirculation system

It has a small ball nut outside diameter, and suits for small lead ball screws. **Fig.1** shows the structure of the deflector recirculation system.

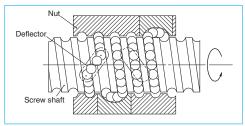


Fig. 1 Structure of deflector recirculation system

Table 1 Accuracy grade and axial play

A coursey, grade	C0, C1, C2, C3, C5, Ct7
Accuracy grade	C0, C1, C2, C3, C5, Ct7 (Ct7 is not included in DFD)
Axial play	Z, 0 mm (preloaded); T, 0.005 mm or less S, 0.020 mm or less; N, 0.050 mm or less
Ахіаі ріау	S, 0.020 mm or less; N, 0.050 mm or less

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are shown in **Table 1**. Please consult NSK for other grades.

(3) Allowable d·n value and the criterion of maximum rotational speed

The allowable d·n value and criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below. Basic measure must be taken for the high speed ball screws respectively.

Allowable d·n value:

Standard specification ; 84 000 or less
High-speed specification; 100 000 or less
Standard of rotational speed : 3 000 min⁻¹
Note: Please also review the critical speed. Refer
to "Technical Description: Permissible
Rotational Speed" (page B47) for details.

(4) Other specifications

Please consult NSK for other specifications not listed in the dimension tables.

Table 2 Deflector type ball screw product categories

Nut model	Shape	Flange shape	Preload system
MSFD		Flanged	Non-preload, Slight axial play
MPFD		Circular Ⅲ	P-preload (light preload) no spacer ball
SFD		Screw shaft diameter of 16 mm or smaller: Flanged Screw shaft diameter of 20 mm or smaller: Rectangle CircularI, II	Non-preload, Slight axial play
ZFD		Flanged Circular I, ∐	Z-preload (medium preload)
DFD		Flanged Circular I, ∐	D-preload (medium preload) (heavy preload)

3. Product categories

There are four different preload systems (Table 2). Synthetic resin that shows superb characteristics against wear is used in the recirculation deflector for MSFD, MPFD, and has enhanced the smooth recirculation of balls.

This product is being applied for a patent.

4. Design Precautions

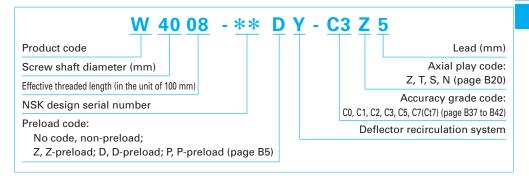
When designing the screw shaft end, one end of the screw must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

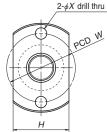
• Cut the ball groove through to the shaft end.

 The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

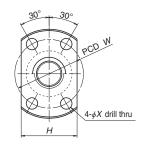
For general precautions regarding ball screws, refer to "Design Precautions" (page B80) and "Handling Precautions" (page B99).

5. Structure of model number and reference number


The followings describe the structure of "Model number" and "Reference number for ball screw".

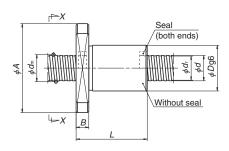

Note: In case of ZFD, the number here is twice as large as the effective turns of balls.

○Reference number for ball screw



B449 B450

View X-X

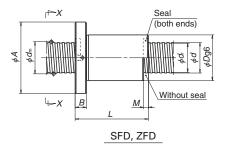


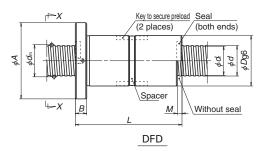
Lead l > 1 mm

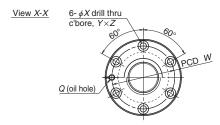
			Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)
	Model No.	Preload	Shart dia.	Lead	ball dia.	dia.	noot dia.	Turns	Dynamic	Static
		system	d	l	$D_{\rm w}$	d _m	d _r	× Circuits	C _a	$C_{\scriptscriptstyle 0a}$
	MSFD 0400.5-3	Clearance		0.5	0.400	4.1	3.6	1×3	170	280
	MPFD 0400.5-3	Р	4		0.100		0.0		.,,	
*	MSFD 0401-2 MPFD 0401-2	Clearance		1	0.800	4.2	3.2	1×2	315	370
•	MSFD 0600.5-3	Clearance		0.5	0.400	0.1	F 0	4.0	005	400
	MPFD 0600.5-3	Р		0.5	0.400	6.1	5.6	1×3	205	430
	MSFD 0601-3	Clearance	6	1	0.800	6.2	5.2	1×3	575	925
*	MPFD 0601-3	Р		•	0.000	0.2	0.2	.,,,,	0,0	020
	MSFD 0602-3 MPFD 0602-3	Clearance		2	0.800	6.2	5.2	1×3	575	925
	MSFD 0800.5-3	Clearance			0.400	0.4	7.0		000	
	MPFD 0800.5-3	Р		0.5	0.400	8.1	7.6	1×3	230	595
	MSFD 0801-3	Clearance]	1	0.800	8.2	7.2	1×3	670	1 290
*	MPFD 0801-3	Р	8		0.000	0.2	7.2	1/0	070	1 200
*	MSFD 0801.5-3 MPFD 0801.5-3	Clearance		1.5	1.000	8.3	7.0	1×3	1 080	1 980
•	MSFD 0802-3	Clearance			4.000	0.0	0.0	4.0	4.000	0.040
*	MPFD 0802-3	Р		2	1.200	8.3	6.9	1×3	1 320	2 210
	MSFD 1001-3	Clearance		1	0.800	10.2	9.2	1×3	745	1 660
	MPFD 1001-3 MSFD 1002-3	P Clearance		•						
*	MPFD 1002-3	P	10	2	1.200	10.3	8.9	1×3	1 490	2 850
•	MSFD 1002.5-3	Clearance	1	٥٦	1 500	10.4	0.0	10	0.100	0.040
*	MPFD 1002.5-3	Р		2.5	1.588	10.4	8.6	1×3	2 130	3 640
	MSFD 1201-3	Clearance		1	0.800	12.2	11.2	1×3	795	1 980
	MPFD 1201-3 MSFD 1202-3	P								
*	MPFD 1202-3	P		2	1.200	12.3	10.9	1×3	1 660	3 620
	MSFD 1202.5-3	Clearance	12	2.5	1 500	10.4	10.6	1,.2	2.260	4 E 4 O
*	MPFD 1202.5-3	Р		2.5	1.588	12.4	10.6	1×3	2 360	4 540
	MSFD 1203-3 MPFD 1203-3	Clearance		3	2.000	12.5	10.2	1×3	3 120	5 420
	MSFD 1402-3	Clearance			4 000	110	400	4.0	4.700	4.070
	MPFD 1402-3	Р	14	2	1.200	14.3	12.9	1×3	1 780	4 270
	MSFD 1403-3 MPFD 1403-3	Clearance	'-	3	2.000	14.5	12.2	1×3	3 400	6 490
	MILLD 1409-2	Г								

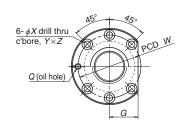
Notes: 1. If the shaft OD is less than 6 mm or the lead is less than 1 mm, a seal is not installed in the nut. (See page B68 for dust protection.)

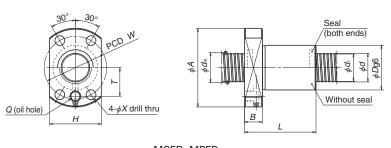
- 2. Ball nuts with shaft diameters under 14 mm do not have oil holes.
- 3. Right turn screw is standard. Please consult NSK for left turn screw.


Unit: mm


							Unit: mm
Axial rigidity			Ba	ıll nut dimensio	ns		
<i>Κ</i> (N/μm)	Nut entire length <i>L</i>	Nut diameter <i>D</i>	Flanged diameter <i>A</i>	Flanged width <i>B</i>	Flanged dimension <i>H</i>	Bolt hole dimension X	Bolt hole PCD W
30 47	13	10	22	3	11	3.4	16
22 34	12	10	20	3	14	2.9	15
42 66	13	12	24	3	13	3.4	18
49 76	15	12	24	3.5	16	3.4	18
49 76	17	13	25	4	17	3.4	19
54 85	13	14	27	3	15	3.4	21
64 99	16	14	27	4	18	3.4	21
76 117	22	15	28	4	19	3.4	22
73 113	26	16	29	4	20	3.4	23
77 120	16	16	29	4	20	3.4	23
91 138	28	18	35	5	22	4.5	27
90 140	32	19	36	5	23	4.5	28
88 137	16	18	31	4	22	3.4	25
108 168	28	20	37	5	24	4.5	29
107 167	32	21	38	5	25	4.5	30
166	107 166 36 22		39	5	26	4.5	31
191	122 191 29 22		41	6	26	5.5	32
127 196	37	24	43	6	28	5.5	34


- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_J) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. The models marked with * (asterisk) are available in the MA type standard ball screw with finished shaft end.
- 6. Preload system: P; Oversize ball preload (See page B5.)


B451

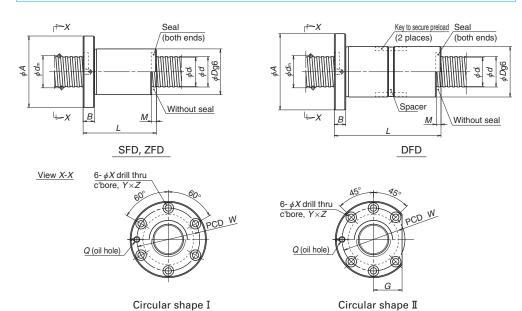

Circular shape I

Circular shape II

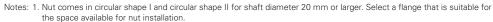
			Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial
	Model No.	Preload system	oriare dia.	Loud	Daii aia.	dia.	rioot ala.	Turns ×	Dynamic	Static	rigidity <i>K</i>
		System	d	l	D_w	d _m	d,	Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)
	MSFD 1602-4	Clearance		2	1.588	16.4	14.6	1×4	3 510	8 450	185
*	MPFD 1602-4	Р	16		1.000			.,,,			288
	MSFD 1602.5-4	Clearance	'0	2.5	1.588	16.4	14.6	1×4	3 510	8 450	185
*		Р			1.000			.,,,		0 .00	288
	MSFD 2002-4	Clearance		2	1.588	20.4	18.6	1×4	3 910	10 900	225
	MPFD 2002-4	Р			1.000						351
	SFD 2005-3	Clearance						1×3	8 620	17 500	196
	ZFD 2005-6	Z		5	3.175	20.75	17.4	1×3	8 620	17 500	382
	SFD 2005-4 DFD 2005-4	Clearance	20		0.170	20.70	17.1	1×4	11 000	23 300	255
		D						1×4	11 000	23 300	509
	SFD 2006-3	Clearance		6				1×3	11 100	20 600	196
	ZFD 2006-6	Z			3.969	21	16.9	1×3	11 100	20 600	382
	SFD 2006-4	Clearance		O	3.303	~ '	10.5	1×4	14 300	27 500	255
	DFD 2006-4	D						1×4	14 300	27 500	498
	MSFD 2502-4	Clearance		2	1.588	25.4	23.6	1×4	4 310	13 900	273
	MPFD 2502-4	Р			1.500	25.4	23.0	1.74	4 3 1 0		425
	SFD 2505-3	Clearance						1×3	9 790	22 900	245
*	ZFD 2505-6	Z		5	3.175	25.75	22.4	1×3	9 790	22 900	480
	SFD 2505-4	Clearance		5	3.175	25.75	22.4	1×4	12 500	30 500	323
	DFD 2505-4	D						1×4	12 500	30 500	630
	SFD 2506-3	Clearance	25					1×3	12 900	27 300	245
	ZFD 2506-6	Z		0	2 000	0.0	01.0	1×3	12 900	27 300	470
	SFD 2506-4	Clearance	1	6	3.969	26	21.9	1×4	16 500	36 500	323
	DFD 2506-4	D	1					1×4	16 500	36 500	626
	ZFD 2510-4	Z	1					1×2	11 400	21 400	323
	SFD 2510-3	Clearance	1	10	4.762	26.25	21.3	1×3	16 100	32 000	245
	DFD 2510-3	D	1					1×3	16 100	32 000	479

Notes: 1. Nut comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

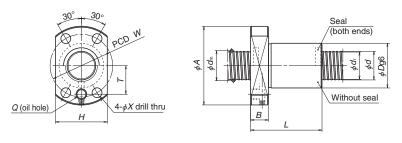
- 2. If there is no seal for SFD, ZFD, and DFD, the nut length "L" is shortened by dimension "M". For MSFD and MPFD, the nut length is the same as those with seal.
- The right turn screw is standard. "L" is added to the end of the model code for the left turn screw. Please consult NSK for MSFD and MPFD.


MSFD, MPFD

Unit: mm

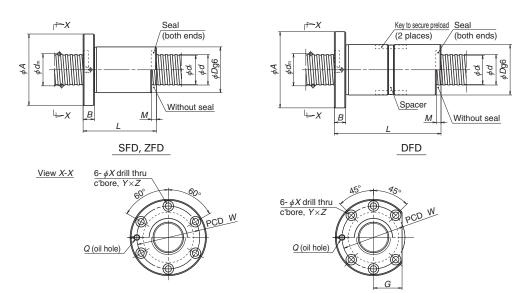

	T	I			Ball nut dir	1				I			-
Nut entire		Flanged diameter	Flanged width	Notch	ned flange	Seal dimension	Bolt h	ole dim	ension	Bolt hole PCD	Oil hole dimension	Oil hole	1
length L	D D	alameter A	Width B	G	Н	M	X	Y	Z	W	T	Q	ı
40	25	44	10	_	29	_	5.5	_	_	35	16	M6×1	- JP
44	25	44	10		29	_	5.5	_	_	35	16	M6×1	Ī
40	30	49	10	_	34	_	5.5	_	_	40	18.5	M6×1	
46	35	58		22.5						46			-
66	35	58	11	22.5		5	5.5	9.5	5.5	46		M6×1	
51	35	58	1.1	22.5	_	5	0.0	9.5	0.5	46		IVIOXI	
91	41	64		25						52			_
52	35	58		22.5						46			
76	35	58	11	22.5	_	6	5.5	9.5	5.5	46	_	M6×1	
60	35	58		22.5			0.0	0.0	0.0	46		IVIOXI	
108	42	65		25						53			_
40	36	55	10	_	40	_	5.5	_	_	46	21.5	M6×1	
46	40	63		24						51			-
66	40	63	11	24		5	5.5	9.5	5.5	51		M6×1	
51	40	63	11	24	_	5	0.5	9.5	5.5	51	_	IVIOXI	
91	46	69		26						57			
52	40	63		24						51			
76	40	63	11	24		6	5.5	9.5	5.5	51		M6×1	
60	40	63	11	24	_	0	0.5	9.5	5.5	51	_	IVIOXI	
108	47	70		27						58			_
88	42	69		26						55			
80	42	69	15	26	_	10	6.6	11	6.5	55		M6×1	
140	47	74		28						60	_		

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. It is recommended to use with seals when the shaft diameter is 16 mm or over and an oil hole is provided on the ball nut.
- 6. The models marked with * (asterisk) are available in the MA type standard ball screw with finished shaft end.
- 7. Preload system: Z, Offset preload; P, Oversize ball preload; D, Double nut preload (See page B5.)



						Ball circle		Effective turns of balls	Basic load	rating (N)	Axial
	Model No.	Preload	Shaft dia.	Lead	Ball dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
		system	d	l	D_{w}	d _m	d,	× Circuits	C _a	$C_{\scriptscriptstyle 0a}$	<i>Κ</i> (N/μm)
	MSFD 3202-6	Clearance		_	4 500	00.4			0.700	07.000	494
	MPFD 3202-6	Р		2	1.588	32.4	30.6	1×6	6 790	27 200	769
	SFD 3205-3	Clearance						1×3	11 100	30 500	304
	ZFD 3205-6	Z						1×3	11 100	30 500	598
	SFD 3205-4	Clearance		5	3.175	32.75	29.4	1×4	14 200	40 700	409
*	ZFD 3205-8	Z		5	3.175	32.75		1×4	14 200	40 700	784
	SFD 3205-6	Clearance						1×6	20 200	61 000	588
	DFD 3205-6 SFD 3206-3	D						1×6	20 200	61 000	1 160
		Clearance				33	28.9	1×3	15 000	37 500	314
	ZFD 3206-6	Z	32	6	3.969			1×3	15 000	37 500	608
	SFD 3206-4	Clearance						1×4	19 200	49 900	412
	ZFD 3206-8	Z	32	O				1×4	19 200	49 900	804
	SFD 3206-6	Clearance						1×6	27 200	74 900	598
	DFD 3206-6	D						1×6	27 200	74 900	1 190
	SFD 3208-3	Clearance						1×3	18 300	41 800	304
	ZFD 3208-6	Z		8	4.762	33.25	28.3	1×3	18 300	41 800	588
	SFD 3208-4	Clearance		0	4.702	33.23	20.3	1×4	23 500	55 800	392
	ZFD 3208-8	Z						1×4	23 500	55 800	774
	SFD 3210-3	Clearance						1×3	25 900	52 800	300
*	ZFD 3210-6	Z		10	635	33.75	27.1	1×3	25 900	52 800	588
	SFD 3210-4	Clearance		10	6.35			1×4	33 200	70 300	392
	DFD 3210-4	D						1×4	33 200	70 300	773

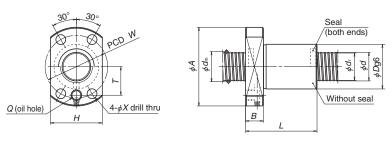
- 2. If there is no seal for SFD, ZFD, and DFD, the nut length "L" is shortened by dimension "M". For MSFD and MPFD, the nut length is the same as those with seal.
- The right turn screw is standard. "L" is added to the end of the model code for the left turn screw. Please consult NSK for MSFD and MPFD.


MSFD, MPFD

Unit: mm

Ball nut dimensions													
Nut entire		Flanged	Flanged	Notch	ned flange	Seal		ole dim	ension	Bolt hole	Oil hole	Oil hole	
length	diameter D	diameter <i>A</i>	width B	G	Н	dimension <i>M</i>	X	Y	Z	PCD W	dimension T	Q	
L	D	А	D	G	П	IVI	Χ	Υ		VV	1	Q	
50	42	65	10	_	46	_	6.6	_	_	54	26.5	M6×1	
47	48	75		29						61			
67	48	75		29						61			
52	48	75	12	29		5	6.6	11	6.5	61		M6×1	
77	48	75	12	29	_	5	0.0	''	0.5	61		IVIOXI	
62	48	75		29						61			
112	53	80		30						66			
53	48	75		29						61			
77	48	75		29						61			
61	48	75	12	29		6	6.6	11	6.5	61		M6×1	
90	48	75	12	29	_	0	0.0	''	0.5	61		IVIOXI	
73	48	75		29						61			
133	54	81		31						67			
67													
99	50	84	15	32		8	9	14	8.5	66		M6×1	
76	30	04	10	32	_	0	9	14	0.5	00	_	IVIOXI	
116													
80													
120	54	88	15	34		10	9	14	8.5	70		M6×1	
90	04	00	10	54	_	10	9	14	0.5	/0		IVIOXI	
160													

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_i) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. It is recommended to use with seals when the shaft diameter is 16 mm or over and an oil hole is provided on the ball nut.
- 6. The models marked with * (asterisk) are available in the SS type standard ball screw with finished shaft end.
- 7. Preload system: Z, Offset preload; P, Oversize ball preload; D, Double nut preload (See page B5.)


Circular shape I

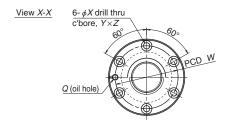
								ı		
		Clark dia	11	Ball dia.	Ball circle	D + -1:-	Effective turns of balls	Basic load	rating (N)	Axial
Model No.	Preload	Shaft dia.	Lead	Dali dia.	dia.	Root dia.	Turns	Dynamic	Static	rigidity
WIOGCI IVO.	system	,	,		١,	,	×	· '		Κ
		d	l	$D_{\rm w}$	$d_{\scriptscriptstyle m}$	d _r	Circuits	$C_{\scriptscriptstyle a}$	C_{oa}	(N/µm)
MSFD 4002-6	Clearance		2	1.588	40.4	38.6	1×6	7 380	33 900	588
MPFD 4002-6	Р			1.000	40.4	30.0	1.00			916
SFD 4005-4	Clearance						1×4	15 800	52 300	490
ZFD 4005-8	Z		5	3.175	40.75	37.4	1×4	15 800	52 300	960
SFD 4005-6	Clearance		5	3.173	40.75	37.4	1×6	22 400	78 400	725
ZFD 4005-12	Z						1×6	22 400	78 400	1 410
SFD 4006-4	Clearance						1×4	21 300	63 500	490
ZFD 4006-8	Z		6	3.969	41.0	36.9	1×4	21 300	63 500	970
SFD 4006-6	Clearance	40	0	0.000	71.0	00.0	1×6	30 100	95 300	725
ZFD 4006-12	Z	40		4.762	41.25		1×6	30 100	95 300	1 431
SFD 4008-4	Clearance					36.3	1×4	27 200	75 200	500
ZFD 4008-8	Z		8				1×4	27 200	75 200	990
SFD 4008-6	Clearance		0				1×6	38 500	113 000	735
DFD 4008-6	D						1×6	38 500	113 000	1 460
SFD 4010-3	Clearance						1×3	30 000	70 000	372
ZFD 4010-6	Z		10	6.35	41.75	35.1	1×3	30 000	70 000	735
SFD 4010-4	Clearance		10	0.55	41.75	33.1	1×4	38 400	93 300	490
ZFD 4010-8	Z						1×4	38 400	93 300	970
SFD 5005-4	Clearance						1×4	17 500	66 800	593
ZFD 5005-8	Z		5	3.175	50.75	47.4	1×4	17 500	66 800	1 170
SFD 5005-6	Clearance)	3.173	30.75	47.4	1×6	24 800	100 000	872
ZFD 5005-12	Z	50					1×6	24 800	100 000	1 720
SFD 5006-4	Clearance	30					1×4	23 600	81 700	598
ZFD 5006-8	Z		6	3.969	51.0	.0 46.9	1×4	23 600	81 700	1 190
SFD 5006-6	Clearance		٥	3.303	31.0		1×6	33 500	122 000	892
ZFD 5006-12	Z						1×6	33 500	122 000	1 750

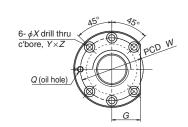
Circular shape II

Notes: 1. Nut comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal for SFD, ZFD, and DFD, the nut length "L" is shortened by dimension "M". For MSFD and MPFD, the nut length is the same as those with seal.
- The right turn screw is standard. "L" is added to the end of the model code for the left turn screw. Please consult NSK for MSFD and MPFD.

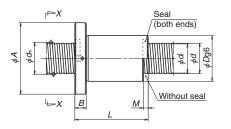
MSFD, MPFD


Unit: mm


		I I			Ball nut dir							
Nut entire			Flanged	Notch	ned flange	Seal	Bolt h	ple dim	ension	Bolt hole		Oil hole
length		diameter		0		dimension		Y	_		dimension T	
L	D	Α	В	G	Н	М	Χ	Υ	Ζ	W	I	Q
50	51	74	10	_	55	_	6.6	_	_	63	31	M6×1
55												
80	56	90	15	34	_	5	9	14	8.5	72		Rc1/8
65	30		13	04	_	5	3	'-	0.5	/ 2		1101/0
101												
64												
93	56	90	15	34	_	6	9	14	8.5	72	_	Rc1/8
76				0.					0.0			1101/0
118	0.0	0.4								7.0		
76	60	94		36						76		
116	60	94	15	36	_	8	9	14	8.5	76	_	Rc1/8
93	60	94		36						76		
168 83	62	96		37						78		
123												
93	62	104	18	40	_	10	11	17.5	11	82	_	Rc1/8
143												
55												
80												
65	66	100	15	38	_	5	9	14	8.5	82	_	Rc1/8
101												
64												
93							_	١				
76	66	100	15	38	_	6	9	14	8.5	82	_	Rc1/8
118												

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_s) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. It is recommended to use with seals when the shaft diameter is 16 mm or over and an oil hole is provided on the ball nut.
- 6. Preload system: Z, Offset preload; P, Oversize ball preload; D, Double nut preload (See page B5.)

B457 B458


Circular shape I

Circular shape I

		1 '						ı		
		Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial
Model No.	Preload	Silait ula.	Leau	Dall Ula.	dia.	1100t ula.	Turns	Dynamic	Static	rigidity
	system	d	l	D_{w}	d _m	d,	× Circuits	$C_{\scriptscriptstyle a}$	C_{0a}	<i>Κ</i> (N/μm)
SFD 5008-4	Clearance						1×4	29 900	94 800	598
ZFD 5008-8	Z						1×4	29 900	94 800	1 180
SFD 5008-6	Clearance		8	4.762	51.25	46.3	1×6	42 400	142 000	887
DFD 5008-6	D						1×6	42 400	142 000	1 740
SFD 5010-3	Clearance	i i					1×3	34 100	91 600	461
ZFD 5010-6	Z						1×3	34 100	91 600	914
SFD 5010-4	Clearance		10	6.35	51.75	45.1	1×4	43 600	122 000	608
ZFD 5010-8	Z	50	10	0.35	51.75	45.1	1×4	43 600	122 000	1 200
SFD 5010-6	Clearance	50					1×6	61 800	183 000	902
DFD 5010-6	D]					1×6	61 800	183 000	1 770
SFD 5012-3	Clearance						1×3	44 800	109 000	461
ZFD 5012-6	Z		12	7.938	52.25	44	1×3	44 800	109 000	906
SFD 5012-4	Clearance		12	7.330	32.23	44	1×4	57 300	146 000	608
DFD 5012-4	D						1×4	57 300	146 000	1 200
SFD 5020-3	Clearance		20	7.938	52.25	44	1×3	44 800	109 000	461
DFD 5020-3	D		20	7.000	32.23	44		44 800	109 000	908
SFD 6306-4	Clearance						1×4	26 100	104 000	735
ZFD 6306-8	Z		6	3.969	64.0	59.9	1×4	26 100	104 000	1 430
SFD 6306-6	Clearance		0	0.000		59.9	1×6	36 900	157 000	1 180
ZFD 6306-12	Z						1×6	36 900	157 000	2 110
SFD 6308-4	Clearance						1×4	33 600	124 000	745
ZFD 6308-8	Z		8	4.762	64.25	59.3	1×4	33 600	124 000	1 460
SFD 6308-6	Clearance		_				1×6	47 600	186 000	1 100
DFD 6308-6	D						1×6	47 600	186 000	2 150
SFD 6310-4	Clearance						1×4	49 700	163 000	764
ZFD 6310-8	Z	63	10	6.35	64.75	58.1	1×4	49 700	163 000	1 510
SFD 6310-6	Clearance		-				1×6	70 500	244 000	1 130
DFD 6310-6	D						1×6	70 500	244 000	2 210
ZFD 6312-6	Z						1×3	50 800	143 000	1 120
SFD 6312-4	Clearance		10	7.000	05.05		1×4	65 100	191 000	755
DFD 6312-4	D		12	7.938	65.25	57	1×4	65 100	191 000	1 480
SFD 6312-6	Clearance						1×6	92 200	286 000	1 110
DFD 6312-6	Classanaa						1×6	92 200	286 000	2 180
SFD 6320-3	Clearance		20	9.525	65.75	56	1×3	83 700	232 000	735
DFD 6320-3	D		-	1	1	1	1	1		1 440

Notes: 1. Nut comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

SFD, ZFD

DFD

Unit: mm

										Unit: mm
				Ball	nut dimens	ions				
Nut entire	Nut	Flanged	Flanged	Notched	Seal	Bolt	hole dimer	nsion	Bolt hole	Oil hole
length	diameter	diameter	width	flange	dimension			_	PCD	
L	D	A	В	G	М	Χ	Y	Z	W	Q
79 119	70	112		43					90	
96	70	112 112	18	43 43	8	11	17.5	11	90 90	Rc1/8
	70 72	112		43					90	
171 83	12	114		44					92	
123										
93										
143	72	114	18	44	10	11	17.5	11	92	Rc1/8
114										
205										
99										
147	7.5	404	00	47	4.0	4.4	00	10	0.7	D 4/0
111	75	121	22	47	12	14	20	13	97	Rc1/8
195										
146	75	121	28	47	20	14	20	13	97	D = 1 /O
253	75	121	28	47	20	14	20	13	97	Rc1/8
67										
96	80	122	18	47	6	11	17.5	11	100	Rc1/8
79	00	122	10	47	0	1 1	17.5	''	100	1101/0
121										
79	82	124		47					102	
119	82	124	18	47	8	11	17.5	11	102	Rc1/8
96	82	124		47					102	
175 97	85	127		48					105	
147										
118	85	131	22	50	10	14	20	13	107	Rc1/8
214										
147										
111										
195	90	136	22	52	12	14	20	13	112	Rc1/8
136		. 50								,0
248										
146	0.5	150	20		20	10	0.0	17.5	100	D - 1 /O
253	95	153	28	59	20	18	26	17.5	123	Rc1/8
4.7		-1:4 1/: +1								

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_J) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. It is recommended to use with seals when the shaft diameter is 16 mm or over and an oil hole is provided on the ball nut.
- 6. Preload system: Z, Offset preload; D, Double nut preload (See page B5.)

Unit: mm

Oil hole

Rc1/8

Rc1/8

Rc1/8

Bolt hole

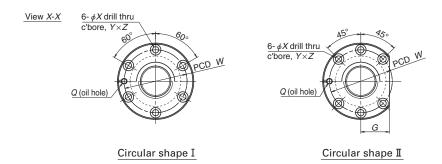
147

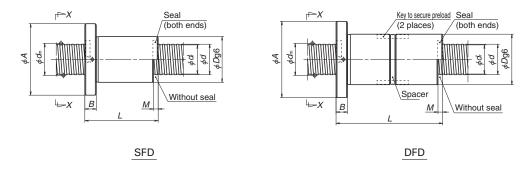
158

169

Bolt hole dimension

20


26


32

13

17.5

21.5

		Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial
Model No.	Preload	oriait uia.	Leau	Daii ula.	dia.	i toot uia.	Turns	Dynamic	Static	rigidity <i>K</i>
	system	d	l	$D_{\rm w}$	d _m	d _r	× Circuits	C _a	C_{0a}	Λ (N/μm)
SFD 8010-4	Clearance						1×4	55 100	209 000	931
DFD 8010-4	D		10	6.35	01.75	75.1	1×4	55 100	209 000	1 840
SFD 8010-6	Clearance		10	0.35	81.75	75.1	1×6	78 000	314 000	1 370
DFD 8010-6	D						1×6	78 000	314 000	2 710
SFD 8012-4	Clearance						1×4	74 000	254 000	941
DFD 8012-4	D	80	12	7.938	82.25	74	1×4	74 000	254 000	1 860
SFD 8012-6	Clearance	80	12			/4	1×6	105 000	381 000	1 392
DFD 8012-6	D						1×6	105 000	381 000	2 730
SFD 8020-3	Clearance			9.525	82.75	73	1×3	96 600	313 000	931
DFD 8020-3	D		20				1×3	96 600	313 000	1 830
SFD 8020-4	Clearance		20	9.525			1×4	124 000	417 000	1 230
DFD 8020-4	D						1×4	124 000	417 000	2 410
SFD 10010-6	Clearance		10	6.35	101.75	95.1	1×6	86 200	401 000	1 670
DFD 10010-6	D		10	0.35	101.75	90.1	1 × 0	00 200	401 000	3 270
SFD 10012-6	Clearance	100	12	7.938	102.25	0.4	1,76	117 000	400 000	1 680
DFD 10012-6	D	100	12	7.938	102.25	94	1×6	117 000	490 000	3 320
SFD 10020-4	Clearance		20	9.525	E 100.7E	02.75 93	1,4 126.00	136 000	526 000	1 470
DFD 10020-4	D			9.025	102.75	93	1×4	130 000	520 000	2 890

Notes 1. Nut comes in circular shape I and circular shape II for shaft diameter 20 mm or larger. Select a flange that is suitable for the space available for nut installation.

- 2. If there is no seal the nut length "L" is shortened by dimension "M".
- 3. The right turn screw is standard. "L" is added to the end of the model code for the left turn screw.

L L	D	A	B	G	M	X	Y	Z	W	Q	
97											È
172	105	151	22	57	10	14	20	13	127	D-1/0	Ė
118	105	151	22	57	10	14	20	13	127	Rc1/8	Ę
214											9
111											
195	110	156	22	59	12	14	20	13	132	Rc1/8	
136	110	150		59	12	14	20	13	132	NC1/6	
248											i
146											
253	115	173	28	66	20	18	26	17.5	143	Rc1/8	
168	115	1/3		00	20	10	20	17.5	143	1101/0	
297											
110	I	1	I	l	1		I	l	I	I	

10

12

20

14

18

22

Ball nut dimensions

Seal

- 4. The axial rigidity K in the table above is a theoretical value obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (C_a) with non-preload, 10% with D-preload, and 5% with P-preload. Refer to "Technical Description" (page B37) if the axial load and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.
- 5. It is recommended to use with seals when the shaft diameter is 16 mm or over and an oil hole is provided on the ball nut.
- 6. Preload system: D; Double nut preload (See page B5.)

Nut entire

214 142

254 172

301

Nut

125

130

135

diameter

Flanged

171

188

205

22

28

32

64

71

79

Flanged Notched

End cap type

B-3-2.4 End Cap Type Ball Screws

1. Features

The end cap recirculation system is suitable for high-helix lead and multiple start threads.

Since the leads are 1 to 3 times larger than their screw shaft diameter, it makes them more suitable for high-speed operation.

2. Specifications

(1) Ball recirculation system

The structure of end cap recirculation system is shown in Fig. 1.

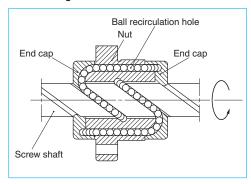


Fig. 1 Structure of end cap recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are shown in **Table 1**. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	LSFC, LPFC: C1, C2, C3, C5, Ct7 USFC, UPFC: C3, C5, Ct7 (Three times lead or over are C5, Ct7)
Axial play	Z, 0 mm (preloaded); T, 0.005 mm or less; S, 0.020 mm or less; N, 0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed.

The allowable d-n value and criterion of maximum rotational speed are shown below. Please consult NSK for high-speed specification. Basic measure must be taken for the high speed ball screws respectively.

Allowable d·n value:

Standard specification ; 80 000 or less
High-speed specification; 100 000 or less
Standard of rotational speed : 3 000 min⁻¹

**Please also review the critical speed. Refer to
"Technical Description: Permissible Rotational
Speed" (page B47) for details.

(4) Other specifications

Please consult NSK for other specifications not listed in the dimension tables.

3. Product categories

There are two different preload systems with several models (**Table 2**).

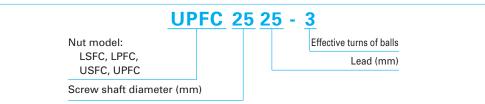
Table 2 End cap type ball screws product categories

Nut model	Shape	Flange shape	Nut shape	Preload system
LSFC	MARGON TO BARROWS	Flanged	Circular	Non-preload, Slight axial play
LPFC	10001	Circular III	Circular	P-preload (light preload) no spacer ball
USFC		Flanged	Circular	Non-preload, Slight axial play
UPFC		Rectangular	Circular	P-preload (light preload) no spacer ball

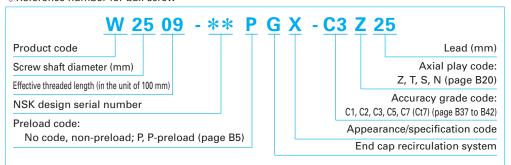
4. Design Precautions

When designing the screw shaft end, one end of the screw must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

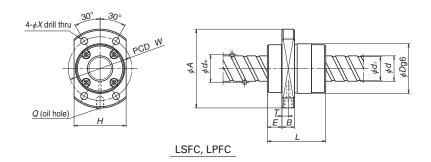
- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.


Special bearings which have higher-load carrying capacity are available.

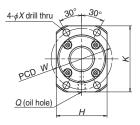
For general precautions regarding ball screws, refer to "Design Precautions" (page B80) and "Handling Precautions" (page B99).

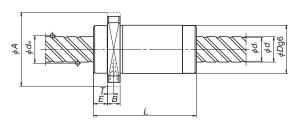

5. Example of model number in dimension tables

The followings describe the structure of "Model number" and "Reference number for ball screw".



○Reference number for ball screw

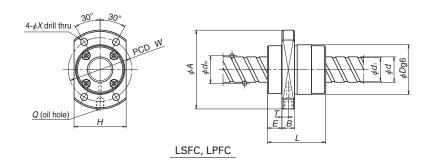




		1									
			Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial rigidity
	Model No.	Preload	oriart dia.	Leau	Dail Gla.	dia.	1100t dia.	Turns	Dynamic	Static	K
		system	d	l	D _w	d _m	d,	× Circuits	C _a	C_{0a}	(N/µm)
	11050 4000 45	01	u		D _W	um	u _r	Circuits	O _a	O _{0a}	
	USFC 1220-1.5	Clearance	12	20	2.381	12.5	9.9	1.7×1	2 690	4 420	66
	UPFC 1220-1.5 USFC 1520-1.5	Р									103
*		Clearance		20	3.175	15.5	12.2	1.7×1	5 070	8 730	97
~	UPFC 1520-1.5 USFC 1540-1	Clearance						0.7×2	3 860	6 050	151 62
	UPFC 1540-1	P	15					0.7x2 0.7x2	3 860	6 050	97
	USFC 1540-1	Clearance		40	3.175	15.75	12.2	0.7×4	7 000	12 100	121
	UPFC 1540-2	P						0.7×4	7 000	12 100	188
	LSFC 1616-3	Clearance						1.7×2	6 380	12 500	172
	LPFC 1616-3	P						1.7×2	6 380	12 500	268
	LSFC 1616-6	Clearance		16	2.778	16.65	13.7	1.7×4	11 600	25 000	334
	LPFC 1616-6	Р						1.7×4	11 600	25 000	520
	USFC 1632-1	Clearance	1 1					0.7×2	4 000	6 690	74
*	UPFC 1632-1	Р						0.7×2	4 000	6 690	116
	USFC 1632-3	Clearance	16	00	0.475	10.75	10.4	1.7×2	8 580	17 000	176
	UPFC 1632-3	Р	16	32	3.175	16.75	13.4	1.7×2	8 580	17 000	273
	USFC 1632-6	Clearance						1.7×4	15 600	34 100	340
	UPFC 1632-6	Р						1.7×4	15 600	34 100	530
	USFC 1650-1	Clearance] [0.7×2	4 000	6 690	65
	UPFC 1650-1	Р		50	3.175	16.75	13.4	0.7×2	4 000	6 690	102
	USFC 1650-2	Clearance		50	3.170	10.75	13.4	0.7×4	7 260	13 400	126
	UPFC 1650-2	Р						0.7×4	7 260	13 400	197
	LSFC 2020-3	Clearance						1.7×2	9 620	21 000	238
	LPFC 2020-3	Р		20	3.175	20.75	17.4	1.7×2	9 620	21 000	370
	LSFC 2020-6	Clearance		20	0.170	20.70	17.1	1.7×4	17 500	42 000	462
	LPFC 2020-6	Р						1.7×4	17 500	42 000	718
*	USFC 2040-1	Clearance						0.7×2	4 490	8 640	89
~	UPFC 2040-1	Р	20					0.7×2	4 490	8 640	138
	USFC 2040-3	Clearance		40	3.175	20.75	17.4	1.7×2	9 620	21 000	211
	UPFC 2040-3	Р						1.7×2	9 620	21 000	328
	USFC 2040-6	Clearance						1.7×4	17 500	42 000	409
	UPFC 2040-6	P	-					1.7×4 0.7×2	17 500	42 000 8 640	636 78
	USFC 2060-1 UPFC 2060-1	P						0.7×2 0.7×2	4 490 4 490	8 640	121
	USFC 2060-1	Clearance		60	3.175	20.75	17.4	0.7×2 0.7×4	8 140	17 300	151
		P							8 140		
	UPFC 2060-2	1						0.7×4	0 140	17 300	235

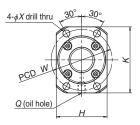
Notes: 1. For the LSFC and USFC type ball screws, the axial rigidity *K* in the table above is the theoretical values obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (*C_s*). For the LPFC and UPFC type, the rigidity is the theoretical value when the preload is 10% of the basic dynamic load rating (*C_s*) and an axial load is applied to it. Refer to the "Technical Description" (page B37) if the rigidity and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.

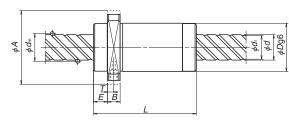
USFC, UPFC


Unit: mm

				Ball	nut dimens	ions					1
Nut entire length L	Nut diameter D	Flanged diameter A	Flanged width B		dimension K	End cap	Bolt hole dimension X	Bolt hole PCD W	Oil hole	Oil hole position T	
44	26	44	10	28	40	9	4.5	35	M6×1	5	
45	34	55	10	36	50	11	5.5	45	M6×1	5	
40	32	53	10	33	48	12	5.5	43	M6×1	5	<u> </u>
38	32	53	10	34	_	10	4.5	42	M6×1	5	End cap type
34 34 66 66 66	34	55	10	36	50	10.5	5.5	45	M6×1	5	
<u>66</u> 50	34	55	10	36	50	12	5.5	45	M6×1	5	
46	39	62	10	41	_	11.5	5.5	50	M6×1	5	
41 41 81 81 81 81	38	58	10	40	52	11	5.5	48	M6×1	5.5	
58	38	58	10	40	52	12.3	5.5	48	M6×1	5	ı
					1. 1.017.5						

- 2. The right turn screw is the standard. Please consult NSK for the left turn screw.
- 3. The models marked with * (asterisk) are available in the FA type standard ball screws with finished shaft end.
- 4. Preload system: P; Oversize ball preload (See page B5.)


B465 B466



-			Shaft dia.	Lead	Ball dia.	Ball circle	Root dia.	Effective turns of balls	Basic load	rating (N)	Axial rigidity
	Model No.	Preload	Stiatt ula.	Leau	Dall Ula.	dia.	noot dia.	Turns	Dynamic	Static	K
		system	d	l	D_{w}	d _m	d_{r}	× Circuits	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	(N/µm)
Ī	LSFC 2525-3	Clearance						1.7×2	14 400	32 800	293
	LPFC 2525-3	Р		0.5	0.000	00.0	04.0	1.7×2	14 400	32 800	456
	LSFC 2525-6	Clearance		25	3.969	26.0	21.9	1.7×4	26 100	65 600	568
	LPFC 2525-6	Р						1.7×4	26 100	65 600	883
	USFC 2550-1	Clearance						0.7×2	6 700	13 500	109
<	UPFC 2550-1	Р						0.7×2	6 700	13 500	170
	USFC 2550-3	Clearance	25	50	3.969	26.0	21.9	1.7×2	14 400	32 800	264
	UPFC 2550-3	Р	25	50	3.969	26.0	21.9	1.7×2	14 400	32 800	412
	USFC 2550-6	Clearance						1.7×4	26 100	65 600	512
_	UPFC 2550-6	Р						1.7×4	26 100	65 600	796
	USFC 2580-1	Clearance						0.7×2	6 700	13 500	94
	UPFC 2580-1	Р		80	3.969	26.0	21.9	0.7×2	6 700	13 500	147
	USFC 2580-2	Clearance		00	0.000	20.0	21.3	0.7×4	12 200	27 000	184
	UPFC 2580-2	Р						0.7×4	12 200	27 000	285
	LSFC 3232-3	Clearance						1.7×2	21 000	51 600	366
	LPFC 3232-3	Р		32	4.762	33.25	28.3	1.7×2	21 000	51 600	570
	LSFC 3232-6	Clearance					28.3	1.7×4	38 100	103 000	709
_	LPFC 3232-6	Р						1.7×4	38 100	103 000	1 104
	USFC 3264-1	Clearance	32					0.7×2	9 800	20 900	143
	UPFC 3264-1	Р	02					0.7×2	9 800	20 900	222
	USFC 3264-3	Clearance		64	4.762	33.25		1.7×2	21 000	51 600	329
	UPFC 3264-3	Р		0.1	1., 02	00.20	20.0	1.7×2	21 000	51 600	512
	USFC 3264-6	Clearance						1.7×4	38 100	103 000	636
	UPFC 3264-6	P						1.7×4	38 100	103 000	991
	LSFC 4040-3	Clearance						1.7×2	33 500	86 500	455
	LPFC 4040-3	Р	40	40	6.350	41.75	35.2	1.7×2	33 500	86 500	708
	LSFC 4040-6	Clearance		. =				1.7×4	60 800	173 000	880
_	LPFC 4040-6	Р						1.7×4	60 800	173 000	1 370
	LSFC 5050-3	Clearance						1.7×2	50 000	135 000	560
	LPFC 5050-3	Р	50	50	7.938	52.25	44.1	1.7×2	50 000	135 000	871
	LSFC 5050-6	Clearance		50 7.938	32.25 44.1		1.7×4	90 800	270 000	1 084	
	LPFC 5050-6	Р						1.7×4	90 800	270 000	1 688

Notes: 1. For the LSFC and USFC type ball screws, the axial rigidity *K* in the table above is the theoretical values obtained from the elastic deformation between screw groove and ball when the axial load is 30% of the basic dynamic load rating (*C_s*). For the LPFC and UPFC type, the rigidity is the theoretical value when the preload is 10% of the basic dynamic load rating (*C_s*) and an axial load is applied to it. Refer to the "Technical Description" (page B37) if the rigidity and preload differ from the conditions above, or when the deformation of the ball nut body must be considered.

USFC, UPFC

Unit: mm

				Rall	nut dimens	sions					•
Nut entire length	diameter	Flanged diameter	Flanged width	Flanged o	limension	End cap dimension	Bolt hole dimension		Oil hole	Oil hole position	_
L	D	Α	В	Н	K	Ε	X	W	Q	T	
55	47	74	12	49	_	13	6.6	60	M6×1	6	
50 50 100 100 100	46	70	12	48	63	13	6.6	58	M6×1	7	End cap type
75	46	70	12	48	63	14.5	6.6	58	M6×1	6	е
70	58	92	12	60	_	16	9	74	M6×1	5.5	
62 62 126 126 126 126	58	92	12	60	82	15.5	9	74	M6×1	7.5	-
85	73	114	15	75	_	19.5	11	93	M6×1	6.5	
107	90	135	20	92	_	21.5	14	112	M6×1	7	-
2 7	The right tur			Diagon cono	ult NCV for	tha laft turn					•

- 2. The right turn screw is the standard. Please consult NSK for the left turn screw.
- 3. The models marked with * (asterisk) are available in the FA type standard ball screws with finished shaft end.
- 4. Preload system: P; Oversize ball preload (See page B5.)

B467 B468

1. HMD Type for High-Speed Machine Tools	B473
2. HMC Type for High-Speed Machine Tools	B477
3. BSL [™] Type for Miniature Lathes	B483
4. For High-Load Drives	
4.1 HTF-SRC Type	B487
4.2 HTF-SRD Type	B491
4.3 HTF Type	B495
5. VSS Type for Contaminated Environments	B507
6. TW Series for Twin-Drive Systems	B511
7. Hollow Shaft Ball Screws	B512
for High-Speed Machine Tools	
8. ND Series Nut-Rotatable Ball Screws	B517
9. Σ Series for Robots	B 525
10. Equipped with "NSK K1 [™] " Lubrication Unit	B 537
11. Special Ball Screws	B543

B-3-3 Dimension Table and Reference Number of Application-Oriented Ball Screws

♦ Features and application examples of application-oriented ball screws

Appli	ications	Shape	Features	Applications	Page
High-Speed Machine	HMD Type		High-speed operation: 64 to 120 m/min Rigidity: 5% greater than the HMC series. High-load carrying capacity: 7% greater than the HMC type New recirculation system reduces the noise level by 5 dB or more compared with the HMC type	High-speed machining centers High-speed combined machine tools Die mold processing machine	B473
Tools	НМС Туре		High-speed: 40 to 120 m/min Rigidity: 30% greater than existing tube type ball screws High-Load carrying capacity: 14% greater than existing tube type ball screws Noise reduced by small-diameter balls	High-speed machining centers High-speed combined machine tools Die mold processing machines	B477
Small Lathes	BSL Type		Compact nut: 50% less ball nut volume than NSK existing products. High-dust protection by thin plastic seal Special high-load capacity ball screw support bearings are available.	Small lathes Multi-axis lathes Small machining centers	B483
	HTF-SRC Type		High-load capacity High-speed operation by high-speed rotation: 930 mm/sec Even load distribution to balls in the ball nut for high-load drive Improved durability by NSK S1	Injection axis of injection molding machines Servo press machines Press brake Bending machines	B487
High-Load Drives	HTF-SRD Type	Secretary in	High-load capacity High-speed operation by large screw lead: 1 600 mm/sec Improved durability by NSK S1	Clamping axis of injection molding machines Die cast machines Punch presses Lifting and lowering devices	B491
	НТГ Туре	E Hadadadada	High-load capacity Even load distribution to the balls in a ball nut for high-load drive Improved durability by NSK S1 Provide a wide range of screw diameter and lead combinations.	Injection molding machines Press machines Press fitting machines Lifting and lowering machines	B495
Contaminated Environments	VSS Type		High dust-resistant performance: Reduces particle penetration rate to less than 1/15 (compared with existing plastic seal). More than four times longer service life than existing plastic seal under contaminated environments.	Woodworking machines Laser cutting machines Graphite milling machines Tire molding machines Transfer equipment	B507
Twin-Drive Systems	TW Series	E COMMENT OF THE PARTY OF THE P	Controlled screw lead accuracy and variation of preload torque for twin drive. Improved axial rigidity, expected life and controllability by the paired up two ball-screw driving systems	Machining centers Combined machine tools Large-size machine tools	B511

Appli	ications	Shape	Features	Applications	Page
High- Precision Machine Tools	Hollow Shaft Ball Screws		Suppress thermal deformation by cooling the shaft center Prevent the machine base from deforming due to thermal expansion. NSK special support units and seal units are available.	High-precision die processing machines High-precision combined machine tools High-precision machining centers High-precision lathes	B512
Nut- Rotatable Ball Screws	NDT and NDD Type		Angular contact support bearings are integrated into the ball nut. Two or more ball nuts can be installed in a single ball screw shaft. The NDD type ball screws can surpass the critical speed. A special vibration damper enables longstroke-high-speed operation.	Woodworking machines Laser cutting machines Electronic component mounting devices Liquid crystal display transfer equipment Transfer equipment	B517
Robots	Σ Series		A ball screw and a ball spline are made in one shaft, combining a drive and guide system. A ball screw nut, a ball spline nut and support bearings are combined to the unit. Hollow shaft has an effect for weight saving. The hollow can be used for wiring and piping.	SCALA type robots Electronic- component mounting systems	B525
Equipped wi Lubrication l	ith "NSK K1" Jnit	NSKKI	Long-term, maintenance-free operation Maintains lubrication efficiency for a prolonged time in contaminated environments Does not pollute the environment Made of compatible material with the FDA regulations is also available.	Automotive manufacturing machines Woodworking machines Laser cutting machines Semiconductor/Liquid crystal display manufacturing equipment Food processing/Medical equipment	B537

B471 B472

B-3-3.1 HMD Type for High-Speed Machine Tools

This product is being applied for a patent. The newly developed ball recirculation components. the end-deflector and middle-deflector. have greatly contributed for the substantial improvements in the maximum rotational speed and noise level compared to the HMC type.

1. Features

High speed

The permissible rotational speed (d·n value) has greatly increased to 160 000 compared with 135 000 of the HMC type.

Low noise

Noise reduced by 5 dB or more compared with the HMC type ball screws for high-speed machine tools.

Nut mounting dimensions

The ball nut diameters are the same as those of the HMC type.

2. Specifications

(1) Recirculation system

Fig.1 shows the structure of the middle-deflector recirculation system of the HMD type.

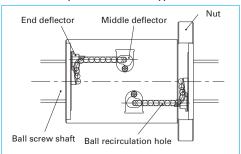


Fig. 1 Structure of middle-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C3, C5
Axial play	0 mm (preloaded)

(3) Allowable d.n value and the criterion of maximum rotational speed

Allowable d.n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value: 160 000 or less Criterion of maximum rotational speed : 4 000 min

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Options

For twin-drive systems (See page B511.)

Upon request, the variations in lead accuracy and preload torque between two ball screws of a pair of the TW series are controlled for the further improvement of the reliability.

Hollow shaft ball screw (See page B512.)

The temperature rise and measures against thermal expansion of ball screw driving mechanism are the most challenging for highspeed machine tools. For the HMD type ball screws, we recommend to utilize the hollow for forced cooling system.

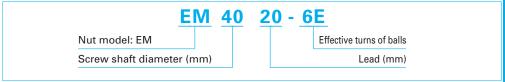
(5) Seal

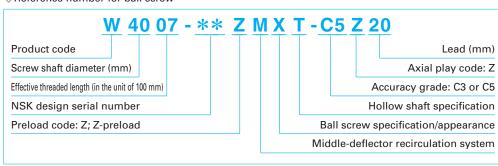
Compact, thin plastic seal is available. Nut outside diameter is compact compare with the return tube recirculation system.

3. Design precautions

For general precautions regarding ball screws, refer to "Design Precautions" (page B80) and "Handling Precautions" (page B99).

4. Product categories

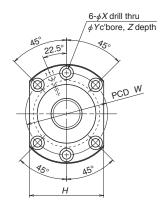

The HMD type has a model as follows.

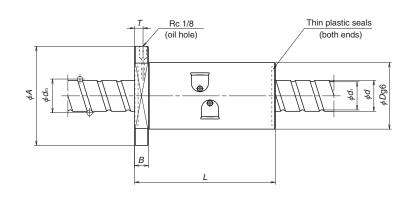

Table 2 HMD type product categories

Nut model	Shape	Flange shape	Nut shape	Preload system
EM		Flanged Circular II	Circular	Z-Preload (medium preload)

5. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".




6. Handling Precautions

Maximum operating temperature: 80°C If using NSK K1, operating temperature should not exceed 50°C. Refer to "Designing Precautions" (page B80).

B473 B474

	Shaft			Ball circle		Basic load	rating (N)	Axial rigidity
Model No.	dia.	Lead	Ball dia.	dia.	Root dia.	Dynamic	Static	K
	d	l	D_{w}	d _m	d _r	$C_{\scriptscriptstyle a}$	C_{0a}	Λ (N/μm)
EM4016-4E		16	7.144	41.5	34.1	57 100	130 000	1 020
EM4020-6E	40	20	6.350	41	34.4	66 900	165 000	1 340
EM4025-6E	40	25	7.144	41.5	34.1	79 100	191 000	1 370
EM4030-6E		30	7.144	41.5	34.1	79 100	191 000	1 350
EM4516-4E		16	7.144	46.5	39.1	59 600	145 000	1 060
EM4520-6E	45	20	6.350	46	39.4	69 100	186 000	1 470
EM4525-6E		25	7.144	46.5	39.1	82 500	213 000	1 510
EM5016-4E		16	7.144	51.5	44.1	61 800	160 000	1 150
EM5020-6E	F0	20	6.350	51	44.4	73 200	206 000	1 600
EM5025-6E	50	25	7.144	51.5	44.1	85 600	235 000	1 620
EM5030-6E		30	7.144	51.5	44.1	85 600	235 000	1 630
EM6316-4E	63	16	9.525	65	55.2	111 000	339 000	1 600

Notes: 1. The right turn screw is the standard. Please consult NSK for left turn screws.

2. Rigidity listed under the column K is the value when a 5% of basic dynamic load rating is applied as the preload.

										OTHE. ITHIT	
		Ba	all nut dimer	nsions				Bolt hole	Oil hole	Max. feeding	
Nut length	Nut dia.	Flange dia.	Flange width			PCD	position	speed			
L	D	Α	В	Н	X	Y	Z	W	T	(m/min)	
160										64	I I
150	86	100	18	96	11	17.5	11	106	11	80	Ξ
182	00 120	86 128 1		90	11	17.5	11	100	11	100	
213										120	
160										56	
150	92	134	18	102	11	17.5	11	112	11	70	
182										88	
160										51	
150	00	140	10	107	11	17.5	11	118	11	64	
182	98 140	98 140 18		107	11	17.5	''	118	11	80	
213									96		
170	122	180	28	138	18	26	17.5	150	14	40	

B475 B476

Unit: mm

B-3-3.2 HMC Type for High-Speed Machine Tools

This product is being applied for a patent.

1. Features

High-speed traveling

High helix leads of 16 mm to 36 mm are used. Furthermore, the ball recirculation return tube is reinforced to make a high-speed traveling of 40 to 120 m/min. possible.

 High rigidity, high load carrying capacity Double start thread increases the number of effective turns of balls, and a smaller ball size increases the number of the balls. Together they contribute to have high rigidity and high load carrying capacity, despite the high helix lead.

Compact nut

The size of nut diameter and length were reduced.

2. Specifications

(1) Ball recirculation system

The ball recirculation circuits and grooves are suited for high-speed operation. Structure of recirculation system is shown in Fig. 1.

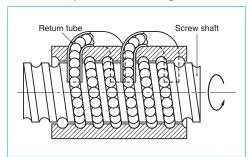


Fig. 1 Structure of return tube recirculation system

(2) Accuracy grades and axial play

Standard accuracy grades and axial play are shown in Table 1. Please consult NSK for other grade.

Table 1 Accuracy grades and axial play

Accuracy grade	C3, C5
Axial play	0 mm (preloaded)

(3) Options

 Equipped with NSK K1 lubrication unit Optional NSK K1 lubrication unit, molded from resin and impregnated with lubrication oil, is available. Please consult NSK when using NSK K1.

For twin-drive systems (See page B511.)

Upon request, the variations in lead accuracy and preload torque between two ball screws of a pair of the TW series are controlled for the further improvement of the reliability.

 Hollow shaft ball screw specifications (See page B512.)

The temperature rise and measures against thermal expansion of ball screw driving mechanism are the most challenging for high-speed machine tools. For the HMD type ball screws, we recommend to utilize the hollow for forced cooling system.

For a vertical axis ball screw

For a vertical axis ball screw, which constantly supports the load of vertical axis system, a high load capacity ball screw is required. A high load capacity type with compact design is available for the nut models I and II in the dimension tables. For details, please consult NSK.

(4) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable den value: HZC, HDC: 100 000 or less HZF, HDF: 135 000 or less

Criterion of maximum rotational speed: 3 750 min⁻¹ Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

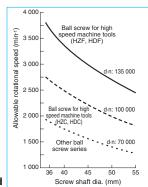


Fig. 2 Comparison of permissible rotational speed

(5) Other specifications

For other specifications not listed in the dimension tables such as high-speed, high-load capacity, and NSK K1 installed type, please consult NSK.

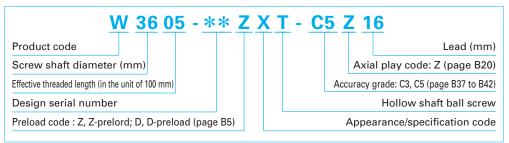
3. Design precautions

For general precautions regarding ball screws, refer to "Design Precautions" (page B80) and "Handling Precautions" (page B99).

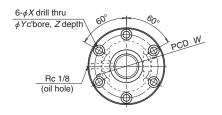
4. Product categories

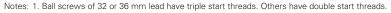
HMC type has two different preload systems with several models (Table 2).

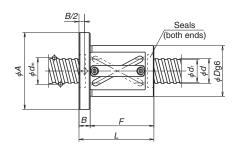
Nut model	Shape	Flange shape	Preload system	
HZC		Flanged	Z-preload	
HZF		Circular I	(medium preload)	
HDC	ananananan anananananan ananananananan ananananananan an	Flanged	D-preload	
HDF		Circular I	(medium preload)	

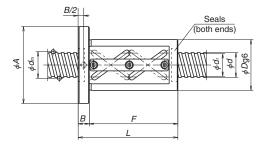

Table 2 HMC type product categories

7. Structure of model number and reference number


The followings describe the structure of "Model number" and "Reference number for ball screw".


○Reference number for ball screw.

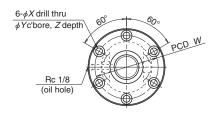


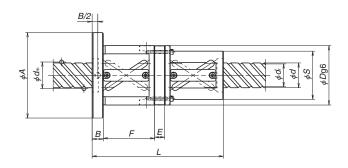


	Shaft	1 1	D-II-II-	Ball	Root	Effective	Nlore		rating (N)		igidity
Model No.	dia.	Lead	Ball dia.	circle dia.	dia.	turns of	Nut model	Dynamic	Static	K (N,	
	d	l	$D_{\rm w}$	d _m	d,	balls		$C_{\scriptscriptstyle a}$	C_{0a}	5% <i>C</i> 。	10% <i>C</i> 。
HZF3616-5 HZC3616-5		16	4.7625	36.5	31.7	5	I	40 200	102 000	1 130	1 420
HZF3620-3.5	36	20	6.35	37	30.6	3.5	I	44 000	98 500	830	1 050
HZC3620-3.5											
HZF4016-5 HZC4016-5		16	4.7625	40.5	35.7	5	I	41 200	112 000	1 230	1 550
HZF4020-3.5 HZC4020-3.5	40					3.5	I	46 100	107 000	900	1 130
HZF4020-5		20	6.35	41	34.6	5	п	62 600	153 000	1 260	1 590
HZC4020-5						-	-				
HZF4516-5 HZF4516-7.5		16	4.7625	45.5	40.7	5 7.5	I	43 800 62 100	127 000 191 000	1 340 1 960	1 690 2 470
HZF4520-3.5 HZC4520-3.5						3.5	I	47 600	120 000	990	1 240
HZF4520-5 HZC4520-5	45	20	6.35	46	39.6	5	I	64 700	170 000	1 380	1 740
HZF4525-3.5 HZC4525-3.5		25	7.1438	46.5	39.3	3.5	I	56 800	137 000	1 010	1 280
HZF5020-3.5 HZC5020-3.5					1 44.6	3.5	I	50 400	133 000	1 080	1 360
HZF5020-5		20	6.35	51		5	I	68 500	191 000	1 520	1 910
HZC5020-5 HZF5025-3.5	F0					0.5	,	50,000	450,000	4.400	1.000
HZC5025-3.5	50	25	7.1438	51.5	44.3	3.5	I	58 900	152 000	1 100	1 390
HZF5025-5 HZC5025-5			7.1.100	01.0		5	I	80 100	216 000	1 540	1 940
HZF5030-3.5		30	7.1438	51.5	44.3	3.5	I	58 900	152 000	1 100	1 390
HZC5030-3.5					5		_				
HZF5520-3.5 HZF5520-5		20	6.35	56	49.6	3.5 5	I II	51 600 70 200	145 000 208 000	1 150 1 630	1 450 2 050
HZF5520-5 HZF5525-3.5	55					3.5	I	62 600	165 000	1 190	1 560
HZF5525-5.5	55	25	7.1438	56.5	49.3	5.5	I	85 000	238 000	1 680	2 120
HZF5530-3.5		30	7.1438	56.5	49.3	3.5	I	62 600	165 000	1 190	1 560

Rigidity listed under the column 5%Ca is the value when a 5% of basic dynamic load rating is applied as the preload. Similarly, those listed under the column 10%Ca means a 10% of basic dynamic load rating is applied.

Nut model I (offset preload)


Nut model I (offset preload)


Unit: mm

				nut dimens	ions				Max. feeding
Nut entire	Nut dia.	Flange dia.	Flange	Nut length	Bolt I	nole demen	sions	Bolt hole	speed
length L	D	A	width <i>B</i>	F	X	l Y	<i>z</i>	PCD W	(m/min)
	78	120					_	98	60
134	71	113	18	116	11	17.5	11	91	44
101	94	136	10	100	11	17.5	11	114	75
121	78	120	18	103	11	17.5	11	98	56
134	79	121	18	116	11	17.5	11	99	54
134	76	118	10	110	111	17.5	11	96	40
121	96	138		103				116	67
	82	124	18	100	11	17.5	11	102	50
161	96	138		143		.,		116	67
	82	124						102	50
134	82	124	18	116	11	17.5	11	102	48
187		128	22	165	14	20	13	104	
122	98	140		104				118	60
	98 98	130	18	144	11	17.5	11	108	44
162	98 88	140 130						118 108	60 44
	101	143						121	75
141	92	134	18	123	11	17.5	11	112	56
	101	143						121	54
122	95	137		104				115	40
	101	143	18		11	17.5	11	121	54
162	95	137		144				115	40
	103	145						123	67
141	98	140	4.0	123		47.5		118	50
101	103	145	18	470	11	17.5	11	123	67
191	98	140		173				118	50
150	103	145	18	1.41	11	17.5	11	123	81
159	98	140	18	141	11	17.5	11	118	60
122	103	145	18	104	11	17.5	11	123	49
162	103	140	10	144	- 11	17.5	11	120	43
141	105	147	18	123	11	17.5	11	125	61
191				173					
159	105	147	18	141	11	17.5	11	125	73

B479 B480

Nut model II (double nut spacer, preload)
(the figure indicates use of double start threads)

		m	

Unit:										Unit: mm	
Nut entire length L	Nut <i>D</i>	dia.	Flange dia. A		Nut dimen: Nut length		В ₁	olt hole siz	ze Z	Bolt hele PCD W	Max. feeding speed (m/min)
191	94 78	76 60	136 120	18	77	5	11	17.5	11	114 98	75 56
228.5	98 86	80 68	140 128	18	91	13.5	11	17.5	11	118 106	84 63
248	98 86	80 68	140 128	18	104	8	11	17.5	11	118 106	101 75
265	96 82	78 64	142 128	22	109	11	14	20	13	118 106	108 80
200	96	78	138	18	83	4	11	17.5	11	116	120
228.5	101 92	83 74	143 134	18	91	13.5	11	17.5	11	121 112	75 56
248	101 92	83 74	143 134	18	104	8	11	17.5	11	121 112	90 67
266	98 88	80 70	144 134	22	109	11	14	20	13	120 110	96 71
200	98	80	140	18	83	4	11	17.5	11	118	108
249	103 98	85 80	145 140	18	104	8	11	17.5	11	123 118	81 60
266	101 95	83 77	147 141	22	109	11	14	20	13	123 117	86 64
249	105	87	147	18	104	8	11	17.5	11	125	73
266	103	85	149	22	109	11	14	20	13	125	78

	Shaft	Lood	Ball dia.	Ball	Root	Effective	Nut		rating (N)		rigidity
Model No.	dia.	Lead	Dall Gla.	circle dia.	dia.	turns of	model	Dynamic	Static		/µm)
	d	l	D_{w}	d _m	d,	balls		$C_{\scriptscriptstyle a}$	C_{oa}	5% <i>C</i> 。	10% <i>C</i> _a
HDF3620-5	36	20	6.35	37	30.6	5	ш	59 800	138 000	1 160	1 460
HDC3620-5	30	20	0.55	37	30.0	5	ш	39 800	130 000	1 100	1 400
HDF4025-5		25	7.1438	41.5	34.3	5	ш	74 000	175 000	1 320	1 660
HDC4025-5		25	7.1430	41.5	34.3	5	ш	74 000	175 000	1 320	1 000
HDF4030-5		30	7.1438	41.5	34.3	5	ш	74 000	175 000	1 320	1 660
HDC4030-5	40	30	7.1430	41.5	34.3	5	ш	74 000	175 000	1 320	1 000
HDF4032-7.5		32	6.35	41	34.6	7.5	π	88 700	230 000	1 920	2 420
HDC4032-7.5		32	0.33	41	34.0	7.5	ш	00 700	230 000	1 920	2 420
HDF4036-4.5		36	6.35	41	34.6	4.5	II	57 200	138 000	1 170	1 480
HDF4525-5		25	7.1438	46.5	39.3	5	ш	77 200	197 000	1 430	1 800
HDC4525-5		25	7.1430	40.5	39.3	5	ш	77 200	197 000	1 430	1 000
HDF4530-5		30	7 1 400	46.5	39.3	_	ш	77 200	197 000	1 430	1 800
HDC4530-5	45	30	7.1438	40.5	39.3	5	ш	77 200	197 000	1 430	1 800
HDF4532-7.5		32	6.35	46	39.6	7.5	ш	91 700	256 000	2 090	2 630
HDC4532-7.5		32	0.35	40	39.0	7.5	ш	91700	256 000	2 090	2 630
HDF4536-4.5		36	6.35	46	39.6	4.5	II	59 100	155 000	1 280	1 620
HDF5030-5		20	7 1 400	F1 F	440	_	т.	00.100	010 000	1 5 40	1.040
HDC5030-5		30	7.1438	51.5	44.3	5	Ш	80 100	216 000	1 540	1 940
HDF5032-7.5	50	-00	0.05		44.0	7.5		07.400	000 000	0.070	0.000
HDC5032-7.5		32	6.35	51	44.6	7.5	Ш	97 100	286 000	2 270	2 860
HDF5530-5		30	7.1438	56.5	49.3	5	II	85 000	238 000	1 680	2 120
HDF5532-7.5	55	32	6.35	56	49.6	7.5	II	99 500	313 000	2 420	3 050

Notes: 1. Ball screws of 32 or 36 mm lead have triple start threads. Others have double start threads.

B481 B482

Rigidity listed under the column 5%Ca is the value when a 5% of basic dynamic load rating is applied as the preload. Similarly, those listed under the column 10%Ca means a 10% of basic dynamic load rating is applied.

B-3-3.3 BSL™ Type for Miniature Lathes

1. Features

Prompt delivery

Screw shaft configuration and ball nut shape are standardized for prompt delivery.

High speed and low noise

Adoption of end-deflector recirculation system realized high-speed operation with low noise.

Excellent dust resistance

Thin plastic seal and specially designed ball grooves prevent the entry of foreign matters.

2. Specifications

(1) Ball recirculation system

End-deflector recirculation system has features of high-speed, low-noise operation and compact ball nut. The structure of recirculation system is shown in Fig.1.

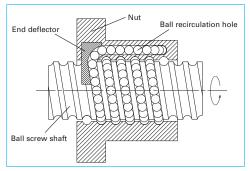


Fig. 1 Structure of end-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	C5
Axial play	0 mm (preloaded)

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value: 180 000 or less Criterion of maximum rotational speed

: 4 000 min⁻¹

Note: Please also review the critical speed.

See "Technical Description: Permissible
Rotational Speed" (page B47) for details.

(4) Options

Optional NSK K1 lubrication unit, molded from resin and impregnated with lubrication oil, supplies fresh oil onto ball rolling surface, ensuring long-term, maintenance-free operation. Please consult NSK when using NSK K1.

3. Design Precautions

When designing the screw shaft end, one end of the shaft must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

- · Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

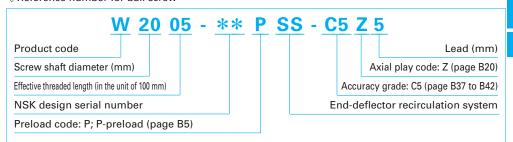
Special bearings which have higher-load carrying capacity are available.

For general precautions regarding ball screws, refer to "Design Precautions" (page B80) and "Handling Precautions" (page B99).

4. Product categories

The BSL type has a model as follows.

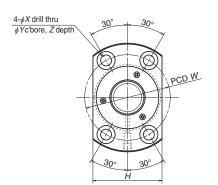
Table 2 BSL type product categories

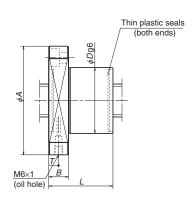

Nut model	Shape	Flange shape	Preload system
BSL		Circular II	P-Preload (Slight preload)

5. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".

♦ Reference number for ball screw




6. Handling Precautions

Maximum operating temperature: 80°C

If using NSK K1, operating temperature should not exceed 50°C. Refer to "Designing Precautions" (page B80).

B483 B484

	1																	
						Basic load	I rating (N)	Ball nut dimensions										
	Shaft	Lead	Ball dia.			Dynamic	Static	Ext	erna	dim	ensi	ons	Bolt	hole c	limer	nsions	Oil hole	
Model No.	dia.			circle dia.	dia.													
	d	l	$D_{\rm w}$	d _m	d,	C _a	$C_{\scriptscriptstyle 0a}$	D	Α	Н	В	L	W	X	Y	Ζ	T	d_1
BSL2005	20	5	3.175	20.5	17.2	8 920	16 300	36	63	38	10	37	49	0.0	11	6.5	6.5	15
BSL2006	20	6	3.969	20.5	16.4	11 900	20 000	40	65	42	12	45	51	6.6			6.7	
BSL2505		5	3.175	25.5	22.2	9 900	20 500	40	65	42		38	51			4 05	7.1	
BSL2506	25	6	3.969	25.5	21.4	13 300	25 200	43	69	45	12	44	55	6.6	11		6.3	
BSL2508	25	8	4.762	25.5	20.5	17 100	30 100	46	72	48	12	55	58	0.0	11	6.5	6.5	20
BSL2510		10	4.762	25.5	20.5	17 100	30 100	46	72	48		65	58	1			6	
BSL3210	22	10	6.35	33	26.4	27 700	51 300	61	93	63	18	68	76	9	14	8.5	10	25
BSL3212	32	12	0.35	33	20.4	27 700	51 300	01	93	03	18	77	/6	9	14	0.5	10	25

Notes: 1. The right turn screw is the standard. Please consult NSK for left turn screw. 2. Shaft dimensions are for reference.

M	K D D D D D D D D D D D D D D D D D D D	ρφ • • • • • • • • • • • • • • • • • • •	7 10 10 10 10 10 10 10 10 10 10 10 10 10
(L ₃) (L ₂)	Min. <i>L</i> ₅	Max. L ₁	L9 +0.1 (L8)
-	Max. L		-

Unit: mm

	the state of the s																		
	Shaft configuration and dimensions (reference)																		
						SI	naft (dime	nsio	n						Exclusive bear		1	Permissible
d_2	d ₃	$d_{\scriptscriptstyle 4}$	L (max.)	L₁ (max.)	L ₂	L ₃	<i>L</i> ₄ (min.)	L₅ (min.)	L ₆	L ₇	L ₈	L_9	L ₁₀	К	М	Bearing reference number	F	dynamic load rating <i>C</i> _a	axial load (N)
12	15	14.3 0.11	500	500	66	20	3	20 21	8	9	14	10.15	1.15	17	M15×1.0	15TAC47B	47	21 900	26 600
							3	27											
15	20	19 ^{-0.21}	700	700	71	27	4	28	10	14	19	15.35	1.35	22	M20×1.0	20TAC62B	62	20 EUU	40 500
15	20	13	700	700	′ '	21	5	29	10	14	13	10.00	1.55	22	1012021.0	ZUTACUZD	02	20 300	40 300
							5	29											
20	25	23.9 0.21	1 000	800	71	33	6	33	12	15	20	16.35	1.35	27	M25×1.5	25TAC62B	62	28 500	40 500
20	25	20.0	. 000	000	/	00	7	34	12	15	20	10.00	1.55	21	10120×1.0	201/40020	02	20 300	- 0 300

3. Shaft length L_1 and shaft entire length L are the maximum length. When L becomes the same length as the L_1 , the thread is all screw specification.

B-3-3.4.1 HTF-SRC Type for High-Load Drives

1. Features

High-speed operation and low noise

The SRC recirculation system contributes to more than twice the feed speed (d·n value: 140 000 and 160 000) and the noise level of less than 8 to 10 dB (half to 1/3 of noise) compared with the HTF type.

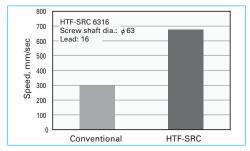


Fig. 1 Feed speed comparison

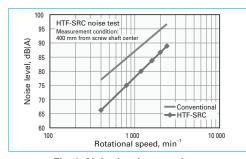


Fig. 2 Noise level comparison

2. Specifications

(1) Ball recirculation system

The SRC recirculation system picks up balls in the direction they are moving, and thus contributed to high-speed, low-noise operation. Structure of the recirculation system is as follows.

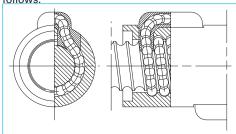


Fig. 3 Structure of SRC recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	Ct7
Axial play	S,0.020 mm or less; N,0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Table 2 Allowable d⋅n value and the criterion of maximum rotational speed

Lead	14, 16 mm	20, 25 mm				
		140 000 or less				
Criterion of maximur rotational speed	4 225 min ⁻¹					

d·n value: shaft dia. d [mm] x rotational speed n [min-1]

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Ball retaining piece NSK S1[™]

The NSK S1, resin retainers between the balls, significantly extend ball screw durability to the moment load.

(5) Other

Please consult NSK for special requests, such as the addition of a recirculation circuit to increase the load capacity, or the arrangement of all recirculation circuits on the same phase of ball nut circumference.

3. Design Precautions

The HTF-SRC type is designed to distribute the load uniformly to the load balls for high-load drive mechanism. We recommend installing the ball screws in the way shown below for the full use of this characteristic.

In addition, we will make full analysis when you use the HTF-SRC type under extreme conditions such as application of extremely high load or operating in short stroke. Contact NSK about operating conditions (See page B505).

When designing the screw shaft end, one end

of the screw shaft must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

For general precautions regarding ball screws, refer to "Design Precautions" (page B80) and "Handling Precautions" (page B99).

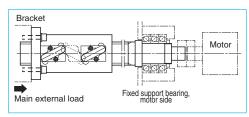


Fig. 4 Recommended installing direction of high-load drive ball screw

4. Product categories

The HTF-SRC type has a model as follows.

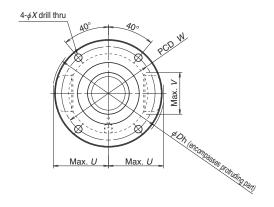
Table 3 HTF-SRC type product categories

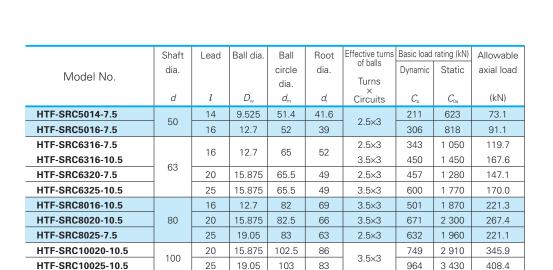
Nut model	Shape	Flange shape	Preload system
HTF-SRC		Flanged Circular I	Non-preload Slight axial play

5. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".

○Reference number for ball screw




6. Handling Precautions

Maximum operating temperature: 70°C (at outside diameter of ball nut)

Please consult NSK in the case of a short stroke operation less than or equal to four times the length of the ball screw lead.

Notes: 1. The right hand screw is the standard. For specifications on left hand screws, contact NSK.

20

25

2. The ball nut length with no seals is shorter by M than that length of a ball nut with seals.

15.875

19.05

3. Please consult NSK if load exceeds the allowable axial load.

120

HTF-SRC12020-7.5

HTF-SRC12025-10.5

4. The allowable axial load is determined in accordance with the mounting conditions of ball screws recommended by NSK (See page B488). If your mounting conditions differ from those provided, please consult NSK.

122.5

123

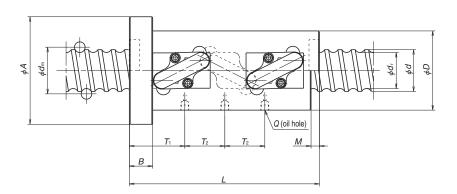
106

103

 2.5×3

 3.5×3

621


1 040

2 550

4 200

304.6

498.0

		m

					Ball	nut dim	ensions						Max.	
Nut	Nut dia.	Flange	Flange	Seal	Bolt hole	Bolt hole	Protruding tube dimensions			Oil hole	Oil hole positio		feeding	
length		dia.	width	width	PCD	size	Protrudir	ig tube dir	nensions		Oil noie	position	speed	=
L	D	Α	В	М	W	X	U	V	Dh	Q	T_i	T_2	(mm/sec)	5
202	80	114	28	10	97	9	54.5	46	111	M6×1	69	42	750	June-1
228	95	129	28	10	112	9	66	50	134	Rc1/8	74.5	48	860	
228	105	100	20	10	100	_	70.5		1.40		74.5	48	000	
276	105	139	28	10	122	9	72.5	50	148	D-1/0	74.5	64	680	
279	117	157	32	12	137	11	80	62	163	Rc1/8	90	60	740	
405	117	157	32	12	137	11	81.5	61	167		101.75	100	930	
278	120	154	32	10	137	9	80	60	165		78.5	64	540	
339	130	170	32	12	150	11	88	64	180	Rc1/8	90	80	590	
347	145	185	40	17	165	11	99.5	73	202		111.75	75	730	
339	145	185	32	12	165	11	97	78	199	D-1/0	90	80	470	
422	159	199	40	17	179	11	108	79	220	Rc1/8	111.75	100	590	
287	170	010	40	12	100	11	109.5	88	229	D-1/0	98	60	390	
421	173	213	40	17	193	11	116	92	238	Rc1/8	111.25	100	490	

B489 B490

B-3-3.4.2 HTF-SRD Type for High-Load Drives

This product is being applied for a patent.

1. Features

• High-speed operation and low noise Used with end deflectors, HTF-SRD type ball screws achieve the maximum feed speed of 1 600 mm/s. The ball nut body surface is completely round, thus enabling well balanced ball nut rotation.

Double start thread structure which has more recirculation circuits, and large diameter balls contribute to have high load carrying capacity.

Low noise and compact design

End deflector system using a ball scooping mechanism in the direction of screw spiral offers smoother ball recirculation system, thus contributing to less than half the noise level compared with existing ball screws equipped with a return tube.

Compact, high-performance seal is available. Nut outside diameter is compact compare with the return tube recirculation system.

Also, compact, thin plastic seal is available. Nut outside diameter is compact compare with the return tube recirculation system.

2. Specifications

(1) Ball recirculation system

End-deflector recirculation system has features of high-speed, low-noise operation, and compact ball nut. The structure of recirculation parts are as follows.

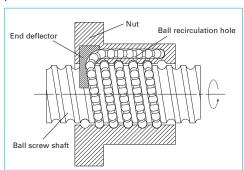


Fig. 1 Structure of End-deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	Ct7
Axial play	S, 0.020 mm or less; N, 0.050 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Table 2 Allowable d·n value and the criterion of maximum rotational speed

Allowable d∙n value	120 000 or less
Criterion of maximum rotational speed	2 400 min ⁻¹

d n value: shaft dia. d [mm] x rotational speed n [min-1]

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Ball retaining piece NSK S1[™]

The NSK S1, resin retainers between the balls, significantly extend ball screw durability to the moment load.

3. Design Precautions

The HTF-SRD type is designed to distribute the load uniformly to the load balls for high-load drive mechanism. We recommend installing the ball screws in the way shown below for the full use of this characteristic.

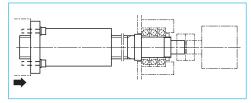


Fig. 2 Recommended installing direction of high-load drives ball screw

In addition, we will make full analysis when you use the HTF-SRD type under extreme conditions such as application of extremely high load or operating in short stroke. Contact NSK about operating conditions (see page B505).

When designing the screw shaft end, one end

of the screw shaft must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

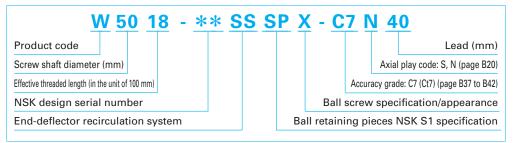
For general precautions regarding ball screws, refer to "Design Precautions" (page B80) and

"Handling Precautions" (page B99).

4. Product categories

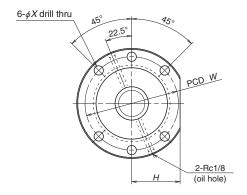
The HTF-SRD type has a model as follows.

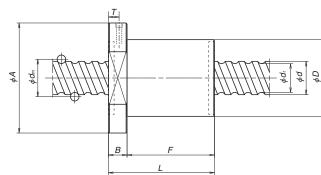
Table 3 HTF-SRD type product categories


Nut mode	Shape	Flange shape	Preload system
HTF-SRD		Circular Ⅲ	Non-preload Slight axial play

5. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".


♦ Reference number for ball screw



6. Handling Precautions

Maximum operating temperature: 70°C (at outside diameter of ball nut)
Please consult NSK in the case of a short stroke

operation less than or equal to four times the length of the ball screw lead.

	Shaft dia.	Lead	Ball dia.	Ball	Root	C#+:	Basic load	rating (kN)	Allowable
Model No.				circle dia.	dia.	Effective turns	Dynamic	Static	axial load
	d	l	$D_{\rm w}$	d _m	d _r	of balls	C _a	$C_{\scriptscriptstyle 0a}$	(kN)
HTF-SRD5040-6E	50	40	12.7	52	39	6	195	491	67.6
HTF-SRD5040-8E	50	40	12.7	52	39	8	255	679	92
HTF-SRD6332-4E		32				4	233	590	72.6
HTF-SRD6340-6E	63	40	15.875	65.5	49	6	291	768	106.3
HTF-SRD6340-8E		40				8	381	1 060	144.7
HTF-SRD8050-6E	80	50	19.05	83	63	6	401	1 180	163.7
HTF-SRD8050-8E	80	50	19.05	83	63	8	526	1 630	224.1
HTF-SRD10060-6E	100	60	19.05	103	00	6	467	1 490	211.5
HTF-SRD10060-8E	100	00	19.05	103	83	8	612	2 060	288
HTF-SRD12070-6E	120	70	19.05	123	103	6	504	1 810	259.4
HTF-SRD12070-8E	120	70	19.05	123	103	8	660	2 520	352

Notes: 1. The right hand screw is the standard. For specifications on left hand screws, contact NSK.

2. Please consult NSK if load exceeds the allowable axial load.

3. The allowable axial load is determined in accordance with the mounting conditions of ball screws recommended by NSK (See page B491). If your mounting conditions differ from those provided, please consult NSK.

1			<u></u>	
A D D D D D D D D D D D D D D D D D D D	4		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	φ _D
ļ	В	F L		v

Unit: mm 🚾

			Bal	nut dimens	sions				Max.
Nut entire	Nut dia.	Flange	Notch	Flange	Nut	Bolt hole	Bolt hole	Oil hole	feeding
length		dia.	size	width	length	PCD	size	position	speed
L	D	Α	Н	В	F	W	Χ	T	(mm/sec)
159	115	165	72.5	28	131	140	14	16	1 600
199	115	105	/2.5	28	171	140	14	10	1 600
176		190	85		144	165	14		1 000
163	140	200	90	32	131	170	18	18	1 250
203		200	90		171	170	18		1 250
194	175	250	110	40	154	210	22	18	1 250
244	175	250	110	40	204	210	22	10	1 250
225	105	270	122	40	185	235	22	20	1 200
285	195	2/0	122	40	245	235	22	20	1 200
260	210	205	120	E0	210	250	22	25	1 160
330	210	285	130	50	280	250		25	1 160

B493 B494

B-3-3.4.3 HTF Type for High-Load Drives

This product is being applied for a patent.

1. Features

High load carrying capacity

Has an ideal design to bear heavy load. It significantly enhances load rating as well as maximum permissible load.

- Abundant diameter / lead combinations
 Twenty five types of shaft diameter/lead combinations are available. Please consult NSK when you require other combination.
- Respond to various shaft end configuration
 Additional ball screw shaft machining is not required. HTF type responds to various shaft ends that convey high torque.

HTF type can be used with: involute spline (JIS B 1603), straight sided spline (JIS B 1601), key seat, etc.

2. Specifications

(1) Ball recirculation system

Structure of recirculation system is shown in Fig. 1.

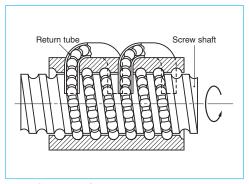


Fig. 1 Structure of return tube recirculation system

(2) Accuracy grade and axial play

The allowable standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

Accuracy grade	Ct7
Axial play	S, 0.020 mm or under; N, 0.050 mm or under

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below. For higher-speed operation, HTF-SRC type is recommended.

Table 2 Allowable d•n value and the criterion of maximum rotational speed

Lead	Ŀ	– 20 mm	25 mm	30 – 32 mm
Allowable	Standard specification	70 000 or less	70 000 or less	50 000 or less
d·n value	High-speed specification	10 0000 or less	-	-
Criterion of maximum	rotational speed		3 125 min ⁻¹	

d•n value: shaft dia. d [mm] × rotational speed n [min⁻¹]

Note: Please also review the critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) Ball retaining piece NSK S1[™]

The NSK S1, resin retainers between the balls, significantly extend ball screw durability to the moment load.

(5) Other

Please consult NSK for special requests, such as the addition of a recirculation circuit to increase the load capacity, or the arrangement of all recirculation circuits on the same phase of ball nut circumference.

3. Design precautions

For designing shaft end configuration, you should take into account that the HTF type ball screws are dedicated to high-load drives.

The HTF type is designed to distribute the load uniformly to the load balls for high load drive mechanism.

We recommend installing the ball screws in the way shown in Fig. 2 for the full use of this characteristic. In addition, we will make full analysis when you use the HTF type under extreme conditions such as application of extremely high load or operating in short stroke. Contact NSK about operating conditions. (See page B505).

For general precautions regarding ball screws, refer to "Design Precautions" (page B80) and "Handling Precautions" (page B99).

4. Product categories

The HTF type has a model as follows.

Table 3 HTF type product categories

Nut model	Shape	Flange shape	Preload system
HTF		Flanged Circular I	Non-preloaded Slight axial play

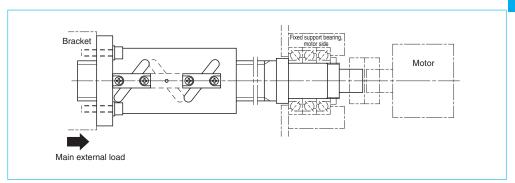
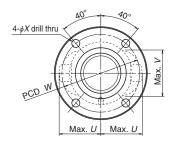


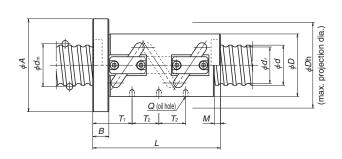
Fig. 2 Recommended installing direction of ball screws for high-load drives

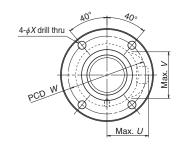
5. Structure of model number and reference number

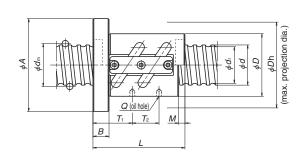
A structure of "Model number" and "Reference number for ball screw" are as follows.

♦ Model number


♦ Reference number for ball screw




6. Handling precautions


Please consult NSK in the case of a short stroke operation less than or equal to four times the length of the ball screw lead.

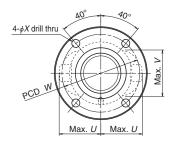
Maximum operating temperature: 70°C (at outside diameter of ball nut)

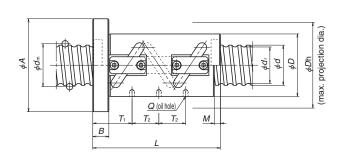
Nut model I

	CI 44 - J'	1 2	D-II-II	Dall start	D+ -i'	Fifty and the second		Rasic load	rating (kN)	
Model No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	Effective turns of balls Turns	Nut	Dynamic	Static	Permissible axial load
Wiodol IVO.	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle m m}$	d _r	× Circuits	model	C _a	C_{0a}	(kN)
HTF3210-5	32	10	7.144	33	25.6	2.5×2	I	71	169	20.3
HTF3610-5	-00	10	7.144	37	29.6	0.5.0		76.9	191	23.4
HTF3612-5	36	12	7.938	37.25	29	2.5×2	I	90	228	28.3
HTF4010-7.5	40	10	7.144	41	33.6	25.0	-	120	344	39.6
HTF4012-7.5	40	12	7.938	41.25	33	2.5×3	I	147	422	48
HTF4510-7.5	45	10	7.144	46	38.6	0.5.0	-	127	386	45.3
HTF4512-7.5	45	12	7.938	46.25	38	2.5×3	I	156	473	55
HTF5010-7.5		10	7.144	51	43.6			133	435	51
HTF5012-7.5		12	7.938	51.25	43	0.5.0	-	164	525	62
HTF5014-7.5	50	14	9.525	51.5	41.7	2.5×3	I	211	623	73.1
HTF5016-7.5		16	12.700	52	39			306	818	91.1
HTF5510-7.5		10	7.144	56	48.6			139	477	55.7
HTF5512-7.5		12	7.938	56.25	48	0.5.0		171	586	69.1
HTF5514-7.5	55	14	9.525	56.5	46.7	2.5×3	I	216	696	81.2
HTF5516-7.5		16	12.700	57	44			319	922	101.9
HTF6312-7.5		12	7.938	64.25	56	2.5×3		181	668	80.3
HTF6314-7.5		14	9.525	64.5	54.7	2.5×3		233	800	93.5
HTF6316-7.5	63	4.0	40.700	05	F0	2.5×3	i×3 I	343	1 050	119.7
HTF6316-10.5		16	12.700	65	52	3.5×3		450	1 450	167.6
HTF6320-7.5		20	15.875	66	49	2.5×3		457	1 320	147.3

Notes: 1. The right hand screw is the standard. "L" is added to the end of the model code for the left turn screw.

Nut model I

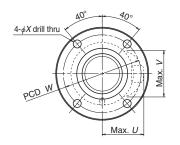

Unit: mm

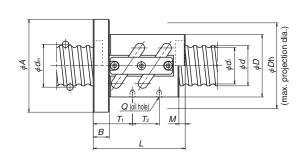

NI .																	
NI .						nut dim	ensions						Max. feeding				
Nut length a	Nut	Flange	Flange width	Seal dimensions	Bolt hole PCD	Bolt hole size	Tube p	orojectin	g size	Oil hole	Oil hole	oositions	speed				
L	D	А	В	M	W	X	U	V	Dh	Q	T_1	T_2	(mm/sec)				
103	58	92	18	7	75	9	40.5	42	82	M6×1	36.5	30	520				
103	62	96	18	7	79	9	43	45	87	M6×1	36.5	30	460				
123	66	100	22	8	83	9	46.5	46	94	IVIOXI	44	36	550				
143	66	100	18	7	83	9	45	48	91	M6×1	46.5	30	410				
171	70	104	22	8	87	9	47.5	50	96	IVIOXI	56	36	500				
143	70	104	18	7	87	9	47	52	95	N 4 C 1	46.5	30	370				
171	72	106	22	8	89	9	49.5	54	100	M6×1	56	36	440				
143	75	109	18	7	92		49	57	99	M6×1	46.5	30	330				
171	77	111	22	8	94	9	52	59	105	M6×1	56	36	400				
200	80	114	28	10	97	9	55.5	61	112	M6×1	66.5	42	460				
223	95	129	28	10	112		68	66	137	Rc1/8	73	48	530				
143	80	114	18	7	97		51.5	62	104	M6×1	46.5	30	300				
171	82	116	22	8	99	9	54.5	63	110	M6×1	56	36	360				
200	85	119	28	10	102	9	57.5	65	116	M6×1	66.5	42	420				
223	99	133	28	10	116		70	70	141	Rc1/8	73	48	480				
171	92	126	22	8	109	9	58.5	70	118	M6×1	56	36	310				
200	94	128	28	10	111	9	61.5	72	124	M6×1	66.5	42	370				
223	105	139	28	10	122	9	72.5	76	146	Rc1/8	73	48	420				
271	105	138	20	10	122	9	72.0	70	140	nc 1/8	/3	64	420				
273	117	157	32	12	137	11	83.5	81	168	Rc1/8	88	60	520				

- 3. Please consult NSK if load exceeds the allowable axial load.
- 4. The allowable axial load is determined in accordance with the mounting conditions of ball screws recommended by NSK (see page B496). If your mounting conditions differ from those provided, please consult NSK.

B499 B500

^{2.} If there is no seal, the nut length is shorter by the lengths of "M" than those with a seal.





	Cl f+ -1'	11	Dall al:	Dall start	D+ -1'	ги		Basic load	rating (KNI)	
Model No.	Shaft dia.	Lead	Ball dia.	Ball circle dia.	Root dia.	of balls Turns	Nut	Dynamic	Static	Permissible axial load
Model No.	d	l	$D_{\rm w}$	$d_{\rm m}$	d,	× Circuits	model	C _a	C_{0a}	(kN)
HTF8014-7.5		14	9.525	81.5	71.7	2.5×3		261	1 020	121.9
HTF8016-7.5		16	10.7	00	-00	2.5×3		382	1 340	159
HTF8016-10.5	00	16	12.7	82	69	3.5×3	_	501	1 870	221.3
HTF8020-7.5	80	00	45.075	00	00	2.5×3	I	511	1 690	192.6
HTF8020-10.5		20	15.875	83	66	3.5×3		670	2 300	272.4
HTF8025-7.5		25	19.05	84	64	2.5×3		663	2 020	228.3
HTF10016-7.5		16	12.7	102	89	2.5×3		423	1 710	202.3
HTF10020-7.5	100	20	15.875	103	86	2.5×3	I	571	2 140	248.6
HTF10025-7.5	100	O.F.	10.05	104	84	2.5×3	1	734	2 550	293.2
HTF10025-10.5		25	19.05	104	84	3.5×3		962	3 490	409.1
HTF12016-7.5		16	12.7	122	109	2.5×3		457	2 050	248.9
HTF12020-7.5	120	20	15.875	123	106	2.5×3	I	620	2 550	304.7
HTF12025-7.5	120	25	19.05	124	104	2.5×3	1	792	3 080	358.2
HTF12025-10.5		25	19.05	124	104	3.5×3		1 040	4 200	505.7
HTF14020-7.5		20	15.875	143	126			663	3 000	360.9
HTF14025-7.5	140	25	19.05	144	124	2 5.42		842	3 610	423.1
HTF14030-7.5] 140	30	22.225	144	121	2.5×3	I	1 050	4 110	487.1
HTF14032-7.5		32	25.4	144	118			1 270	4 740	549.3
HTF16025-7.5		25	19.05		144			909	4 140	495.3
HTF16030-7.5	160	30	22.225	164	141	2.5×3	I	1 120	4 760	564.3
HTF16032-7.5		32	25.4		138			1 330	5 370	636
HTF20030-7.5	200	30	22.225	204	181	2 5.42	I	1 240	5 960	718.8
HTF20032-7.5	200	32	25.4	204	178	2.5×3	1	1 470	6 840	809.4

Notes: 1. The right hand screw is the standard. "L" is added to the end of the model code for the left turn screw.

Nut model I

											Unit: mm		
						nut dim	ensions						Max. feeding
Nut	Nut appearance	Flange	Flange width	Seal dimensions	Bolt hole PCD	Bolt hole size	Tube p	orojectin	g size	Oil hole	Oil hole	oositions	speed
L	D	A	B	M	W	X	U	V	Dh	Q	<i>T</i> ,	T_2	(mm/sec)
200	116	150	28	10	133	9	72	87	146	M6×1	66.5	42	290
227 275	120	154	32	10	137	9	80	92	161	Rc1/8	77	48 64	330
273 333	130	170	32	12	150	11	89.5	96	181	Rc1/8	88	60 80	410
338	145	185	40	17	165	11	102	100	206	Rc1/8	109.25	75	360
227	145	185	32	10	165		91	109	184		77	48	260
273	145	185	32	12	165	11	97.5	114	196	D-1/0	88	60	330
338 413	159	199	40	17	179	11	108.5	118	219	Rc1/8	109.25	75 100	290
227			32	10			104	126	210		77	48	220
281	1	040	40	12	400		111	131	223	D 4/0	96	60	270
338 413	173	213	40	17	193	11	116	135	233	Rc1/8	109.25	75 100	240
281	204	250	40	12	226	14	122.5	148	248		96	60	230
338	204	250	40	17	226	14	127.5	153	258	De1/0	109.25	75	200
411	222	282	50	22	252	18	139	160	281	Rc1/8	134.5	90	170
465	222	296	70	22	259	22	148	163	299		166.5	96	190
338		280	40	17	256	14	138	173	279		109.25	75	180
411	234	294	50	22	264	18	148	177	299	Rc1/8	134.5	90	150
465		308	70	22	271	22	152	181	307		166.5	96	160
411	290	350	50	22	320	18	178	212	359	Rc1/8	134.5	90	120
465	290	364	70	22	327	22	182	215	367	UC 1/8	166.5	96	130

3. Please consult NSK if load exceeds the allowable axial load.

B501 B502

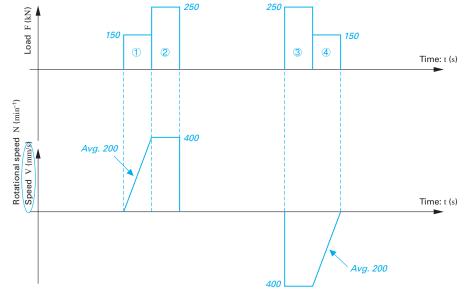
^{2.} If there is no seal, the nut length is shorter by the lengths of "M" than those with a seal

^{4.} The allowable axial load is determined in accordance with the mounting conditions of ball screws recommended by NSK (see page B496). If your mounting conditions differ from those provided, please consult NSK.

NSK Technical Data Sheet for NSK High-Load Drive Ball Screws

Made-to-orde	r ball screw		J	
Company nam	ie: [Date:		NSK sales office
Section:	F	Person in charge:		
Address:		-		[7]
Name of mac	hine*1:	on molding machine; 30-ton ca	pacity Application*	*2 : Clamping axis
Drawing/roug	h sketch attached?:	☐ Yes ☑ No		
		ine in case of injection molding in machine, please indicate the a		axis and clamping axis)
1. Use co				
0	✓ Shaft rotation — Mov		Danier of	☐ Smooth operation without impact
Operating conditions	☐ Shaft rotation — Mov	Back drive operation	Degree of vibration/impact	✓ Normal operation
	☐ Nut rotation — Movir		. ,	Operation associated with impact or vibration
Direction of load*3	☐ C-C ☑ T-T ☐ (Refer to figures below	T-C C-T Other v.)	Mounting orientation	✓ Horizontal ✓ Vertical (Indicate the direction of gravity.)
Lubricant	☐ Oil Brand na Maker:	ame: High-load grease with an extreme pressure additive	How to replenish	✓ Grease gun ☐ Automatic
Request for oil hole	✓ NSK recommended	d ☐ Your request	lubricant	(cm³/ cycles)
Necessity of seals	✓Yes	□No	NSK S1 necessary?	✓ NSK recommended ☐ Not necessary
Environment	Temperature (40 deg)	Particles / ☐ Yes (Size of particle.	ticle : a) -0.1, b) over 0.1-0.	3, c) over 0.3- , d) Ingredient:)
Surface treatment	✓ Not required □ Lo	ow-temperature chrome plati	ng 🗌 Fluoride low-te	emperature chrome plating
Quantity in mass-production	/Month	/Year /Lot	Quantity used per machine	1 pcs./machine
*3 Please spe	cify loading direction code	on the figures below. (Shaft fixe	ed: , Main load: <	_)
(NSK reco	-C mmended) (T-T NSK recommended)	T-C	C-T

2. Specifications


Shaft diameter	φ140 mm	Lead	<i>32</i> mm	Accuracy grade	Ct7	Axial play	0.050 or less mm max.
Nut model No.	HTF 14032-7.5-S1	Effective turns of balls	2.5 × 2	Direction of turn	right	Thread length /Overall shaft length	1000 / 1500

Special note / Requests

Please calculate the life as a continuous operation based on "3. Load chart".

NSK Technical Data Sheet for NSK High-Load Drive Ball Screws

3. Load chart

	Axial load*	Rotational speed	or Average speed	Time	Stroke	Remarks
	F (kN)	N (min ⁻¹)	V (mm/s)	t (s)	St (mm)	
1	150		200	0. 5	100	
2	250		400	0. 5	200	
3	250		400	0. 5	200	
4	150		200	0. 5	100	
5				Total: 2.0	Total: 600	
6			1 1 1			
7						
8						
9			1 1 1			
10						

Stroke in normal use: Cycle time:

(mm) 300 2. 0 (s)

Maximum stroke: (mm)

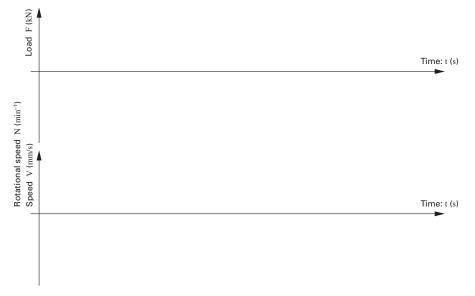
Required life: 2500 (✓h or ☐ cycles) *If you use multiple ball screws in an axis, fill out the axial load per ball screw.

4. Plan to conduct the endurance test of the ball screw?

Endurance of the ball screw

- (1) Mounting accuracy, load conditions, and lubricating conditions are the main factors affecting the ball screw fatigue life. Therefore, we recommend evaluating the influence of those factors on actual use of your machines.
- (2) A temperature rise caused by operational and environmental conditions may reduce the effectiveness of lubricant.

B503 B504


NSK Technical Data Sheet for NSK High-Load Drive Ball Screws

N	lad	le-to-	·ord	er l	ball	screw
---	-----	--------	------	------	------	-------

Company nam	e:	Da	ite:				L	NSK sal	es office	
Section: Person in charge:						_				
Address:										
Name of macl	nine*1 :					Applica	ation*2 :			
Drawing/roug	h sketch attach	ned?:	Yes [No						
*1 Please s	pecify capacity of	the machin	e in case	of injecti	on molding r	nachine or press.				
*2 If the ap			machine	, please ii	ndicate the a	xis. (Examples: inj	jection ax	is and clamp	oing axis)	
i. Use co	☐ Shaft rotatio		a put					70 11		
Operating	☐ Shaft rotatio				al operation	Degree of			peration without im	pact
conditions	☐ Nut rotation	— Moving	nut		rive operation	vibration/imp	Jact	Normal		
	☐ Nut rotation			Oscil					sociated with impact or vi	bration
Direction of load*3	C-C T-		_	C-T	Other	Mounting orientation		☐ Horizont		
OI IOUU		Brand nam			١			vertical (ind	icate the direction of gra	ivity.)
Lubricant		лани нан Maker:	ie.)	How to reple	nish	☐ Grease g	gun 🗌 Autom	natic
Request						lubricant	111311	_ drease g	guii 🗀 Autoii	iatic
for oil hole	☐ NSK recom	mended	∐ Yo	ur reque	est			(cm ³ / cycles)		ycles)
Necessity	□Yes			□No		NSK S1				
of seals						necessary?			ecessary	
Environment	Temperati (de	ure F	Particles			ticle : a) -0.1, b) ove	er 0.1-0.3,	c) over 0.3- ,	d) Ingredient:)
Surface	, 4	·9/		□ No	particle.					
treatment	□ Not required □ Low-temperature chrome plating □ Fluoride low-temperature chrome plating □ Other							Other		
Quantity in mass-production	/Mont	h	/Yea	r	/Lot	Quantity use per machine			pcs./ma	achine
						_			· ·	
*3 Please spe	cify loading direct	ion code on	the figu	res below	. (Shaft fixe	d:, Main load →□	: 🔷)			
										Ħ
				-					——————————————————————————————————————	
C-			T-1			T-C			C-T	
(NSK reco		(NS	SK recon	nmended)						
2. Specifi	cations								T	
Shaft diameter	φ mm	Lead		mm	Accuract grade	y	Axial p	lay	mm	max.
Nut model No.	-	Effective			Direction	n	Thread le	ength		
Nut moder No.		turns of balls	3		of turn		/Overall	shaft length	/	
Special note /	Requests									

NSK Technical Data Sheet for NSK High-Load Drive Ball Screws

3. Load chart

	Axial load*	Rotational speed	or Average speed	Time	Stroke	Remarks
	F (kN)	N (min ⁻¹)	V (mm/s)	t (s)	St (mm)	
1			1 1 1			
2			1			
3			i !			
4			1 1 1			
5			1			
6			1 1 1			
7			1			
8			1 1 1			
9			1			
10			: !			
Dynamic axial load (Max.)*:			(kN)	Static axial load (Max.)*(at 0 mm/s):		
Stroke in normal use:			(mm)	Maximum strok	(mm)	
Cycle time:			(s)	Required life:		(☐ h or ☐ cycles

4. Plan to conduct the endurance test of the ball screw?

*If you use multiple ball screws in an axis, fill out the axial load per ball screw.

Endurance of the ball screw

- (1) Mounting accuracy, load conditions, and lubricating conditions are the main factors affecting the ball screw fatigue life. Therefore, we recommend evaluating the influence of those factors on actual use of your machines.
- (2) A temperature rise caused by operational and environmental conditions may reduce the effectiveness of lubricant.

B505 B506

B-3-3.5 VSS Type for Contaminated Environments

1. Features

High dust-resistance

Specially profiled screw shaft grooves and high performance seals prevent the entry of fine contaminants. Reduces particle penetration rate to less than 1/15 of existing standard products.

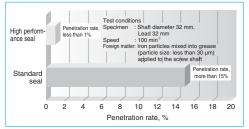


Fig. 1 Particle penetration rate

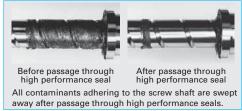


Fig. 2 Contamination before and after particle penetration test

Long life

High performance seals extend ball screw durability under severely contaminated environments with iron powder.

Extreme durability tests under contaminated environments show the durability of the VSS type extends more than four times longer than our existing type with a standard seal.

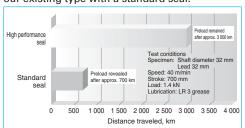


Fig. 3 Extreme durability test results using iron particles

High speed

For ultimate smoothness of ball recirculation, the internal ball recirculation system enables high-speed operation at a maximum of d $\cdot n$

150 000. Large lead specifications allow highspeeds of 150 m/min.

Low-noise

Reduces noise level by more than 6 dB compared with our conventional tube-type ball screws, thereby providing low-noise and good noise tone features.

Compact size

Ball nut external diameter is up to 25% smaller than our conventional models.

2. Specifications

(1) Ball recirculation system

End-deflector recirculation system has features of high-speed operation with low-noise, and compact ball nut. The structure of recirculation system is shown in **Fig. 4**.

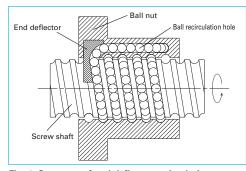


Fig. 4 Structure of end deflector recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Accuracy grade and axial play

	Accuracy grade	C5
	/\vial nlav	Z, 0 mm (preloaded)
		T, 0.005 mm or less; S, 0.020 mm or less

(3) Allowable d•n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Allowable d·n value: 150 000 or less

Criterion of maximum rotational speed: 3 000 min⁻¹ Note: Please also review critical speed. See "Technical Description: Permissible Rotational Speed" (page B47) for details.

(4) High performance seal

High performance seal (Japanese patents: 3646452, 3692203) with special lip that contacts screw shaft cross-section and prevents entry of fine contaminants.

(5) Lubrication unit

Incorporates NSK K1 Iubrication unit to sufficiently lubricate the high performance seal lip, reduce friction, and improve durability.

(6) optional

Non-contact metal protector that traces the ball screw grooves and safeguards the seal against high-temperature foreign matter.

3. Design precaution

When designing the screw shaft end, one end of

the screw must meet either one of the following conditions. If not, we cannot install the ball nut on the screw shaft.

- Cut the ball groove through to the shaft end.
- The diameters of bearing journals and the gear or pulley seat must be less than the root diameter of ball groove "dr" specified on the dimension table.

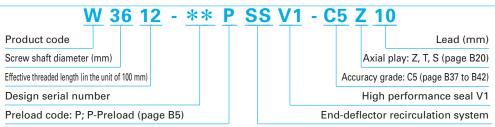
High performance seals may increase torque, which may in turn increase temperature. Please consult with NSK prior to usage under severe service conditions.

For general precautions regarding ball screws, refer to "Design Precautions" (page B80) and "Handling Precautions" (page B99).

4. Product categories

VSS Type has the model as follows.

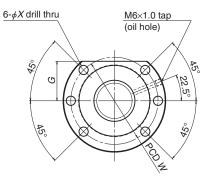
Table 2 VSS type product categories


Nut model	Shape	Flange shape	Preload system
VSS		Circular II	Non-preload, Slight axial play
		Circulat II	P-preload (light preload)

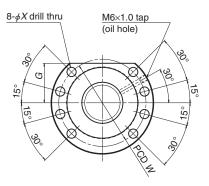
5. Structure of model number and reference number

The followings describe the structure of "Model number" and "Reference number for ball screw".

○Reference number for ball screw



6. Handling Precautions


Maximum operating temperature: 50°C Maximum momentary operating temperature: 80°C

Chemical precautions: Never expose the ball screw to grease-removing organic solvents such as hexane or thinner. Never immerse the ball screw in kerosene or rust preventive oils which contain kerosene.

View X-X

Screw shaft diameter $d \ge 40 \text{ mm}$

-		Shaft	Lead	Ball dia.	Ball circle	Root	Effective	Basic load	Basic load rating (N)	
	Model No.	dia.			dia.	dia.	turns of	Dynamic	Static	rigidity
	Model No.						balls			K
		d	l	D _w	d _m	d_{r}		$C_{\scriptscriptstyle a}$	C_{0a}	(N/µm)
	VSS3210-6E		10				6	43 300	111 000	682
	VSS3216-5E	20	16		20	27.2	5	36 700	90 800	563
	VSS3220-5E	32	20	5.5563	33		5	36 700	90 800	561
	VSS3232-4E		32				4	25 000	58 300	387
	VSS4040-4E	40	40	6.35	41	34.4	4	33 600	83 900	472
	VSS5050-4E	50	50	6.35	51	44.4	4	37 300	105 000	559

Notes: 1. The right hand screw is the standard. For specifications on left hand screws, contact NSK.

ι Γ	<u>B/2</u>		<i>B</i> /2	High perfo	ormance seals ds)	+ K1 +	(protector)
A A A A A A A A A A A A A A A A A A A		•		——————————————————————————————————————			D D D
₩X	VC	В.	•	L	F	VC.	

	Ball nut dimensions									
Nut entire	Nut outside	Flange outside	Flange	Nut	Notch size	Seal installation	Bolt hole	Bolt hole	Maximum	
length	diameter	diameter	width	length		dimensions	PCD	dimensions	shaft length	
L	D	Α	В	F	G	VC	W	X		
132				89.5						
150	F0	00	40	107.5	0.4	0.4.5	74		0.000	
169	56	86	18	126.5	34	24.5	71	9	2 800	
122				79.5						
144	70	100	22	94	38.5	27.5	85	9	3 800	
164	82	118	22	114.5	46	27.5	100	11	5 000	

B509 B510

^{2.} Rigidity in the table is theoretical value obtained from the elastic deformation between screw groove and ball when the preload is 1.5% of the basic dynamic load rating, and axial load is applied to it. Refer to "Technical Description" (page B37) if axial load and preload differs from the conditions above, or when considering change in the deformation of the

^{3.} Products with axial play may have a partially negative play (preloaded condition) depending on screw length. Refer to "Manufacturing range of effective screw length in combination of accuracy grade and axial play" (page B20).

B-3-3.6 TW Series for Twin-Drive Systems

(1) Features

Variations in the lead accuracy and preload torque between two ball screws, which consist of a unit of TW Series, are controlled, resulting improved travel accuracy and ball screw operating lifetime.

Fig. 1 shows measured variation in lead accuracy while Fig. 2 displays an example of variation in thermal expansion between the two ball screws. Fig. 3 is a schematic diagram comparing the travel accuracy between the TW Series and conventional model.

High rigidity and long lifetime

Twin-drive systems are superior to single-drive systems in system rigidity, supporting the design of long-life feeding mechanism even if they make the shaft diameter one size smaller.

- High responsiveness to positioning commands Twin-drive systems permit the use of screw shaft diameters that are one size smaller, thereby reducing screw shaft inertia by up to 50%, offering high responsiveness to positioning commands.
- Improved high-speed capability and noise level Twin-drive systems allow the use of smaller screw diameters, resulting in no increase in the level of noise. The end-deflector recirculation system significantly improves high-speed capability and noise level compared with the existing return tube recirculation system, offering high-speed feeding of up to 1 200 mm/min (shaft dia. 40 mm, lead 30 mm, rotational speed 4 000 min⁻¹).

(2) Specifications

Table 1 Specifications of twin-drive systems

Recirculation	End-deflector recirculation system,
systems	Return tube system, Deflector system
Shaft dia.	<i>ф</i> 32 − 63 mm
Lead	10 – 30 mm
Accuracy grade	C5
Screw shaft length	3 m or less

(3) Optional specifications

- Hollow shaft ball screw
- Provides high accuracy through the use of forced cooling. Please refer to hollow shaft ball screw (page B512) for more details.

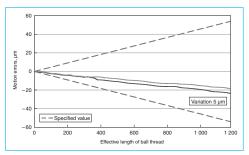


Fig. 1 Example of measured variation in lead accuracy

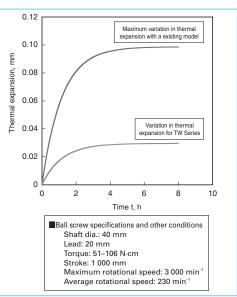


Fig. 2 Calculation example of the variation of thermal expansion

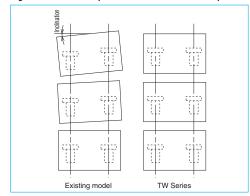


Fig. 3 Schematic diagram of travel accuracy

B-3-3.7 Hollow Shaft Ball Screw for High Accuracy Machine Tools

The increase in speed of the feeding mechanism for highly accurate positioning may require some measures against thermal expansion of the ball screw (forced cooling using hollow ball screw). NSK standardized hollowed screw shafts and shaft ends configuration (sealing section and support bearing seat). NSK recommends this as the most effective measure against thermal expansion.

1. Features

Stable positioning accuracy

Suppresses expansion of the ball screw shaft by rising temperature, and provides stable, precise positioning.

Prevents displacement of various sections Minimizes deformation of the ball screw support bearings as well as of the machine base which is caused by thermal expansion of ball screw. Forced cooling keeps the heat from spreading to other sections, and prevents the processing table from deforming due to heat.

Reduces warm-up time

Temperature does not rise high, therefore cuts machine warm-up period.

Maintains lubricant's effect

Removes heat from the ball screw, deterring lubricant deterioration.

Easy designing for installation

Use support bearing unit exclusive for NSK ball screws (high load capacity for machine tools, see page B391) and seal unit (page B515) to standardized shaft end. This makes designing of mounting ball screw easy.

NSK also provides nut cooling ball screws. The level of temperature rise for nut cooling ball

3. Model example of dimension table

A model number that indicates specification factors is structured as shown below.

screw is equal to the hollow shaft ball screw thanks to the optimized nut internal design for cooling.

NSK

Since the nut which is mounted to the table is cooled, it has an effect of blocking the heat from ball screw to the processing table. Furthermore, using with the follow shaft ball screw makes even more precise temperature control possible as the screw shaft and nut are cooled simultaneously.

2. Design precautions

Refer to HMC type, end-deflector recirculation system, return tube recirculation system, and deflector recirculation system for ball screw specifications. If the overall ball screw length exceeds 3 000 mm, contact NSK. For general precautions regarding ball screw, refer to "Design Precautions" (page B80) and "Handling precautions" (page B99).

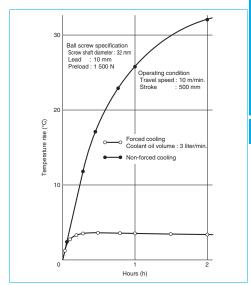
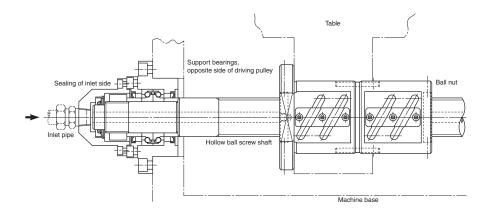
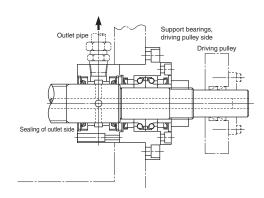


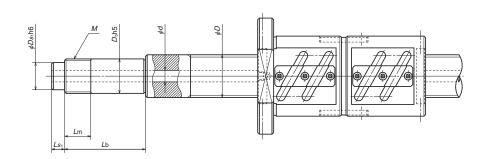
Fig. 1 Effect of forced cooling by hollow shaft ball screw

H 32 - 10

Hollow bore (mm)


Screw shaft model H


Screw shaft diameter (mm)


B511 B512

Hollow Shaft Ball Screw

4. Installation example and standard dimensions

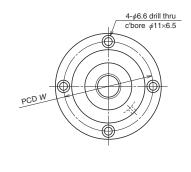
\$Dszh6	4- \phi ds	D _b h5	M	Dehle
				Plug
	La S ₂	<u>L</u> t	Lm Lm	Le Le

O.	III C.	1111	

Drive	oido	Cnonn	er flats	Applicable		Equipped seal unit		
	side	Sparin	el liats	support	Used bearing	Shaft end	Shaft outer	
Dc	Lc	W	Le	unit		Shart end	surface	
				WBK25DF-31	25TAC62BDFC10PN7A			
20	40	17	8	WBK25DFD-31	25TAC62BDFDC10PN7A	WSK20A-01	WSK32B-01	
					(25TAC62BDFFC10PN7A)			
				WBK30DF-31	30TAC62BDFC10PN7A			
25	50	22	10	WBK30DFD-31	30TAC62BDFDC10PN7A	WSK25A-01	WSK40B-01	
					(30TAC62BDFFC10PN7A)			
				WBK40DF-31	40TAC72BDFC10PN7A			
35	70	30	13	WBK40DFD-31	40TAC72BDFDC10PN7A	WSK32A-01	WSK50B-01	
				WBK40DFF-31	40TAC72BDFFC10PN7A			

	Screw	shaft		Bearing	seat				Sea	ling		
Model No.	Diameter	Hollow	Diameter	Lo	ck nut		ln	let		Ou	tlet	
	D	d	<i>D</i> b	М	<i>L</i> m	<i>L</i> b	Ds₁	Ls ₁	Ds ₂	Ls ₂	La	ds
H32-10	32	10	25	M25×1.5	26	89 104 119	20	15	32	60	25	6
H40-12	40	12	30	M30×1.5	26	89 104 119	25	15	40	60	25	7
H50-15	50	15	40	M40×1.5	30	92 107 122	32	15	50	65	27	8

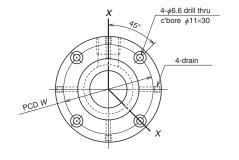
Notes: Please consult NSK for other models.

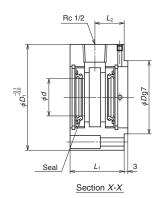

B513 B514

5. Seal units for hollow ball screw shaft (available by order)

This is an exclusive joint for coolant of the hollow ball screw shaft.

A Type (for shaft end)





Unit: mm

Reference No.	d	D	D_1	D_2	L	W	Fixing bolt
WSK20A-01	20	57	85	57	56	70	M6
WSK25A-01	25	57	85	57	56	70	M6
WSK32A-01	32	69	95	67	61	80	M6

B Type (for shaft outer surface)

Hollow Shaft Ball Screw
Unit: mm
g bolt
16 D D_1 W Reference No. d L_1 Fixing bolt WSK32B-01 85 32 57 46 25 70 M6 WSK40B-01 40 57 85 46 25 70 M6 WSK50B-01 50 69 95 49 27 80 M6

♦ Handling precautions

- Use NSK support unit (high load capacity for machine tools on page B391) for installation in order to maintain the eccentricity between screw shaft and seal unit.
- Apply grease to the lip section for protection

at the time of installation to the ball screw.

· Make certain that the drain holes (one for A Type, four for B Type) of the seal unit directly face downward when the unit is installed.

B-3-3.8 ND Series for Nut-Rotatable Drives

This product is patented by NSK.

A nut rotatable ball screw is developed as a unit into which angular contact support ball bearings are integrated. It is best suited for an application that requires rotation of the ball nut while the screw shaft is fixed.

NDT model

1. Structure

Balls are installed between the assembly housing and the ball nut. The outer bearing rings are integrated into the assembly housing and thus, compact design are attained.

A timing pulley (prepared by the user) is directly secured to the end face of the nut.

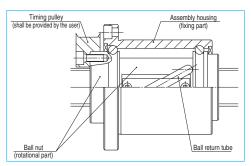


Fig. 1 Ball nut structure

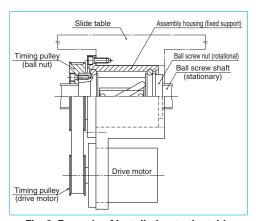


Fig. 2 Example of installation to the table

2. Features

Multi-nut drive

Two or more nut units can be installed in a single ball screw shaft. They can be operated by respective motors.

High operation speed

High feeding speed operation, but yet low rotational speed, is feasible by means of medium to high-helix lead ball screws.

Easy installation

Merely install a mount housing to the table of the machine to take advantage of this multi-nut rotation system.

Simple shaft end configuration

Shaft end configuration is simple because this unit does not need support bearings.

Shaft diameter/lead combination

There are 10 types of "shaft diameter/lead" combinations.

Selections are: Shaft diameters -- 32, 40, 50 mm; Leads -- 20, 25, 32, 40, 50 mm.

Low inertia

Compared to the NSK current product (end cap ball recirculation system), rotational inertia was reduced by 16% at most.

3. Specifications

(1) Ball recirculation system

The structure of return tube recirculation system is shown below.

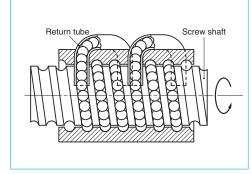


Fig. 3 Structure of ball return tube recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play are as follows. Please consult NSK for other grades.

Table 1 Axial play

Axial play code	Z	Т	S
Axial play	0	0.005 mm or less	0.020 mm or less

Table 2 Combination of accuracy grades and axial play

Accuracy grade	C3	C5	Ct7
Axial play code	Z, T, S	Z, T, S	S

4. Allowable d•n value and the criterion of maximum rotational speed

Allowable d.n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Note: The basic concept is the same as that of general ball screws. Refer to "Technical Description: Permissible Rotational Speed" (page B47).

Table 3 Allowable den value and the criterion of maximum rotational speed

Allowable d·n value	Standard specification 70 000 or less
Allowable din value	High-speed specification 100 000 or less
Criterion of maximum rotational speed	3 000 min ⁻¹

d·n value: shaft dia. d [mm] x rotational speed n [min-1]

Critical speed n_a

As shown Fig. 4, calculate unsupported length (mm) of L_1 , L_2 , and L_3 (assumed that the nut section is a fixed support.) Table 4 shows the coefficients "f" of each shaft end mounting condition.

$$n_{\rm c} = f \cdot \frac{d_{\rm r}}{L^2} \times 10^7 \,({\rm min}^{-1})$$
 (III-1)

d: Screw shaft root diameter (See the dimension table.)

L: Unsupported length (mm) (See Fig. 4)

f: Factor determined by the ball screw shaft end mounting condition

Table 4

Shaft end mounting condition	f
Fixed Fixed support	21.9
Fixed Simple support	15.1
Fixed – Free support	3.4

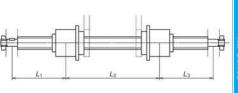


Fig. 4 Installation example

5. Design precautions

One end of the screw thread should be cutthrough to the end. Also, if the nut must be removed from the screw shaft, the user should have an arbor to prevent the balls from falling out during this process. (NSK manufactures arbors on request.)

For general precautions regarding ball screws, refer to "Design Precautions" (page B80) and "Handling Precautions" (page B99).

B517

NDD Type: (Incorporating vibration damper)

An increase in stroke length may restrict required rotational speed of a ball screw due to the issue of critical speed even if there is no problem on $d \cdot n$ limitation.

In such a case, we recommend using NDD Type nut rotatable ball screws equipped with vibration damper.

It will make it possible to operate a ball screw exceeding the critical speed, which is conventionally considered being impossible.

- Notes: 1) However, NDD Type cannot be used exceeding the d·n limitation. Please consult with NSK in such a case.
 - 2) You cannot rotate the screw shaft of NDD Series.

1. Structure

B519

Hollow ball screw shaft has a mechanism to absorb vibration energy (vibration damper). This increases dynamic rigidity of the screw shaft and lowers vibration when exceeding the critical speed.

Construction of the ball nuts are the same as those of NDT Type.

2. Features

- No need for measures against critical speed. Conventionally, an increase in screw shaft diameter or use of intermediate support is the measure against the issue of critical speed. NDD Type ball screw will make these measures needless.
- Dimensional interchageability with NDT Type ball screws

The vibration damper is set inside a ball screw shaft, and therefore, there is no difference with existing series in regards to external dimensions. The ball nuts of NDD Type are interchangeable with those of NDT Type.

Others

Benefits in multiple ball nut on a screw shaft, high feeding speed for long stroke, easy in installation, and low inertia of the ball nuts are the same as NDT Type.

3. Specification

Recirculation system, accuracy grade, axial play and preload system are the same as NDT Type.

4. Design precautions

They are the same as NDT Type.

5. Permissible rotational speed

The d•n value is the same as NDT Type. You don't need to consider the critical speed.

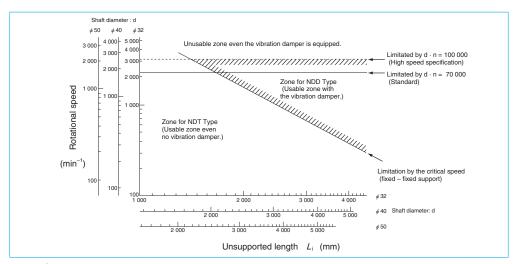
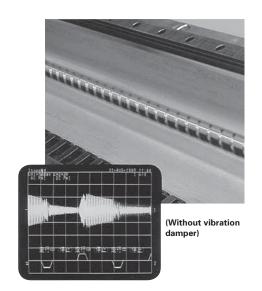



Fig. 5 Compartmentalization between NDT and NDD types to rotational speed and unsupported length

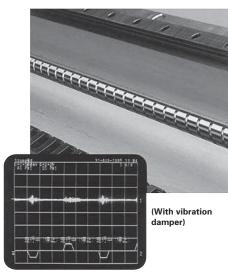


Fig. 6 Vibration of screw shaft when nut is rotating

(With vibration damper)

Fig. 7 Effect of vibration damper (results of endurance test)

B520

Calculation example of permissible rotational speed

[Calculation example]

Assume a system which moves two nuts on a shaft as shown below.

Does this system operate appropriately if: both ends of the ball screw (shaft diameter 40 mm/ lead 40 mm) are fixed, and the travel speed is at 60 m/min?

[Answer]

The rotational speed n (min⁻¹) when the lead of the ball screw is 40 mm, and the travel speed is at 60 m/min is:

$$n = \frac{60 \times 10^3}{40} = 1500 \text{ (min}^{-1}\text{)}$$

Calculate d • n value

As the d • n value of standard specification is 7 000, therefore, the permissible rotational speed is;

$$n \le \frac{70\ 000}{40} = 1\ 750\ (\text{min}^{-1})$$

Calculate critical speed

The maximum unsupported length comes between Nut A and B.

 $L_2 = 3 300 \text{ (mm)}$

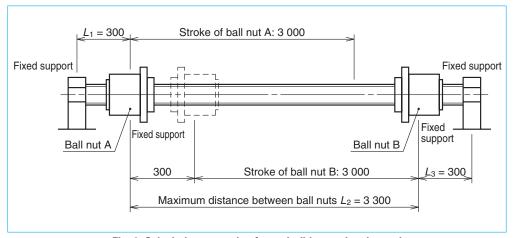
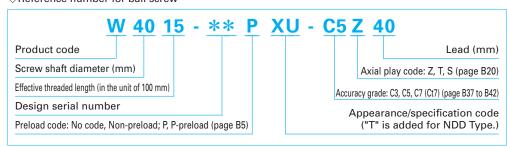
f = 21.9 (Fixed-Fixed)

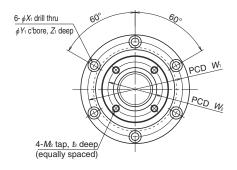
Root diameter: $d_r = 35.1$ (mm)

Therefore, the permissible rotational speed is;

$$n \le \frac{21.9 \times 35.1}{3300^2} \times 10^7 = 706 \text{ (min}^{-1}\text{)}$$

The calculation indicates that the d • n value is at the safe level. But the critical speed exceeds the limitation. However, with a vibration damper, the system can be operated at 1 500 min⁻¹.


Fig. 8 Calculation example of permissible rotational speed

Structure of reference number

The followings describe the structure of "Reference number for ball screw".

♦ Reference number for ball screw

Model No.	Shaft dia.	Lead <i>l</i>	Ball dia. <i>D</i> _w	Ball circle dia. d _m	Root dia. <i>d</i> ,	Effective tums of balls Turns × Circuits	Basic load Dynamic C _a	I rating (N) Static C_{0a}	Moment of inertia, ball nut J (kg·cm²)	Ball nut mass W (kg)					
NDT NDD 3220-2.5		20	4.762	33.25	28.3	2.5×1	17 900	41 800	6.2	2.9					
NDT NDD 3225-2.5	22	25	4.762	33.25	28.3	2.5×1	17 900	41 800	6.7	3.2					
NDT NDD 3232-1.5 NDT NDD 3232-3	32	32	4.762	33.25	28.3	1.5×1 1.5×2	11 500 18 900	24 800 44 600	6.2	2.9					
NDT NDD 4025-2.5		25	6.35	41.75	35.1	2.5×1	28 500	70 000	19.3	6.0					
NDT NDD 4032-1.5 NDT NDD 4032-3	40	32	6.35	41.75	35.1	1.5×1 1.5×2	18 400 30 100	41 200 74 100	18.0	5.5					
NDT NDD 4040-1.5 NDT NDD 4040-3		40	6.35	41.75	35.1	1.5×1 1.5×2	18 400 30 100	41 200 74 100	19.2	6.0					
NDT NDD 5025-2.5		25	7.938	52.25	44.0	2.5×1	42 700	109 000	45.7	8.5					
NDT NDD 5032-2.5		32	7.938	52.25	40.0	2.5×1	42 700	109 000	48.9	9.4					
NDT NDD 5040-1.5 NDT NDD 5040-3	50	40	7.938	52.25	44.0	1.5×1 1.5×2	27 500 44 900	66 500 120 000	45.5	8.5					
NDT NDD 5050-1.5 NDT NDD 5050-3								50	7.938	52.25	44.0	1.5×1 1.5×2	27 500 44 900	66 500 120 000	48.7

1		Seal (both sides)
A D D D D D D D D D D D D D D D D D D D		b d d d d d d d d d d d d d d d d d d d
	T B F	

Jni:		

Ball nut dimensions Tar													
Nut entire length	Nut outside diameter	Flange outside diameter	Flange width	Nut length	Projection tub	e dimensions	Bolt ho	ole dime	nsions	Bolt hole PCD	Tap hole d	imensions	PCD
Ľ	D	A	В	F	D_{r}	Τ	X_1	Y_1	Z_1	W₁	M_2	t ₂	W_2
107	78	105	12	83	60	12	6.6	11	6.5	91	M6	12	50
120	78	105	12	96	60	12	6.6	11	6.5	91	M6	12	50
107	78	105	12	83	60	12	6.6	11	6.5	91	M6	12	50
136	100	133	15	106	76	15	9	14	8.5	116	M8	16	62
122	100	133	15	92	76	15	9	14	8.5	116	M8	16	62
136	100	133	15	106	76	15	9	14	8.5	116	M8	16	62
140	120	156	18	107	96	15	11	17.5	11	136	M10	18	78
158	120	156	18	125	96	15	11	17.5	11	136	M10	18	78
140	120	156	18	107	96	15	11	17.5	11	136	M10	18	78
158	120	156	18	125	96	15	11	17.5	11	136	M10	18	78

Notes: 1. The right hand screw is the standard. Consult NSK for the left hand screws.

2. Seals are standard equipment.

B523 B524

B-3-3.9 ∑ Series for Robots

1. Features

 Σ Series (NSK's Robotte) is a ball screw with a high-performance spline. It is ideal for various actuators such as the vertical axis of SCALA type robot.

A ball screw groove and a ball spline groove are made in one shaft, combining the ball screw and the ball spline.

Mount housing, nuts, and support bearings are combined into a single unit.

Timing pulley (prepared by the user) is directly secured at the end face of the nut.

High functions

A single shaft has both feeding mechanism and guide functions. This allows the shaft ends to move back and forth (linear motion), as well as to rotate.

Compact and lightweight

A ball screw nut and a spline nut are placed on one shaft, and a support bearings are also combined to the unit. This allows compact and high-precision design. Hollow shaft is standard to reduce weight. The hollow can be used for wiring and piping. Other components are also designed to be light in weight.

Low inertia

Because of return tube type ball nut of which outside diameter is decreased, low inertia design is enabled.

It reduces the inertia by 19% of conventional products.

2. Functions

As shown in Fig. 1, the ball screw nut and a spline nut are rotated independently to control rotation value. Thereby the shaft can move in any direction -- linear and rotational. Table 1 shows the relationship between power input and output.

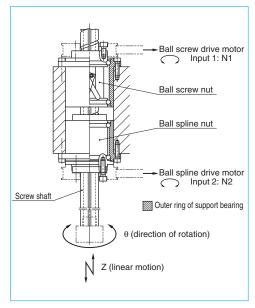


Fig. 1 Example structure of Z axis plus θ axis actuator

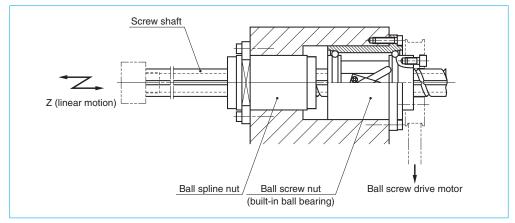


Fig. 2 Example structure of single Z axis unit

Table 1 Power input and output of Σ Series

Shaft movem	nent (output)		Input	
Z (up-down movement) (mm/min)	'	① Ball screw (min ⁻¹)	② Spline (min ⁻¹)	Notes
Up, down	Stop	Rotate	Stop	
$N1 \times l$	0	N1	0	
Stop	Rotate	Rotate	Rotate	N1 = N2
0	N2	N1	N2	141 = 142
Up, down	Rotate	Stop	Rotate	
$N2 \times l$	N2	0	N2	_
Up, down Rotate		Rotate	Rotate	N1≠N2
$ $ N1–N2 $ \times l$	N2	N1	N2	IN I + INZ

3. Specifications

(1) Ball recirculation system

A structure of return tube recirculation system is shown below.

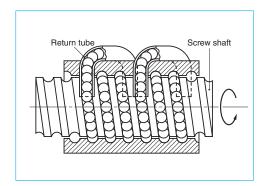


Fig. 3 Structure of return tube recirculation system

(2) Accuracy grade and axial play

The available standard accuracy grade and axial play for ball screw are as follows. The axial play for spline is 0 mm (preloaded product). Please consult NSK for other grades.

Table 2 Accuracy grade and axial play

Accuracy grade	C3, C5, Ct7
Avial play	Z, 0 mm (preloaded)
Axial play	T, 0.005 mm or less; S, 0.020 mm or less

(3) Allowable d·n value and the criterion of maximum rotational speed

Allowable d·n value and the criterion of maximum rotational speed are shown below. Please consult NSK if the rotational speed exceeds the permissible range below.

Permissible d•n value: 70 000 or less

Criterion of maximum rotational speed: 3 000 min⁻¹

Note: Please also review the critical speed.

For details, see "Technical Description: Permissible Rotational Speed" (page B47).

(4) Application

SCALA type and Cartesian type industrial robots, semiconductor manufacturing machines, machines for automobile production facilities, material handling systems, other Z (vertical) axis and Z axis plus θ (rotation) axis actuators.

4. Design precautions

The overall length L can be extended to 25 times of the shaft diameter.

To remove the spline nut from the shaft for assembling, use an arbor as shown in Fig. 4. Avoid removing ball screw nut as much as possible. Refer to root diameter in the dimension table for arbor diameter. (NSK manufactures the arbors on request.)

For general precautions regarding ball screws, refer to "Precautions in Designing" (page B80) and "Precautions in Handling" (page B99).

B525

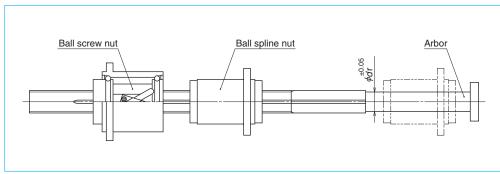


Fig. 4 Removing spline nut

5. Product categories

 Σ Series (NSK's Robotte) is four models with different moving functions and performances are available. Select a standard model if rigidity is important. A compact system is recommended for reducing the weight of machine.

Table 3 Σ Series product categories

Model	Appearance	Size	Structure (Movement)
Σ		Standard	Z+θ Unit
ΣΖ		Standard	Z Unit
ΣC		Compact	Z+θ Unit
ΣCZ		Compact	Z Unit

6. Load rating and life

The relationship between load rating of the ball spline section and life is the same as in other NSK liner motion products. However, various loads that apply to Robotte must be taken into account. For example, the following factors must be considered in calculating life when the product is used as shown in **Fig. 5**.

- Fa: Load that is generated when the shaft moves in up-down direction. (Load is applied to the ball screw nut.)
- T : Torque that is generated to the shaft by Fa.
- Fr: Load that is generated by moment of inertia of the shaft and the work attached to Robotte as well as by centrifugal force when the arm rotates.
- $\boldsymbol{\theta}$: Direction of Fr load that changes by shaft rotation.

NSK has life calculation programs which take these factors into account. Please ask NSK for more details.

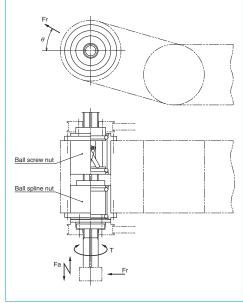
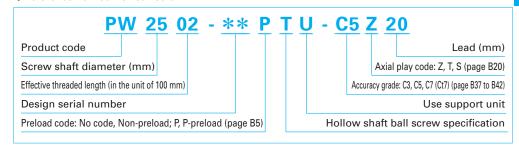
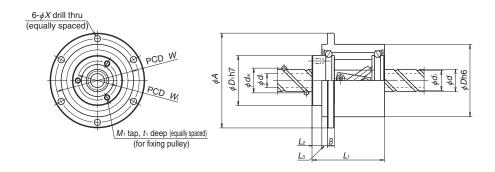
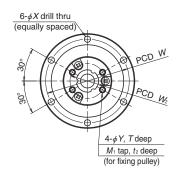
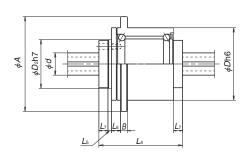



Fig. 5 Example structure of Z axis plus θ axis actuator

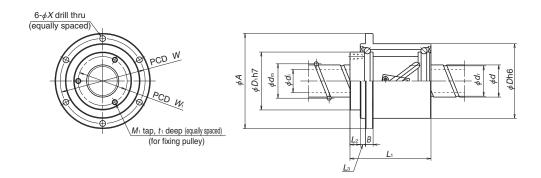
7. Structure of reference number

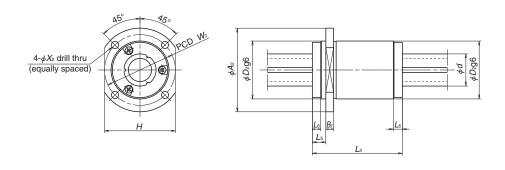

The following describes the structure of "Reference number for ball screw".




B527 B528

∑ Type

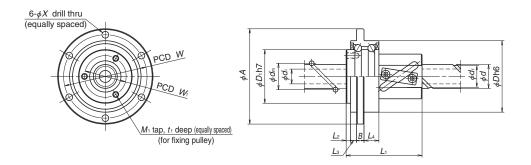

Unit: mm

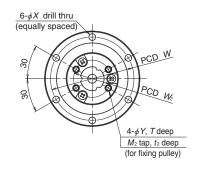

	Shaft	Lead	Ball	Ball	Root	Screw						В	all s	scre	w nut						
Model	dia.		dia.	circle	dia.	shaft	Basic load	rating (N)					[Dim	ensions	3					Moment
No.				dia.		hollow	Dynamic	Static													of inertia
	d	l	D_{w}	d _m	d,	d_{i}	C _a	$C_{\scriptscriptstyle 0a}$	D	Α	В	L ₁	L_2	L ₃	M_1	t ₁	W_1	D_1	W	Χ	(kg·cm²)
∑ 1610	16	10	0 175	16.75	10.4	(0)	4 710	8 110	10	64	5	47	7	4	3-M4	6	20	OE.	EG	4 E	0.41
∑ 1632	10	32	3.175	16.75	13.4	(8)	2 990	4 870	48	04	5	52	/	4	3-1014	Ö	28	35	90	4.5	0.44
∑ 2010		10					8 210	17 500				57									0.64
∑ 2020	20	20	3.175	20.75	17.4	(14)	5 290	10 300	54	70	6	63	8	4	3-M4	6	32	40	62	4.5	0.65
∑ 2040		40					3 360	6 170				57									0.64
∑ 2510		10					9 110	21 900				57									1.10
∑ 2520	25	20	3.175	25.75	22.4	(18)	5 870	13 200	58	74	6	63	8	4	3-M4	6	38	45	66	4.5	1.18
∑ 2525		25					5 870	13 200				72									1.30
∑ 3220	32	20	3.175	32.75	29.4	(25)	6 540	16 800	70	95	8	70	10	6	3-M5	10	44	E3	02	66	2.60
∑ 3232	32	32	3.175	32.75	29.4	(25)	6 540	16 800	70	95	ŏ	91	10	О	3-1015	10	44	53	82	0.0	3.15
∑ 4020	40	20	3.969	41.0	36.9	(20)	9 770	26 300	0	110	8	73	10	6	4-M5	10	58	67	96	66	5.96
∑ 4040	40	40	3.969	41.0	30.9	(30)	9 770	26 300	85	110	ď	107	10	Ö	4-1015	10	28	0/	96	0.0	7.85
∑4520	4.5	20	2 060	46.0	410	/DE/	10 300	29 700		115	0	73	10	6	4 N 4 E	10	62	70	101	6.6	7.73
∑4540	45	40	3.969	46.0	41.9	(35)	10 300	29 700	90	115	8	107	10	6	4-M5	10	63	12	101	ט.ט	10.3

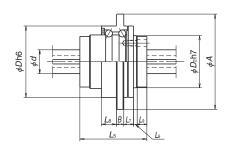
									Ва	ıll spl	ine r	nut										
Mass	Basic load	rating (N)	Basic tord	que (N·m)							Dim	ensi	ons							Moment	Mass	
	Dynamic	Static	Dynamic	Static																of inertia		
(kg)	C _r	C_{0r}	C _t	C_{0t}	D	Α	В	L_4	L ₅	L ₆	L_7	Y	T	M_2	t_2	W_2	D_2	W	X	(kg·cm²)	(kg)	M
0.50	5 530	7 270	61.5	91.3	40	C4	_	00	٥ ٦	٥.	٥.	4 -	٥.	N 4 4	7	٥٦	٥٢	F.C.	4 -	0.71	0.00	Series
0.55	5 890	8 000	65.5	100	48	64	5	60	2.5	6.5	0.5	4.5	6.5	M4	/	25	35	56	4.5	0.71	0.63	ies
0.74	6 260	8 720	86.3	135																		
0.81	6 610	9 450	91.1	145	54	70	6	65	2.5	6.5	6.5	5.5	6.5	M5	8	30.5	40	62	4.5	1.15	0.87	
0.74	6 610	9 450	91.1	145																		
0.81	6 630	9 450	115	185																		
0.88	7 290	10 900	125	210	58	74	6	70	2.5	6.5	6.5	5.5	6.5	M5	8	35.5	45	66	4.5	1.88	1.03	
1.00	7 290	10 900	125	210																		
1.46	7 630	11 600	165	285	70	95	8	75	2.5	7.5	6 5	5.5	6.5	M5	8	42	50	82	6.6	3.80	1.62	
1.83	7 950	12 400	175	305	70	95	8	75	2.5	7.5	0.0	5.5	0.5	CIVI	8	42	50	82	0.0	3.80	1.02	
2.02	10 600	14 800	290	455	0 =	110	8	80	4	7.5	8	5.5	8	M5	8	55	65	96	6.6	9.74	2.38	
2.85	11 200	15 900	305	490	00	110	0	00	4	7.5	0	5.5	0	IVIO	0	55	00	90	0.0	9.74	2.30	
2.17	11 200	15 900	340	550	00	115	8	85	4	7.5	8	5.5	8	M5	8	60	70	101	66	12.5	2.56	
3.06	11 700	17 000	360	590	90	115	O	05	4	7.5	O	ບ.5	Ø	CIVI	O	00	70	101	0.0	12.5	2.00	

B539

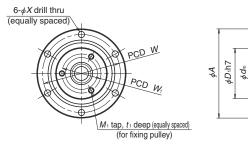
Unit: mm

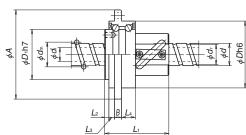

	Shaft	Lead	Ball	Ball	Root	Screw						Ball	scre	w nı	ut					
Model	dia.		dia.	circle	dia.	shaft	Basic load	rating (N)						Dime	ensions					
No.				dia.		hollow	Dynamic	Static												.
	d	l	$D_{\rm w}$	d _m	d,	d_{i}	$C_{\scriptscriptstyle a}$	$C_{\scriptscriptstyle 0a}$	D	Α	В	L ₁	L ₂	L ₃	M_1	t ₁	W_1	D_1	W	X
∑ Z 1610	16	10	3.175	16.75	13.4	(8)	4 710	8 110	48	64	5	47	7	4	3-M4	6	28	35	56	4.5
∑ Z1632	16	32	3.175	10.75	13.4	(8)	2 990	4 870	48	04	5	52	/	4	3-1014	0	28	35	90	4.5
∑ Z2010		10					8 210	17 500				57								
∑ Z2020	20	20	3.175	20.75	17.4	(14)	5 290	10 300	54	70	6	63	8	4	3-M4	6	32	40	62	4.5
∑ Z2040		40					3 360	6 170				57								
∑ Z2510		10					9 110	21 900				57								
∑ Z2520	25	20	3.175	25.75	22.4	(18)	5 870	13 200	58	74	6	63	8	4	3-M4	6	38	45	66	4.5
∑ Z2525		25					5 870	13 200				72								
∑ Z3220	32	20	3.175	32.75	29.4	(OE)	6 540	16 800	70	95	8	70	10	6	3-M5	10	44	53	82	6.6
∑ Z3232	32	32	3.175	32.75	29.4	(25)	6 540	16 800	70	95	8	91	10	О	3-1015	10	44	53	82	6.6
∑ Z4020	40	20	3.969	41.0	36.9	(20)	9 770	26 300	85	110	8	73	10	6	4-M5	10	E0	67	06	6.6
∑ Z 4040	1 40	40	3.969	41.0	30.9	(30)	9 770	26 300	85	110	ð	107	10	О	4-1015	10	58	0/	96	0.0
∑ Z4520	45	20	2.060	46.0	41.0	(OE)	10 300	29 700	00	115	8	73	10	6	4 1 4 1	10	60	70	101	6.6
∑ Z 4540	45	40	3.969	46.0	41.9	(35)	10 300	29 700	90	115	ď	107	10	Ö	4-M5	10	63	72	101	6.6

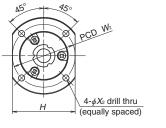

								Ball sp	line nut							
Moment	Mass	Basic load	rating (N)	Basic tor	que (N·m)				Di	mensio	ns				Mass	
of inertia (kg·cm²)	(kg)	Dynamic C _r	Static Cor	Dynamic C,	Static Cont	D ₂	A ₂	B ₂	L ₄	L ₅	L ₆	Н	W ₂	X	(kg)	\succeq
0.41	0.50	5 530	7 270	61.5	91.3	35	55	6	60	10.5	6.5	45	4.5	4.5	0.35	Series
0.44	0.55	5 890	8 000	65.5	100	35	55	0	00	10.5	0.5	45	4.5	4.5	0.35	SĐ,
0.64	0.74	6 260	8 720	86.5	135											
0.65	0.81	6 610	9 450	91.1	145	40	60	6	65	10.5	6.5	50	50	5.5	0.46	
0.64	0.74	6 610	9 450	91.1	145											
1.10	0.81	6 630	9 450	115	185											
1.18	0.88	7 290	10 900	125	210	45	65	6	70	10.5	6.5	55	55	5.5	0.57	
1.30	1.00	7 290	10 900	125	210											
2.60	1.46	7 630	11 600	165	285	50	70	6	75	10.5	6.5	60	60	5.5	0.64	
3.15	1.83	7 950	12 400	175	305	50	70	0	75	10.5	0.5	00	00	5.5	0.04	_
5.96	2.02	10 600	14 800	290	455	65	88	8	80	12	8	76	76	6.6	1.20	
7.85	2.85	11 200	15 900	305	490	00	00	0	00	12	0	70	70	0.0	1.20	
7.73	2.17	11 200	15 900	340	550	70	93	8	85	12	8	81	81	6.6	1.39	
10.3	3.06	11 700	17 000	360	590	70	93	°	00	12	0	01	01	0.0	1.39	

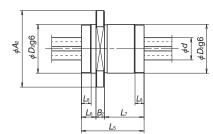

B531 B532

∑ C Type




Unit: mm


	Shaft	Lead	Ball	Ball	Root	Screw							Ball	scr	ew	nut						
Model	dia.		dia.	circle	dia.	shaft	Basic load	d rating(N)						Di	mer	nsions						Moment
No.				dia.		hollow	Dynamic	Static														of inertia
	d	l	$D_{\rm w}$	$d_{\scriptscriptstyle \mathrm{m}}$	d,	$d_{\scriptscriptstyle \mathrm{i}}$	C_a	$C_{\scriptscriptstyle \mathrm{Oa}}$	D	Α	В	L ₁	L_2	L ₃	L_4	M_1	t ₁	W_1	D_1	W	Χ	(kg·cm²)
∑C1610	16	10	3.175	16.75	13.4	(8)	4 710	8 110	10	64	5	46	3	4	10	3-M4	6	20	35	EG	1 5	0.40
∑C1632	10	32	3.175	10.75	13.4	(0)	2 990	4 870	40	04	ລ	51	o	4	10	3-1014	0	20	30	50	4.5	0.43
∑ C2010		10					8 210	17 500				56										0.63
∑ C2020	20	20	3.175	20.75	17.4	(14)	5 290	10 300	54	70	6	63	4	4	10	3-M4	6	32	40	62	4.5	0.65
∑ C2040		40					3 360	6 170				56										0.63
∑C2510		10					9 110	21 900				56										1.04
∑ C2520	25	20	3.175	25.75	22.4	(18)	5 870	13 200	58	74	6	63	4	4	10	3-M4	6	38	45	66	4.5	1.13
∑C2525		25					5 870	13 200				71										1.24


									F	Ball s	nline	e nut											
Mass	Basic load	d rating(N)	Basic tor	que(N·m)						<i>-</i>		imer		าร							Moment	Mass	
	Dvnamic	Static	Dynamic	Static																	of inertia		
(kg)	C _r	C_{0r}	C_{t}	C_{0t}	D	Α	В	L ₅	L ₆	L ₇	L ₈	L ₉	Y	T	M_2	t ₃	W_2	D_2	W	X	(kg·cm²)	(kg)	M
0.41	4 300	5 090	47.9	63.9	48	64	5	45	2.5	6.5	10	6.5	1 =	6 5	N 1 4	7	25	35	56	4.5	0.52	0.42	Seri
0.43	4 300	5 090	47.9	03.9	40	04	5	45	2.5	0.5	10	0.5	4.5	0.5	1014	/	25	30	50	4.5	0.52	0.42	Sal
0.53	4 730	5 820	65.1	90.5																			
0.56	5 110	6 540	70.5	100	54	70	6	50	2.5	6.5	10	6.5	5.5	6.5	M5	8	30.5	40	62	4.5	0.86	0.56	
0.53	5 110	6 540	70.5	100																			
0.60	5 130	6 540	87.8	125																			
0.64	5 870	8 000	100	155	58	74	6	55	2.5	6.5	10	6.5	5.5	6.5	M5	8	35.5	45	66	4.5	1.44	0.67	
0.69	5 870	8 000	100	155																			

Unit: mm

	Shaft	Lead	Ball	Ball	Root	Screw						Ball	scr	ew	nut						
Model	dia.		dia.	circle	dia.	shaft	Basic load	d rating(N)						Di	mer	nsions					
No.				dia.		hollow	Dynamic	Static													
	d	l	$D_{\rm w}$	d _m	d_{r}	d_{i}	C _a	C_{0a}	D	Α	В	L_1	L ₂	L_3	L_4	M_1	t ₁	W_1	D_1	W	X
∑CZ1610	10	10	0 175	10.75	10.4	(0)	4 710	8 110	40	C4	_	46	٦	4	10	0.144	_	20	٥٢	F.C.	4 -
∑CZ1632	16	32	3.175	16.75	13.4	(8)	2 990	4 870	48	64	5	51	3	4	10	3-M4	б	28	35	90	4.5
∑CZ2010		10					8 210	17 500				56									
∑ CZ2020	20	20	3.175	20.75	17.4	(14)	5 290	10 300	54	70	6	63	4	4	10	3-M4	6	32	40	62	4.5
∑ CZ2040		40					3 360	6 170				56									
∑ CZ2510		10					9 110	21 900				56									
∑ CZ2520	25	20	3.175	25.75	22.4	(18)	5 870	13 200	58	74	6	63	4	4	10	3-M4	6	38	45	66	4.5
∑ CZ2525		25					5 870	13 200				71									

								Ball	spline	nut							
Moment	Mass	Basic load	d rating(N)	Basic tor	que(N·m)					Dime	nsions					Mass	
of inertia		Dynamic	Static	Dynamic	Static								1				
(kg·cm²)	(kg)	C_{r}	C_{0r}	C_{t}	C_{0t}	D_2	A_2	B_2	L_{5}	L_6	L ₇	L ₈	Н	W_2	X_2	(kg)	M
0.40	0.41	4 300	5 090	47.9	63.9	35	55	6	45	10.5	28.5	6.5	45	45	4 5	0.26	Ser
0.43	0.43	4 300	5 090	47.9	63.9	35	55	0	45	10.5	28.5	0.5	45	45	4.5	0.20	eries
0.63	0.53	4 730	5 820	65.1	90.5												
0.65	0.56	5 110	6 540	70.5	100	40	60	6	50	10.5	33.5	6.5	50	50	5.5	0.35	
0.63	0.53	5 110	6 540	70.5	100												
1.04	0.60	5 130	6 540	87.8	125												
1.13	0.64	5 870	8 000	100	155	45	65	6	55	10.5	38.5	6.5	55	55	5.5	0.44	
1.24	0.69	5 870	8 000	100	155												

B-3-3.10 Equipped with "NSK K1™" Lubrication Unit

This product is being applied for a patent.

1. Features

NSK K1 is a new, efficient lubrication unit. Equipped with NSK K1, the ball screws demonstrate a superb performance as shown below.

Long-term, maintenance-free usage

In mechanical environments where lubrication is difficult to apply, long-term running efficiency is maintained by using the NSK K1 in combination with grease.

[ex.] For automotive component processing

Does not pollute the environment

A very small volume of grease combined with NSK K1 can provide sufficient lubrication in the environment where grease is undesirable as well as in the environment where high cleanliness is required.

- [ex.] Food processing equipment, medical equipment, liquid crystal display/ semiconductor manufacturing equipment, etc.
- Good for environments where lubricant is washed away

When used with grease, life of the machine is prolonged even when the machine is washed entirely by water, or in an environment where the machine is exposed to rain or wind.

[ex.] Food processing equipment, housing/ construction machines, etc.

 Maintains efficiency in dusty environment In environment where oil- and grease-absorbing dust is produced, long-term efficiency in lubrication and prevention from foreign inclusions are maintained by using the NSK K1 in combination with grease.

[ex.] Woodworking machines, etc.

 Comparative duration test of samples with and without NSK K1

Sample, testing conditions and test result are shown in Table 1 and Fig. 1.

Without lubricant, operation became impossible after running 8.6 km. With NSK K1 alone, it was possible to continue running exceeding 10 000

NSK conducts various tests under different conditions. Please consult NSK.

Table 1 Sample and testing conditions

Ball screw	Shaft dia. 20 mm, lead 20 mm
Lubrication	Comparison with only NSK K1 against no lubrication
Speed	4 000 min ⁻¹ (80 m/min)
Stroke	600 mm

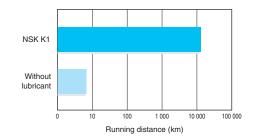


Fig. 1 Duration test results on ball screws without lubricant

2. Specifications

(1) Structure

The structure makes it possible to have a stable contact between the NSK K1 and outside of a ball screw with moderate force by a garter spring which fits onto outside of the NSK K1.

NSK K1 is installed between the ball screw nut and the labyrinth seal. The overall nut length is slightly longer than that of the standard ball screw.

Combination of NSK standard grease (factorypacked in the nut) and NSK K1 are standard specifications.

Fig. 2 NSK K1

(2) Accuracy grade and axial play

Accuracy grades, clearance and preload specifications remain unchanged from the existing products. There is a slight increase in torque due to the equipped NSK K1.

(3) Overall nut length after equipped with NSK K1™

The nut length becomes longer than that of standard ball screws after equipped with NSK K1. The nut length after equipped with K1 is shown in pages B539 to B542 for each type of ball recirculation. NSK K1 can be installed on other types not listed in the dimension table. Please consult with NSK if you require the K1 for a special ball nut.

(4) Application examples

Ball screws equipped with NSK K1 are maintenance-free for a long period of time. Its application is expanding in various industries.

Semiconductor/liquid crystal display manufacturing equipment

Industrial robot

Wood working machines

Machine tools

Automobile manufacturing machines

3. Precautions for use

Temperature range for use: Maximum temperature: 50°C Momentary maximum temperature: 80°C

Chemicals that should not come to contact with K1: Do not leave NSK K1 in organic solvent. white kerosene such as hexane, thinner which removes oil, and rust preventive oil which contains white kerosene.

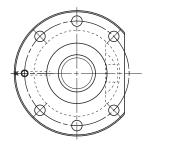
Note: Water-type cutting oil, oil-type cutting oil, grease such as mineral-type AS2 and ester-type PS2 do not damage K1 Seal.

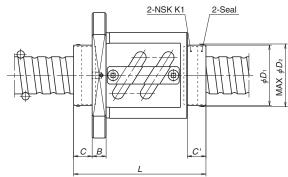
Note: NSK K1 is not applicable to the Compact FA series.

4. Example of reference number

A structure of "Reference number for ball screw" is as follows.

Note: "K1" is added at the end of "nut model code" and "Specifications number".


♦ Reference number for ball screw equipped with NSK K1


W1401 -** P K1 - C3 Z10

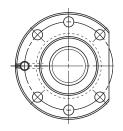
NSK K1 equipped type ball screw code

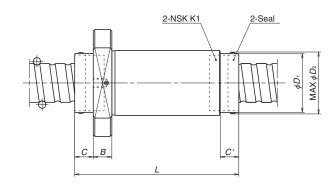
B537

(1) Tube type

Tube type

Model No.	Screw shaft dia.	Lead		stalling nsion	Frange width	Overall length when equipped K1	К1 сар	dimension			
Model No.	d	l	C	C'	B		Cap dia. ϕD_1	Protruding dimension ϕD_2			
PFT1004-2.5	10	4	14	15	10	61.5	φ 22	MAX φ 24			
PFT1205-2.5		5		15		66	<i>'</i>	,			
LPFT1210-2.5	12	10	14	17	10	79	φ 26.5	MAX φ 29			
PFT1405-2.5	14	5	14	15	10	65	 <i>ϕ</i> 30	MAX \$\phi\$ 32			
LPFT1510-2.5	15	10	14	15	10	76	φ30	MAX φ 32			
PFT1605-2.5	16	5	14	15	10	67	φ32	MAX φ 34			
PFT2005-5		5				81	,	,			
LPFT2010-2.5	20	10	14	14	10	78	φ38	MAX φ 40			
LPFT2020-1.5	1	20				84	,	,			
ZFT2505-10		5	16	17	10	115	φ 44	MAX φ 46			
PFT2506-5		6	16	17	12	93	φ 44	MAX φ 46			
PFT2510-2.5	25	10	16	17	12	89	φ 44	MAX φ 46			
ZFT2510-3] 25	10	10	17	12	103	φ 44	ΙνίΑλ φ 40			
LPFT2520-2.5		20	12	12	12	109	φ38	MAX ø 40			
LPFT2525-1.5		25	12	12	12	98	ø 38	MAX ø 40			
DFT2805-5]	5				137					
PFT2810-2.5	28	10	16	17	12	90	φ 48	MAX φ 50			
DFT2810-3		10				174					
PFT3206-5		6	16	17		93	φ 52	MAX φ 54			
ZFT3206-10			10			129	Ψ 52	1νι/-ντφ 5-			
PFT3210-5				17		122					
ZFT3210-5		10	16	17		122	φ 52	MAX φ 54			
DFT3210-5	32			16	12	212					
PFT3212-3		12	16	17		114	φ 52	MAX φ 54			
DFT3212-3							16		198	φ 52	,
LPFT3225-2.5		25	12	12		122	φ 46	MAX φ 48			
LPFT3232-1.5		32	12	12		109	φ 46	MAX φ 48			

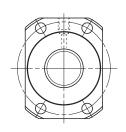

Notes:	1 NSK K1	can be installed in	other types not	listed in the table	. Please consult NSK.

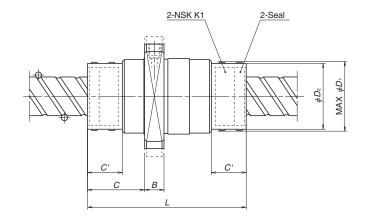

^{2.} C,C' and L are the dimensions when one NSK K1 is equipped to both ends of the nut.

Madal Na	Screw shaft dia.	dimension width wh	Overall length when equipped K1	K1 cap	dimension	Equ			
Model No.	d	1		1		L	Cap dia. ϕD_1	Protruding dimension ϕD_2	Equipped
PFT3610-5		-	Ü	20		131	7 - 1	J	
DFT3610-5		10		19		221			₹
HZF3616-5	36	16	19	19	15	163	φ 56	MAX φ 58	ᇙ
HZF3620-3.5	1	20		19	1	146			with NSK K1 TM
PFT4008-5			4.0			117		1441/	1-3
ZFT4008-10		8	19	20		165	φ 62	MAX φ 64	-
ZFT4010-7	1	4.0	4.0	20	1	152	φ 62	1441/	-
DFT4010-5		10	19	19		222	φ 61	MAX φ 64	
PFT4012-5	1 40	10	10	20	1	144	φ 62	NANY 4 CA	_
DFT4012-5	40	12	19	19	16	252	φ 61	MAX φ 64	
HZF4016-5		16	19	19		164	φ 61	MAX ø 64	_
HZF4020-5		20	19	19		189	φ 61	MAX φ 64	_
LPFT4032-2.5		32	14	14		151	φ 54	MAX ø 56	
LPFT4040-1.5		40	14	14		133	φ 54	MAX ø 56	_
DFT4510-5		10			16	222			
DFT4512-5	45	12	19	19	16	254	φ72	MAX φ 75	
HZF4520-5		20			18	190			
ZFT5010-10		10		20		194			
DFT5012-5		12		19		256			
ZFT5016-5	50	16	19	20	18	172	φ73	MAX φ 76	
DFT5016-5] 50	10	19	19	10	300	φ73	ΙνίΑλ φ 70	
HZF5020-5	1	20	1	19	1	192			
HZF5025-5		25		19		221			_
DFT5516-5		16				178		MAX φ 87	
HZF5520-5	55	20	22	22	18	198	φ 81	MAX φ 81	
HZF5525-5		25				227		MAX ø 81	
DFT6316-5	63	16	22	22	18	322	φ 89	MAX φ 95	
DFT6320-5	00	20	~~		10	362	ΨΟΟ	Ινίσιν φ υυ	_

B539 B540

(2) Deflector type


Deflector type


	Screw shaft dia.	Lead		stalling	Frange width	Overall length when equipped K1	K1 cap	dimension	
Model No.	d d	l	dime C	nsion C'	B	L L	Cap dia. <i>φ</i> D₁	Protruding dimension ϕD_2	
ZFD2005-6	20	5	9	9	12	87	φ32	MAX φ 34	
ZFD2506-6	٥٦	6	10	-	10	102	, 20	MAX φ 40	
ZFD2510-4	25	10	12	12	12	106	φ 38	ΙνίΑλ φ 40	
ZFD3208-8		8		12		136			
ZFD3210-6	32	10	12		12	138	φ 46	MAX ø 48	
ZFD3212-6		12				153			
ZFD4010-8	40	10	14	14	16	167	, = 4	MAY 157	
ZFD4012-8	50	12	14	14	16	189	φ 54	MAX φ 57	
ZFD5010-8		10	1.4	1.4	10	169	1.04	NAAV 467	
ZFD5012-6		12	14	14	18	167	φ 64	MAX φ 67	

Notes: 1. NSK K1 can be installed in other types not listed in the table. Please consult NSK.

2. C,C' and L are the dimensions when one NSK K1 is equipped to both ends of the nut.

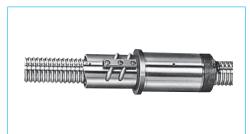
End cap type

Model No.	Screw shaft dia.	Lead		stalling nsion	Frange width	Overall length when equipped K1	'	dimension
iviouei ivo.	d	l	С	C'	В	L	Cap dia. <i>∳</i> D₁	Protruding dimension ϕD_2
UPFC1520-1.5	15	20	29	18	10	81	ø 30	MAX φ 32
LPFC1616-3	16	16	28	18	10	74	φ 28	MAX φ 30
LPFC2020-3	00	20	29.5	10	10	82	φ 34	MAX ø 36
UPFC2040-1	20	40 29		18	10	77	φ 32	MAX ø 34
LPFC2525-3	٥٦	25	0.4	0.1	10	97	, , , ,	NAAV 440
UPFC2550-1	25	50	34	21	12	92	φ 44	MAX φ 46
LPFC3232-3	00	32	37	0.1	10	112	, 50	NAAV 154
UPFC3264-1	32	64	36.5	21	12	104	φ 52	MAX φ 54
LPFC4040-3	40	40	43.5	24	15	133	φ 62	MAX φ 65
LPFC5050-3	50	50	45.5	24	20	155	φ74	MAX φ 77

Notes: 1. NSK K1 can be installed in other types not listed in the table. Please consult NSK.

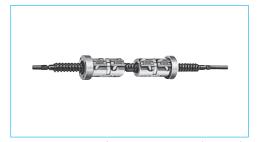
2. C,C' and L are the dimensions when one NSK K1 is equipped to both ends of the nut.

B541 B542

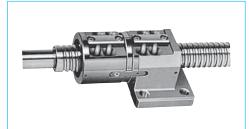


B-3-3.11 Special Ball Screws

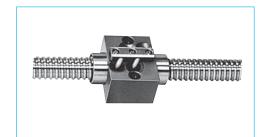
In addition to the standard ball screws, NSK manufactures various types of ball screws in special shapes as shown below.


Nut with gear

Lightly preloaded single nut with bearing seat

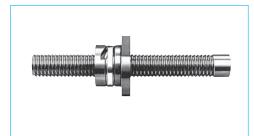


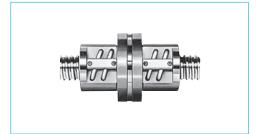
Nut with trunion



Double nut with right and left turn thread on each side of screw shaft

Thoroughly discuss with NSK the specifications before determining specifications and ordering ball screws in special shapes.


Double nut with flat mounting surface

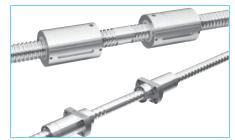

Lightly preloaded single nut with flat mounting surface

Hollow shaft, lightly preloaded single nut, with large shaft diameter and fine lead

Ceramic ball screw

Flanged to flanged ball nut

Cylindrical double nut


Spring preloaded ball screw

Ball screw for aircraft

Ball screw for nuclear power plant

Right and left hand thread on each side of screw

B543 B544

C-1 Monocarrier[™]

1.	Features ·····	C1
2.	Classifications and Series	C3
	Optional Components	
	Selection of Monocarrier	
	4.1. Procedures for Selecting Monocarrier	C6
	4.2. Rigidity	
	4.3. Maximum Speed ······	C7
	4.4. Accuracy Grade	C9
	4.5. Stroke and Ball Screw Lead ·	
	4.6. Basic Load RatingC	
	4.7. Estimation of Life Expectancy C	
	4.8. Example of Life Estimation • C	15
5.	Maintenance	
	5.1. Maintenance Method C	17
	5.2. NSK K1 [™] Lubrication Unit ······ C	18
6.	NSK Clean Grease LG2 Specification C	19
7.	Characteristics and Evaluation Metho	
	7.1. Positioning AccuracyC	19
	7.2. Repeatability C	
	7.3. Running Parallelism C	20
	Special SpecificationsC	20
9.	Sensor Specification	
	9.1. Proximity Switch	21
	9.2. Photo Sensor ·······C	22

C-2 MCM Series

١.	MICINI Series Reference Mumber	
	Coding	C25
2.	MCM Series Dimension Table of	
	Standard Products	C 26
2	MCM Series Option Part	C 4 F

C-3 MCH Series

1.	MCH Series Reference Number	
	Coding	C71
2.	MCH Series Dimension Table of	
	Standard Products	C72
3.	MCH Series Option Part	C79

Monoca rrier™

C1-C22

C23-C68

C69-C88

C-1 Monocarrier™

C-1-1 Features

NSK's Monocarrier is the culmination of technology and innovation in linear motion. This lightweight, compact single axis linear actuator integrates quality NSK ball screw, linear guide and support bearings into one unit.

Light weight, compact design

Available in two different shapes of cross-section, depending on application. Light weight type: MCM Series Rigid type: MCH Series

All -in-one structure

- The all-in-one structure integrates a ball screw, a linear guide and support bearings into a single unit to significantly reduce design and installation time.
- OMultiple datum planes, the bottom and a lateral side of the rail, facilitate highly accurate installation.
- **Olmmediate** operation installation and run-in is possible.
- OA wide selection of fine to high helix leads are available.

Ball screw

A wide variety of leads, from fine leads to high helix leads, is available.

A ball nut and a slider are integrated into one component.

5 Quick Delivery

Built in support bearings

3 Superb antirust capability

OGrease for clean environments and for general machinery is available.

4 Long term maintenance free

equipment is subjected to frequent wash downs.

OLow temperature chrome plating is a standard feature for the bodies and sliders to control rusting in normal operating and storing environments. Fluoride low temperature chrome plating is optionally available for much higher rust prevention.

Ouse of NSK K1 Lubrication Units and grease maintains a smooth lubricating performance for long periods in mechanical environments where lubrication is difficult to apply, where

use of oil is not permitted because of hygienic issues, or where the mechanical

ONSK K1 lubrication unit is available for food processing machines and medical equipment.

Built in support bearings

Linear guide (Ball groove)

C-1-2 Classification and Series

Table 2.1

	Light Weight	Beam Rigidity	Moment Rigidity
MCM Series	0	0	0
MCH Series	0	0	0

©: Excellent O: Suitable in use

Long Stroke Size Variation Accuracy \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

[MCM Series Cross-sections] MCM06 MCM02 MCM03 MCM08 (Lead 1 and 2 mm) (Lead 10 and 12 mm) MCM10 MCM05 100

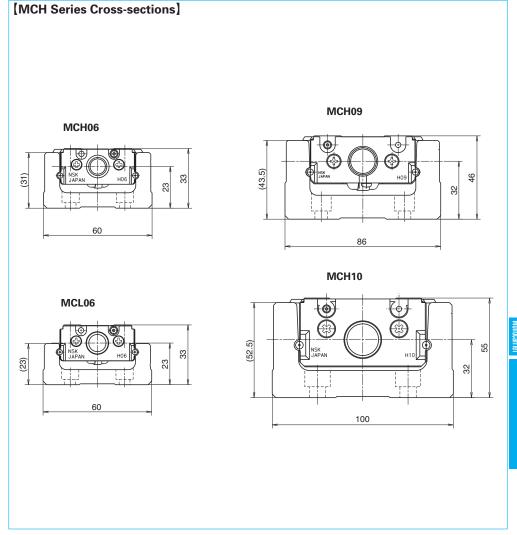


Fig. 2.1

Fig. 2.2

C-1-3 Optional Components

MCM Series

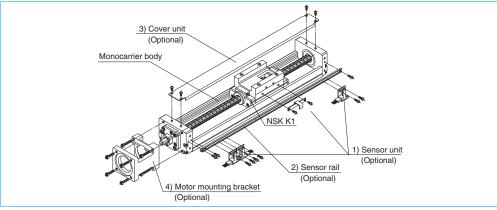


Fig. 3.1 Assembly: Optional components for MCM10 (example)

- 1) Sensor unit: Sensors, sensor mounting parts and a sensor dog are available in a set.
 - * When a sensor unit is used, the full cover unit cannot be used.
- 2) Sensor rail: Rail for sensor mounting is available.
- 3) Cover unit: Top cover or full cover (included top cover and side cover) is available.
- 4) Motor bracket for motor mounting: Available for a variety of models.

Note: We assemble optional components upon request.

MCH Series

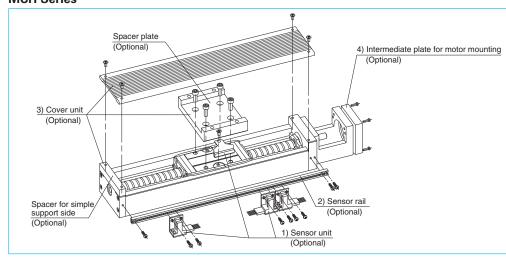


Fig. 3.2 Assembly: Optional components for MCH10 (example)

- 1) Sensor unit: Sensors, sensor mounting parts and a sensor dog are available in a set.
- 2) Sensor rail: Rail for sensor mounting is available.
- 3) Cover unit: Top cover (included spacer plate and spacer for simple support side) is available.
- 4) Intermediate plate for motor mounting: Available for a variety of models.

Note: We assemble optional components upon request.

C-1-4 Selection of Monocarrier C-1-4. 1 Procedures for Selecting **Monocarrier**

Select a model number of Monocarrier based on stroke and rigidity (refer to Figs. 4.2, and 4.3).

Select a ball screw lead referring to "C-1-4.3 Maximum Speed" so that the rotational speed does not exceed the limit.

Study the loads to be applied to the linear guide and obtain the equivalent load (Fe) substituting them for equation 1) or 2) on page C13. Obtain the mean effective load (Fm) substituting them for equation 3) on page C14, then calculate the life.

Study the loads to be applied to the ball screw and support unit. Obtain the mean effective load (Fm) substituting them for equation 3) on page C14, then calculate the life.

C-1-4. 2 Rigidity

Rigidity of rail

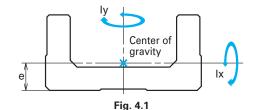


Table 4.1 Rigidity of rail

Model No.	Geometrical mo	oment of inertia (mm ⁴)	Center of gravity (mm)	Mass (kg/ 100 mm)
	lx	ly	е	W
MCM02	0.097	1.32	3.3	0.11
MCM03	0.30	3.3	4.5	0.18
MCM05	0.78	11.4	6.0	0.31
MCM06	2.14	26.1	7.0	0.57
MCM08	5.90	81.0	9.2	0.88
MCM10	15.6	219	12.2	1.52
MCH06	6.5	38.2	10.8	0.67
MCL06	2.58	29.6	7.8	0.56
MCH09	28.7	172	15.5	1.48
MCH10	54.0	307	18	1.93

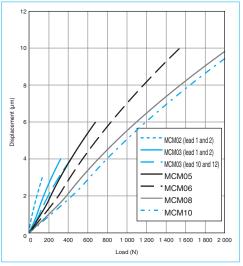


Fig. 4.2 MCM Series rigidity in radial direction

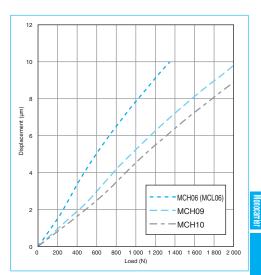


Fig. 4.3 MCH Series rigidity in radial direction

C-1-4. 3 Maximum Speed

(1) Maximum Speed of MCM Series

Maximum speed of Monocarrier is determined by critical speed of ball screw shaft and d • n value.

Do not exceed maximum speeds on the table below.

Table 4.2

	Ball screw	Stroke	Rail	Maximun
	lead	(mm)	length L ₂ (mm)	speed (mm/s)
		50	100	(111111/3/
	1 1	100	150	50
MCM02		150	200	1 00
Single		50	100	
slider	2	100	150	100
	1 -	150	200	1 .00
		50	115	
	1 1	100	190	50
		150	240	1 00
		50	115	
	2	100	190	100
MCM03	1 -	150	240	1 .00
Single		100	190	
slider	10	-	-	500
	10	250	340	300
		100	190	
	12	100	130	600
	12	250	340	000
	1	50 50	180	
	-	50	100	250
	5	_	220	250
		200	330	
		50	180	
	10	_		500
MCM05		600	730	
Single		300	430	
slider	20	_	_	1 000
Siluci		600	730	
		300	430	
		_	_	2 500
	30	400	530	
		500	630	2 200
		600	730	1 600
		60	280	
	10	_	_	500
MCM05		510	730	
Double		210	430	
slider	20	_	_	1 000
		510	730	
		50	190	
	5	_	_	250
		500	640	
		50	190	
		_	-	500
MCM06	10	600	740	
Single	'0	700	840	490
slider	1	800	940	390
JIIUEI		300	440	330
		300	440	1 000
	20	600	740	1 000
	20	700	840	980
		800	940	770
	-	110	340	250
	5	410		250
		410	640	
B 4 0 B 4 2 2		110	340	
MCM06 Double	10		1	500
	10	610	840	
slider		710	940	490
		210	440	
	1 20	_	-	1 000
	20	610	840	
		710	940	980

	Ball screw	Stroke	Rail	Maximum
			length L ₂	speed
	lead	(mm)	(mm)	(mm/s)
	Ì	50	220	(11111)
	5	_		250
		200	370	
		100	270	
	10	_	_	500
	'0	700	870	
MCM08		800	970	390
Single		300	470	4 000
slider	20	700	870	1 000
		800	970	780
		400	570	760
		400	370	2 500
	30	500	670	2 300
	30	600	770	1 860
		700	870	1 425
		80	370	
NACNAOO	10	_	_	500
MCM08 Double		680	970	
slider		180	470	
Siluei	20	_	_	1 000
		680	970	
		200	380	
		_	_	500
	10	800	980	440
		900 1 000	1 080 1 180	360
		300	480	300
MCM10		300	400	1 000
Single	20	800	980	1 000
slider	20	900	1 080	880
ondoi		1 000	1 180	720
		500	680	720
		_	_	2 500
	30	600	780	
		700	880	1 920
		800	980	1 510
		70	380	
	10	-	_	500
MCM10	'0	670	980	
Double		870	1 180	440
slider		170	480	4.000
311401	20	-	-	1 000
		670	980 1 180	000
		870	1 180	880

Note: When operating Monocarriers near critical speed or exceeding maximum speed in the table, please consult NSK.

(2) Maximum Speed of MCH Series

Maximum speed of Monocarrier is determined by critical speed of ball screw shaft and d • n value. Do not exceed maximum speeds on the table below.

Table 4.3

	Ball screw	Stroke	Rail	Maximum	
	lead	(mm)	length L ₂	speed	
	leau	, ,	(mm)	(mm/s)	
		50	150		
	5	-	_	250	
MCH06		500	600		
MCL06		50	150		
Single	10	_	_	500	
slider		500	600		
oao.		50	150	4000	
	20	-	600	1000	
		500			
	_	100	300	250	
	5	400	600	250	
MCH06		100	300		
Double	10	100	300	500	
slider	10	400	600	500	
Siluei		100	300		
	20	100	300	1000	
	20	400	600	1000	
		200	340		
		200	340	250	
	5	600	740	200	
		800	940	210	
		200	340	210	
MCH09	4.0		_	500	
Single	10	600	740		
slider		800	940	410	
		200	340		
	20	-	-	1 000	
	20	600	740		
		800	940	830	
		150	440		
	5	-	_	250	
		650	940		
MCH09		150	440		
Double	10	-	_	500	
slider		650	940		
		150	440		
	20	_		1 000	
		650	940		

Note: When operating Monocarriers near critical speed or exceeding maximum speed in the table, please consult NSK.

	Ball screw	Stroke	Rail	Maximum
		(mm)	length L2	speed
	lead	(111111)	(mm)	(mm/s)
		400	580	
		-	_	500
		800	980	
	10	900	1 080	440
		1 000	1 180	360
MCH10		1 100	1 280	300
MCH10 Single		1 200	1 380	250
		400	580	
slider		_	_	1000
	20	800	980	
	20	900	1 080	870
		1 000	1 180	720
		1 100	1 280	600
		1 200 1 380		510
		250	580	
		-	_	500
	10	750	1 080	
	10	850	1 180	480
MCH10		950	1 280	390
Double		1 050	1 380	320
slider		250	580	
Siluei		-	_	1 000
	20	750	1 080	
	20	850	1 180	950
		950	1 280	780
		1 050	1 380	650
\		N4 · · · ·		

Note: When operating Monocarriers near critical speed or exceeding maximum speed in the table, please consult NSK.

Note: When operating Monocarriers near critical speed or exceeding maximum speed in the table, please consult NSK.

C-1-4. 4 Accuracy Grade

The accuracy grade of Monocarrier standard series is high grade (H), except for lead 1 and 2 mm of MCM02, and MCM03.

When you require strokes longer than 1 200 mm, please consult NSK about the accuracy grade.

Table 4.4							Unit : µm		
Accuracy		High grade (H)		Precision (P)					
Stroke (mm)	Repeatability	Running Parallelism (vertical)	Backlash	Repeatability	Positioning accuracy	Running Parallelism (vertical)	Backlash		
- 200		14			20	8			
- 400		16			25	10			
- 600	±10	20	20 or less	±3	30	12	3 or less		
- 700		23			30	15			
- 1 000		23			35	15			
- 1 200		30			40	20			

C-1-4. 5 Stroke and Ball Screw Lead

(1) MCM Series Standard Combinations of Stroke and Ball Screw Lead

Table 4.5 Single slider

																		U	nit :	mm
Model No.	MCI	V102		MCI	M03			MCI	M05		N	ICM	06		MCI	M08		M	ICM	10
Lead Stroke	1	2	1	2	10	12	5	10	20	30	5	10	20	5	10	20	30	10	20	30
50	1	1	1	1	1	1	1	1	1		1	1	1	1	1					
100	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1		1	1	
150	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1		1	1	
200					1	1	1	1	1		1	1	1	1	1	1		1	1	
250					1	1	1	1	1		1	1	1	1	1	1		1	1	
300							1	1	1	1	1	1	1	1	1	1		1	1	
400							1	1	1	1	1	1	1	1	1	1	1	1	1	
500							1	1	1	1	1	1	1	1	1	1	1	1	1	1
600							1	1	1	1	1	1	1	1	1	1	1	1	1	1
700											1	1	1	1	1	1	1	1	1	1
800											1	1	1	1	1	1		1	1	1
900																		1	1	
1 000																		1	1	

Table 4.6 Double slider

Model No. MCM05 MCM06 MCM08 MCM10	lable	lable 4.6 Double slider												
Company Comp														
Stroke 10 20 5 10 20 10			V105	N	ICM()6	MCM08 MCM1							
60	Lead	10	20	_	10	20	10	20	10	20				
70 80 7 7 80 7 7 80 80 8 8 8 8 8 8 8 8 8	Stroke	10	20	Э	10	20	10	20	10	20				
80		1												
110									1					
160	80						1							
170	110	1		1	1									
180		1												
210									1	1				
270							1	1						
280		1	/	1	1	1								
310									1	1				
370							/	/						
380	310	1	1	1	1	1								
410									1	1				
470							1	1						
480		1	/	1	/	/								
510 V V V 570 V V 580 V V 610 V V 670 V V 680 V V 710 V V									1	1				
570							1	1						
580		1	1		1	1								
610									1	1				
670 680 710	580						1	1						
680					1	1								
710									1	1				
							1	1						
870	710				1	1								
	870								1	1				

Note: Please consult NSK about double slider of MCM02 and MCM03.

(2) MCH Series Standard Combinations of Stroke and Ball Screw Lead

Table 4.7 Single slider

							Uni	t:mm
Model No.	1	исное	ŝ	1	VICH0	MCH10		
Lead Stroke	5	10	20	5	10	20	10	20
50	1	1	1					
100	1	1	1	1	1	1	1	1
200	1	1	1	1	1	1	1	1
300	1	1	1	1	1	1	1	1
400	1	1	1	1	1	1	1	1
500	1	1	1	1	1	1	1	1
600				1	1	1	1	1
700				1	1	1	1	1
800				1	1	1	1	1
900							1	1
1 000							1	1
1 100							1	1
1 200							1	1

Table 4.8 Double slider

						ı	Jnit :	mm	
Model No.	N	ИСН(06	Λ	1CH0	9	MCH10		
Lead Stroke	5	10	20	5	10	20	10	20	
100	1	1							
150				1	1				
200	1	1							
250				1	1		1	1	
300	1	1							
350				1	1		1	1	
400		1	1						
450					1	1	1	1	
550							1	1	
650					1	1	1	1	
750								1	
850								1	
950								1	
1 050								1	

Table 4.9 Limitations

	Model No.	Lead	Slider	Stroke				
	woder No.	(mm)		(mm)				
	MCM02	1,2	Single	150				
	MCM03	1,2	Single	150				
	IVICIVIUS	10,12	Single	350				
	MCM05	5,10,20,30*	Single	900				
	IVICIVIUS	3,10,20,30	Double	810				
MCM series	MCM06	5,10,20	Single	1 000				
	IVICIVIOO	5,10,20	Double	910				
	MCM08	F 40 00 00*	Single	1 000				
		5,10,20,30*	Double	880				
	B 4 0 B 4 4 0	10 20 20*	Single	1 800				
	MCM10	10,20,30*	Double	1 670				
	MCH06	E 10 20	Single	600				
	IVICHUO	5,10,20	Double	500				
	MCH09	E 10 20	Single	1 000				
MCH series	IVICHU9	5,10,20	Double	850				
	MCH10	10.20	Single	1 800				
	IVICHIO	10,20	Double	1 650				
	MCL06	5,10,20	Single	500				
WA Anadiantal and the simple of the								

^{*)} Applicable only to single slider

10carrier

C9 C10

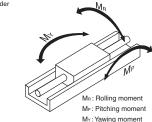
C-1-4. 6 Basic Load Rating

(1) MCM Series Basic Load Rating

Table 4.10 Basic Load Rating

	Lead	Shaft dia	Ba	sic dynamic	load rating	Basic static load rating (N)		Support unit	
Model No.	l	d	Ball screw	Linear guide	Support unit	Rated running distance	Ball screw	Linear guide	Limit load
	(mm)	(mm)	C_{a}	C	$C_{\rm a}$	L _a (km)	C_{0a}	C_0	(N)
MCM02	1	φ6	340 (High grade) 405 (Precision)	4 910	615	1	555 (High grade) 615 (Precision)	2 120	490
IVICIVIUZ	2	φο	340 (High grade) 405 (Precision)	3 900	615	2	555 (High grade) 615 (Precision)	2 120	490
	1	φ6	735	10 900		1	1 230	4 900	
MCM03	2	ΨΟ	735	8 650	2 670	2	1 230	4 300	1 040
IVICIVIOS	10	φ8	1 230	6 250		10	1 690	6 620	. 5 10
	12	Ψυ	1 230	5 880		12		0 020	
	5		3 760	15 600	4 400	5	6 310		1 450
MCM05	10	φ 12	2 260	12 400		10	3 780	10 900	
IVICIVIOS	20	φ 12	2 260	9 850		20	3 780		
	30		3 260	8 600	6 550	30	5 400		2 730
	5	<i>φ</i> 16	7 310	25 200		5	13 500		
MCM06	10	φ 15	7 060	20 000	6 550	10	12 700	17 000	2 730
	20	φισ	4 560	15 900		20	7 750		
	5	<i>φ</i> 16	7 310	30 800		5	13 500		
MCM08	10		7 060	24 400	7 100	10	12 700	22 800	3 040
	20	ϕ 15	4 560	19 400	7 100	20	7 750	22 000	3 040
	30		5 070	16 930		30	8 730	1	
	10		10 900	33 500		10	21 700		
MCM10	20	$\phi 20$	7 060	26 600	7 600	20	12 700	29 400	3 380
	30] '	11 700	23 200		30	22 700]	

Notes: Canamic and static load ratings indicate values for one slider. Sasic dynamic load rating of linear guide is load of perpendicular direction to the axis that allows 90% of a group of the same Monocarriers to operate "Rated running distance" in table, that is equivalent to 1 million revolutions of ball screw and support unit under the same conditions without causing flaking by rolling contact fatigue. Sasic dynamic load rating of ball screw is load in the axial direction that allows 90% of ball screws of a group of the same Monocarriers to rotate 1 million revolutions under the same conditions without causing flaking by rolling contact fatigue. Sasic dynamic load rating of support unit is constant load in the axial direction that allows 90% of support units of the same group of Monocarriers to rotate 1 million revolutions under the same conditions without causing flaking by rolling contact fatigue. Sasic dynamic load rating of support units of the same group of Monocarriers to rotate 1 million revolutions under the same conditions without causing flaking by rolling contact fatigue. Sasic dynamic load rating is load that results in combined permanent deformations at contact points of balls and ball grooves respective parts at a diameter of 0.01%.


Table 4.11 Basic static moment load of linear guide

Model No.	Lead	Slider	Basic	c static moment (N	· m)
Model No.	(mm)	Silder	Rolling Mro	Pitching MPO	Yawing Myo
MCM02	1, 2		24	8	8
MCM03	1, 2	Single	68	28	28
IVICIVIOS	10, 12		92	51	51
MCM05	5, 10, 20, 30*	Single	229	89	89
IVICIVIOS	5, 10, 20, 30	Double	455	765	765
MCM06	5, 10, 20	Single	415	174	174
IVICIVIOO	3, 10, 20	Double	825	1 220	1 220
MCM08	5, 10, 20, 30*	Single	770	300	300
IVICIVIOO	5, 10, 20, 30	Double	1 540	2 050	2 050
MCM10	10, 20, 30*	Single	1 170	425	425
IVICIVITO	10, 20, 30	Double	2 340	2 940	2 940

Notes:

Basic static moment of double slider is value when two sliders equipped with NSK K1 are butted against each other.

Basic static moment is value when rolling contact pressure of balls exceeds 4 000 N/mm².

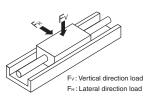


Fig. 4.4

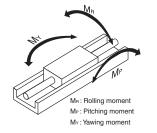
(2) MCH Series Basic Load Rating

Table 4.12 Basic Load Rating

	Lead	Shaft dia	Basic dy	namic load	rating (N)		Basic static load	rating (N)	Support unit
Model No.	l	d	Ball screw	Linear guide	Support unit	Rated running distance	Ball screw	Linear guide	Limit load
	(mm)	(mm)	Ca	C	Ca	L_a (km)	C_{0a}	C_0	(N)
	5		3 000 (High grade)	22 800		5	5 410 (High grade)		
			3 760 (Precision)	22 000			6 310 (Precision)		
MCH06	10	φ 12	1 930 (High grade)	18 100	4 400	10	3 160 (High grade)	16 300	1 450
(MCL06)		Ψ 12	2 260 (Precision)	10 100	7 700		3 780 (Precision)	10 300	1 430
(IVICEOU)	20		1 930 (High grade)	14 400		20	3 160 (High grade)		
			2 260 (Precision)	14 400			3 780 (Precision)		
	5	5	6 820 (High grade)	40 600	7 100	5	13 200 (High grade)		3 040
	5		7 100 (Precision)	40 000			13 000 (Precision)		
MCH09	10	φ 15	5 110 (High grade)	32 200		10	9 290 (High grade)		
14101103		ΨΙσ	7 060 (Precision)	32 200	7 100	10	12 700 (Precision)	30 300	3 040
	20	20 3 290 (High grade) 25 500		20	5 620 (High grade)				
	20		4 560 (Precision)	25 500		20	7 750 (Precision)		
	10		8 230 (High grade)	44 600		10	17 100 (High grade)		
MCH10	10	φ 20	10 900 (Precision)	44 000	7 600	10	21 700 (Precision)	42 000	3 380
IVICITIO	20	Ψ 20	5 300 (High grade)	35 400	, 300	20	10 300 (High grade)		3 300
	20		7 060 (Precision)	33 400		20	12 700 (Precision)		

Notes: Basic dynamic and static load ratings indicate values for one slider. Basic dynamic load rating of linear guide is load of perpendicular direction to the axis that allows 90% of a group of the same Monocarriers to operate "Rated running distance" in table, that is equivalent to 1 million revolutions of ball screw and support unit under the same conditions without causing flaking by rolling contact fatigue. Basic dynamic load rating of ball screw is load in the axial direction that allows 90% of ball screws of a group of the same Monocarriers to rotate 1 million revolutions under the same conditions without causing flaking by rolling contact fatigue. Basic dynamic load rating of support unit is constant load in the axial direction that allows 90% of support units of the same group of Monocarriers to rotate 1 million revolutions under the same conditions without causing flaking by rolling contact fatigue. Basic static load rating is load that results in combined permanent deformations at contact points of balls and ball grooves of respective parts at a diameter of 0.01%.

Table 4.13 Basic static moment load of linear guide


Model No.	Slider	Basic static moment (N · m)					
Model No.	Silder	Rolling Mro	Pitching MPO	Yawing Myo			
MCH06	Single	335	133	133			
(MCL06)	Double	770	730	730			
MCH09	Single	890	385	385			
WICHOS	Double	1 780	2 070	2 070			
MCH10	Single	1 460	610	610			
WICITIO	Double	2 920	3 430	3 430			

Notes: Basic static moment of double slider is value when two sliders equipped with NSK K1 are butted against each other.

Basic static moment is value when rolling contact pressure of balls exceeds 4 000 N/mm².

If extremely heavy load is required, please consult NSK for estimation of fatigue life.

*) Applicable only to single slider

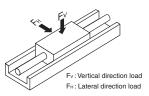


Fig. 4.5

C-1-4. 7 Estimation of Life Expectancy

(1) Life of Linear Guide

Study the load to be applied to the linear guide of Monocarrier (**Fig. 4.6**). The equivalent load (*Fe*) is determined by substituting the load for equation 1) (Eq. 2): in case of the tightly coupled double slider type).

In case of the single slider

In case of the double slider

$$Fe = \frac{Y_{H}F_{H}}{2} + \frac{Y_{V}F_{V}}{2} + Y_{R}E_{Rd}M_{R} + Y_{P}E_{Pd}M_{P} + Y_{Y}E_{Yd}M_{Y} \cdots 2)$$

 $F_{\rm H}$: Lateral direction load acting on the slider (N)

F_v: Vertical direction load acting on the slider (N)

 M_{\circ} : Rolling moment acting on the slider (N · m)

 M_P : Pitching moment acting on the slider (N · m)

 $M_{\rm v}$: Yawing moment acting on the slider (N · m)

ER, ER

: Dynamic equivalent coefficient to rolling moment

E P, E Pd

: Dynamic equivalent coefficient to pitching moment

 $\epsilon_{\scriptscriptstyle Y}$, $\epsilon_{\scriptscriptstyle Yd}$

: Dynamic equivalent coefficient to yawing moment Refer to **Table 4.14** about Dynamic equivalent coefficient.

 Y_{H} , Y_{V} , Y_{R} , Y_{P} , Y_{Y}

: 1.0 or 0.5

At equations 1) and 2) for obtaining equivalent load F_{P} , among F_{H} , F_{V} , $\epsilon_{\text{P}} M_{\text{P}}$, $\epsilon_{\text{R}} M_{\text{R}}$, $\epsilon_{\text{V}} M_{\text{V}}$, the maximum load is assumed to be 1.0, and others are to be 0.5.

Table 4.14 Dynamic equivalent coefficient

Model No.	MCM02	MCI Lead 1, 2	M03 Lead 10, 12	MCM05	MCM06	MCM08	MCM10	MCH06 MCL06	MCH09	MCH10
εR	95.2	79.4	79.4	52.6	45.5	32.5	27.8	48.3	34.5	28.6
ε,	174	113.9	84.2	81.3	65.1	48.8	45.2	75.1	47.9	41.0
ε,	174	113.9	84.2	81.3	65.1	48.8	45.2	75.1	47.9	41.0
$\epsilon_{_{\text{Rd}}}$	_	_	_	26.3	22.7	16.3	13.9	24.2	17.2	14.3
E Pd	_	_	_	10.4 (12.2)	9.7 (11.5)	7.6 (8.6)	7.1 (8.0)	11.4 (13.2)	8.11 (9.10)	6.98 (7.82)
$\epsilon_{_{\text{Yd}}}$	_	_	_	10.4 (12.2)	9.7 (11.5)	7.6 (8.6)	7.1 (8.0)	11.4 (13.2)	8.11 (9.10)	6.98 (7.82)

Note: Parenthesized figures are dynamic equivalent coefficient in case of the Monocarrier without NSK K1.

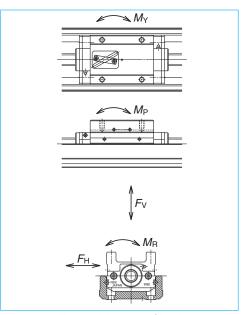


Fig. 4.6 Direction of load

In case when the load acting on the slider may fluctuate (In general, $M_{\rm P}$, $M_{\rm Y}$ may fluctuate with the acceleration/deceleration of slider), the mean effective load is determined by Eq. 3).

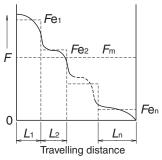


Fig. 4.7 Stepwise Fluctuating Load

Travelling distance under the equivalent load $Fe_1: L_1$ Travelling distance under the equivalent load $Fe_2: L_2$

Travelling distance under the equivalent load Fe.: L.

$$Fm = \sqrt[3]{\frac{1}{L} (Fe_1^3L_1 + Fe_2^3L_2 + \cdots Fe_n^3L_n) \cdots 3}$$

Fm : Mean effective load of fluctuating loads

L: Total travelling distance

The life of linear guide is calculated by Eq. 4).

$$L = L_a \times \left(\frac{C}{f_W \cdot Fm}\right)^3 \dots 4$$

L: Life of linear guide (km)

Fm: Mean effective load acting on the linear guide (N)

 ${\it C}~:$ Basic dynamic load rating of the linear guide (N)

L_a: Travelling distance (km)

 f_{w} : Load factor (refer to **Table 4.15**)

When the estimated life does not clear the required life, the life of the linear guide is to be calculated again after the following measures are taken:

 Change from the single slider type to double slider type.

2. Use a larger size Monocarrier.

(2) Life of Ball Screw (Support unit)

The mean effective load is determined from the axial loads.

For calculation of the mean effective load, use

The life of ball screw is calculated by Eq. 5).

ℓ : Lead of ball screw (mm)

L: Life of ball screw (km)

C_a: Basic dynamic load rating of the ball screw (N)

Fm: Mean effective load acting on the ball screw (N)

 $f_{\rm w}$: Load factor (refer to **Table 4.15**)

The life of a support unit is calculated by Eq. 5). If the life of ball screw/support unit does not clear the required life, use a larger size Monocarrier.

After applying the calculations mentioned above,

selection of the Monocarrier is completed.

Table 4.15 Values of load factor f

Operating conditions	Load factor f _w
At smooth operation with no mechanical shock	1.0 – 1.2
At normal operation	1.2 – 1.5
At operation with mechanical shock and vibrations	1.5 – 3.0

ogal lo

C-1-4. 8 Example of Life Estimation

This section offers an example how to estimate the life of Monocarrier based on the life of each component.

<<Example of calculation-1>>

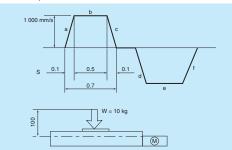


Fig. 4.8

1. Use condition

Stroke : 600 mm

Maximum speed : 1000 mm/s

Load mass : W = 10 kg

Acceleration : g = 9.8 m/s²

Setting position : Horizontal

Operating profile : See above figure

- 2. Selection of Model number (Interim Selection) Firstly, select a greater ball screw lead as the maximum speed is 1000 mm/s. The interim selection is MCM06060H20K00, a single slider specification MCM06 that has 600 mm stroke, as the stroke is 600 mm.
- 3. Calculation
- 3-1. Linear guide
- 3-1-1. Fatique life:

Multiply the result of the Eq. 1) by the dynamic equivalent coefficient (**Table 4.14** single slider) to convert the load volume. From above operation profile.

- i) Constant speed $Fe_1 = Y_V F_V = Y_V W_g = 1 \cdot 10 \cdot 9.8$ = 98 N
- ii) Accelerating $Fe_2 = Y_v F_v + Y_p \varepsilon_p M_p = 0.5 \cdot 10 \cdot 9.8 + 1 \cdot 65.1 \cdot 0.1 \cdot 100 = 700 \text{ N}$
- iii) Decelerating $Fe_3 = Y_V F_V + Y_P \mathcal{E}_P M_P = 0.5 \cdot 10 \cdot 10$

ii) Decelerating $Fe_3 = Y_V F_V + Y_P \mathcal{E}_P M_P = 0.5 \cdot 10^{-3}$ $9.8 + 1 \cdot 65.1 \cdot 0.1 \cdot 100 = 700 \text{ N}$

Mean effective load Fm

$$Fm = \sqrt[3]{\frac{1}{L} \left(Fe_1^3 \cdot L_1 + Fe_2^3 \cdot L_2 + Fe_3^3 \cdot L_3 \right)}$$
$$= \sqrt[3]{\frac{1}{600} \left(98^3 \cdot 500 + 700^3 \cdot 50 + 700^3 \cdot 50 \right)}$$
$$= 387 \text{ N}$$

$$L = \left(\frac{C}{f_w \cdot F_m}\right)^3 \times L_a$$

$$= \left(\frac{15\ 900}{1.2 \cdot 387}\right)^3 \times 20$$

$$= 8.02 \times 10^5 \text{ km}$$

3-1-2. Static safety factor: Divide the basic static load rating by the maximum load.

$$F_{\rm S} = \frac{C_{\rm 0}}{Fe} = \frac{C_{\rm 0}}{Fe_{\rm 2}} = \frac{17\ 000}{700} = 24.2$$

- 3-2. Ball screw
- 3-2-1. Fatigue life: Obtain the axial load of each stage of operation referring to the operation profile, then calculate the mean load.

By the process above,

i) Constant speed

 $Fe_1 = \mu \cdot W \cdot g = 0.01 \cdot 10 \cdot 9.8 = 0.98$

ii) Accelerating

 $Fe_2 = Fe_1 + W\alpha = 101 \text{ N}$

iii) Decelerating

 $Fe_2 = Fe_1 - W\alpha = 99 \text{ N}$

Axial mean effective load Fm

$$Fm = \sqrt[3]{\frac{1}{L} \left(Fe_1^3 \cdot L_1 + Fe_2^3 \cdot L_2 + Fe_3^3 \cdot L_3 \right)}$$

$$= \sqrt[3]{\frac{1}{600} \left(0.98^3 \cdot 500 + 101^3 \cdot 50 + 99^3 \cdot 50 \right)}$$

$$= 55 \text{ N}$$

$$L = \left(\frac{C_a}{f_w \cdot F_m} \right)^3 \times \ell \times 10^6$$

$$= \left(\frac{4 560}{1.2 \cdot 55} \right)^3 \times 20 \times 10^6 \text{ (mm)}$$

$$= 6.5 \times 10^6 \text{ km}$$

3-2-2. Static safety factor: Divide the basic static load rating by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{Fe} = \frac{C_{\rm 0a}}{Fe_2} = \frac{7.750}{101} = 76.7$$

- 3-2-3. Maximum rotational speed: According to the table of maximum speed on page C7, MCM06 with 20 mm lead and 600 mm stroke, is possible to operate under the maximum speed of 1 000 mm/s.
- 3-3. Support unit

3-3-1. Fatigue life: Use the axial load Fm = 55 N, that is the result of above calculation 3-2-1.

$$L = \left(\frac{C_a}{fw \cdot Fm}\right)^3 \times \ell \times 10^6 = \left(\frac{6550}{1.2 \times 55}\right)^3 \times 20 \times 10^6 \text{ (mm)}$$

3-3-2. Static safety factor: Divide the limit load by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{Fe} = \frac{C_{\rm 0a}}{Fe_2} = \frac{2730}{101} = 27.0$$

3-4. Result

MCM06060H20K00	Linear guide	Ball screw	Support unit
Fatigue life	8.02×	6.5×	1.95×
Fatigue life	10⁵ km	10 ⁶ km	10 ⁷ km
Static safety factor	24.2	76.7	27.0

In this case, the linear guide has the shortest fatigue life of the components. Therefore, the linear guide fatigue life is used as the life of the Monocarrier. The interim selection of MCM06060H20K00, that is chosen based on the use conditions, satisfies the required life.

<<Example of calculation-2>>

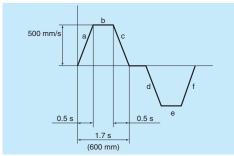


Fig. 4.9

1. Use condition

speed is 500 mm/s.

Stroke : 600 mm Maximum speed : 500 mm/s

Load mass : W = 20 kg Acceleration : 9.8 m/s² Setting position : Honizontal

Operating profile : See above figure

Fig. 4.10

Selection of Model number (Interim Selection)
 Select a 10 mm lead ball screw as the maximum

The interim selection is MCM08068H10D00 as a double slider specification of MCM08 has 680 mm stroke, and the setting position is vertical.

- 3. Calculation
- 3-1. Linear guide

3-1-1. Fatigue life: Multiply the result of the Eq. 2) by the dynamic equivalent coefficient (**Table 4.14**. double slider) to convert the load volume. From operation profile (**Fig. 4.9**), the acceleration is 1 m/s².

i) Constant speed $\textit{Fe}_1 = \textit{Y}_P \times \epsilon_{ed} \times \textit{M}_P + \textit{Y}_Y \times \epsilon_{yd} \times \textit{M}_Y$ = 1 \cdot 7.6 \cdot 20 \cdot 9.8 \cdot 0.15 + 0.5 \cdot

 $7.6 \cdot 20 \cdot 9.8 \cdot 0.1 = 298 \text{ N}$ ii) Accelerating $Fe_2 = Y_P \times \mathcal{E}_{Pd} \times M_P + Y_V \times \mathcal{E}_{Vd} \times M_V$

 $= 1 \cdot 7.6 \cdot 20 \cdot (9.8 + 0.15) \cdot 0.15$ $+ 0.5 \cdot 7.6 \cdot 20 \cdot (9.8 + 1.0) \cdot 0.1 = 329 \text{ N}$

Mean effective load Fm

$$Fm = \sqrt[3]{\frac{1}{L} \left(Fe_1^3 \cdot L_1 + Fe_2^3 \cdot L_2 + Fe_3^3 \cdot L_3 \right)}$$
$$= \sqrt[3]{\frac{1}{600} \left(298^3 \cdot 350 + 329^3 \cdot 125 + 268^3 \cdot 125 \right)}$$
$$= 300 \text{ N}$$

$$L = L_a \times \left(\frac{C}{f_w \cdot F_m}\right)^3$$

= 10 \times \left(\frac{24 \, 400}{1.2 \cdot 300}\right)^3
= 3.11 \times 10^6 \text{ km}

3-1-2. Static safety factor: Divide the basic static load rating by the maximum load.

$$F_{\rm S} = \frac{C_{\rm o}}{Fe} = \frac{C_{\rm o}}{Fe_{\rm o}} = \frac{22\,800}{329} = 69.3$$

3-2. Ball screw

3-2-1. Fatigue life: Obtain the axial load of each stage of operation referring to the operation profile, then calculate the mean load.

i) Constant speed

 $Fe_1 = W \cdot g = 20 \cdot 9.8 = 196 \text{ N}$

ii) Accelerating

 $Fe_2 = Fe_1 + W \cdot \alpha = 196 + 20 \cdot 1 = 216 \text{ N}$

iii) Decelerating

Fe₃ = Fe₁ - $W \cdot \alpha$ = 196 - 20 · 1 = 176 N

3-2-2. Static safety factor: Divide the basic static load rating by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{Fe} = \frac{C_{\rm 0a}}{Fe_{\rm 2}} = \frac{12\,700}{216} = 58.7$$

C-1-5 Maintenance C-1-5.1 Maintenance Method

- For standard Monocarrier, we pack grease in the slider, linear guides and ball screw.
- 2. Monocarriers are equipped with NSK K1 Lubrication Unit as a standard feature, therefore, you may use it for 5 years or 10 000 km depending on your application, whichever comes first, without maintenance. However, replenishment of preceded grease may extend its life substantially.
- 3. The NSK K1 Lubrication Unit is ideal in environments where oily dust exists. However, the life may be shorter than described in Clause 2 above. In such a case, it requires increasing the frequency of replenishment.

3-3. Support unit

3-3-1. Fatigue life: Use the axial load Fm = 197 N, that is the result of above calculation 3-2-1.

Maintenance

$$L = \ell \times \left(\frac{C_a}{fw \cdot Fm}\right)^3 \times 10^6 = 10 \times \left(\frac{7 \cdot 100}{1.2 \times 197}\right)^3 \times 10^6 \text{ (mm)}$$
$$= 2.70 \times 10^5 \text{ km}$$

3-3-2. Static safety factor: Divide the limit load by the maximum axial load.

$$F_{\rm S} = \frac{C_{\rm 0a}}{Fe} = \frac{C_{\rm 0a}}{Fe_{\rm 2}} = \frac{3\,040}{216} = 14.0$$

3-4. Result

MCM08068H10D00	Linear guide	Ball screw	Support unit
Fatimes life	3.11×	2.66 ×	2.70 ×
Fatigue life	10 ⁶ km	10⁵ km	10⁵ km
Static safety factor	69.3	58.7	14.0

 A Nozzle for the NSK grease pump for MCH Monocarriers is available as an option. NSK reference number: NSK HGP NZ8

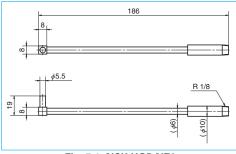


Fig. 5.1 NSK HGP NZ8

Precautions for handling

- 1. Please consult with NSK when the motor is coupled to the ball screw using a pulley because there is a restriction on allowable load to the end of ball screw shaft.
- 2. To extend high performance of NSK K1 lubrication unit, please observe the following.

1. Temperature range Ambient temperature: 50°C

Max. instantaneous temperature: 80°C

2. Use of chemicals Never leave a Monocarrier in close proximity of grease

removing organic solvents such as hexane or thinner. Never immerse it in an antirust solvent that contains kerosene.

Note: Other oils, such as water-based and oil based cutting oil, and grease do not cause any problems.

C-1-5. 2 NSK K1[™] Lubricant Unit

NSK K1 lubrication unit exhibits outstanding features, confirmed by abundant experimental data, along with proven performance of linear guides and ball screws that are equipped with NSK K1.

(1) High-Speed Durability Test of Linear Guides without Lubricant

Results of high-speed durability testing of a linear guide without lubricant are shown in Fig. 5.2. While the linear guide cannot be operated without lubricant for even short periods without damage, the installation of the NSK K1 permits the linear guide to run over 25 000 km without any problem.

		Tes	Test piece: LH30AN (Preload Z1)						
Condition	ons	Spe	Speed: 3.3 m/s						
		Stro	ke: 1	800 ı	mm				
No lubrio	cant	ΑII (grease	rem	ove	d			
NSK K	(1	ΑII (grease	rem	ove	d + b	NSK	(K1	
NSK K1		5.000	10	000	15.0	100	20.00	200	25.00
	0	5 000	10	000	15 0	000	20 00	00	25 00
			Runnir	na dis	tanc	e (km))		

Fig. 5.2 Results of high-speed durability test of linear guides without lubricant

(2) High-Speed Durability Test of Ball Screws without Lubricant

Results of high-speed durability testing of ball screw without lubrication are shown in Fig.5.3. While the ball screw cannot be operated without a lubricant at 8.5 km without damage, the installation of the NSK K1 permits the ball screw to run over 21 000 km without any problem.

Conditions	Test piece: BS2020 (Ball screw)
	Shaft diameter: 20 mm
	Lead: 20 mm
	Load: none
	Speed: 1.3 m/s (4 000 min ⁻¹)
	Stroke: 600 mm
No lubricant	All grease removed
NSK K1	All grease removed + NSK K1

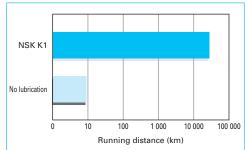


Fig. 5.3 Results of high-speed durability test of ball screws without lubricant

NSK K1 Lubrication Units for food processing and medical devices are available.

For safety equipment of food processing and medical care, NSK provides the Monocarrier equipped with special NSK K1 Lubrication Unit that is made of materials approved by the FDA. Dimensions are the same as the standard NSK K1 Lubrication Unit, and special handling care is not required.

f S

arrier

C-1-6 NSK Clean Grease LG2 Specification

Features

general grease.

This grease was developed by NSK to be exclusively used for linear guides and ball screws in clean rooms. Compared to the fluoride grease which are commonly used in clean rooms, LG2 has several advantages such as: higher in lubrication function, longer lubrication life, more stable torque (resistant to wear), and higher rust prevention. In dust generation, LG2 is more than equal to fluoride grease in keeping dust volume low. Since the base oil is not a special oil but a mineral oil, LG2 can be handled in the same manner as

Applications

LG2 is lubrication grease for rolling contact machine components such as linear guides and ball screws for processing equipment for semiconductors and LCD which require highly clean environment at normal pressure in normal temperatures. It cannot be used in a vacuum environment.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil + Synthetic hydrocarbon oil
Consistency	207
Dropping point	200°C
Volume of evaporation	1.40% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.8% (100°C, 24 hr)
Base oil kinematic Viscosity	30 mm²/s (40°C)

C-1-7 Characteristics and Evaluation Method

C-1-7. 1 Positioning Accuracy

Perform successive positioning from the reference position in a specific direction. Measure the difference between the actual and desired travel distances for each point from the reference position. Repeat this measurement seven times to determine the average value. Measure such average value over the entire travel distance at the intervals specified for each model and take the maximum difference of the average values determined at respective positions as the measured value.

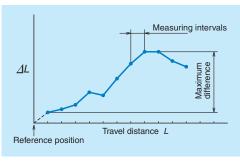


Fig. 7.1

C-1-7. 2 Repeatability

Repeat positioning at any point seven times from the same direction to measure the stopping position and determine one half of the maximum difference of readings. Repeat this measurement over the entire travel distance at the intervals specified for each model. Take the maximum difference of the determined values as the measured value. Express one half of the maximum difference with a plus-or-minus (±) sign.

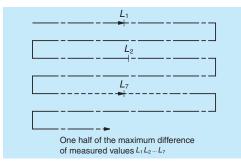


Fig. 7.2

C-1-7. 3 Running Parallelism (Vertical direction)

We specify the parallelism of slider to the datum bottom surface of rail. An indicator is moved in the axial slider making its stylus slightly touching on the rail bottom surface. The slider is moved in the axial direction for the checking. We define the total indicator reading as the running parallelism. During the checking, the rail is not fixed to the table base. Please be aware that, in general application, the rail is fixed to the machine base, and thus the wobbly rolling error will be added to the running parallelism.



Fig. 7.3 Setting of indicator

C-1-8 Special Specifications

Please consult NSK if your requirement is not in the standard products.

(1) Surface Treatment

Fluoride low temperature chrome plating
 Note: Ball screw parts (including low temperature chrome plating.)

(2) Special Machining (Processing)

- i) Shaft end processing
- · Key way processing
- One flat or two flats processing
- ii) Pin hole processing
- Slider
- Rail

Note: Due to interference with the internal construction, the position of pin hole is limited. Please consult with NSK about the pin position.

(3) Motor Bracket and Intermediate Plate for Motor Mounting

- We provide motor mounting brackets and intermediate plates that are not listed in the catalog.
- We assemble motor upon request if the motor is provided in advance.

Note: Motion check of the motor is unavailable.

(4) Reversed Motor Mount

The reversed motor mount is available. Please consult NSK.

Notes: 1) We do not check motor running condition.

 Please refer to the bottom of page C85 to C87 for the configuration of reversed motor mounting of the MCH series.

(5) Right and Left Turn Thread

Right and left turn ball screw is available. Please consult with NSK for available leads.

(6) Ball-Screw-Less Specification (Only Linear Guide Part)

A ball-screw-less rail part with the same cross section of standard Monocarriers is available for a driven linear guide. It will lessen a height adjustment work compared with a construction with two standard Monocarriers.

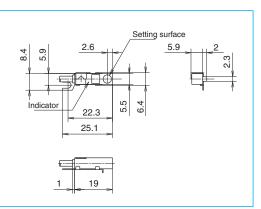
Note: Height grinding adjustment of the two axes assembly is not available.

C19 C20

C-1-9 Sensor Specification C-1-9. 1 Proximity Switch

Use of OMRON E2S-W13 and E2S-W14

Item	E2S–W13 type	E2S-W14 type		
Setting surface	Front face			
Sensing distance	1.6 mm ±15%			
Setting distance	0 to 1.2 mm			
Differential travel	10% max. of sensing distance			
Detectable object type	Ferrous metal			
Standard sensing object	Iron,12 × 12 × 1 mm			
Response frequency	1 kHz min.			
Power supply voltage (operating voltage range)	12 to 24 VDC; ripple (pp), 109	% max (10 to 30 VDC)		
Current consumption	13 mA max. at 24 VDC with no	oload		
Control output (Switching Capacity)	NPN open collector output, 50	mA max. (30 VDC max.)		
Control output (Residual voltage)	1.0 V max. with a load current of 50 mA and a cable length of 1 m			
Indicator	Operation indicator (orange)			
Operating status (with sensing object approaching)	NO (Normally open contact)	NC (Normally close contact)		
Wire lead length	1 000 mm			


Notes: 1) Do not make a wrong connection. 2) Please contact NSK for PNP output type.

Movement mode	Output type	Type	Time chart	Output circuit
NO	MON	E2S-W13 type	Target object No Output transistor (load) OFF Output transistor (orange) OFF OFF OFF	brown Load
NC	NPN	E2S-W14 type	Target object No Output transistor (load) ON Output transistor (orange) OFF	*(Maximum load current: 50 mA)

E2S-W13 (Normally open contact)

E2S-W14 (Normally close contact)

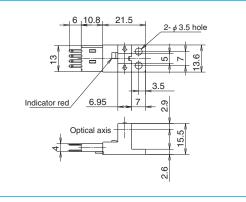
The external appearances are the same.

C-1-9. 2 Photo Sensor

Use of OMRON EE-SX674

ltem	EE-SX674 type
Slot width	5 mm
Standard reference object	Opaque, 2 × 0.8 mm
Differential distance	0.025 mm
Light source	GaAs infrared LED with peak wavelength of 940 nm
Indicator (without detecting object)	ON GaP red LED (peak emission wavelength, 690 nm)
Supply voltage	5 to 24 VDC ±10%; ripple (pp), 10% max.
Current consumption	35 mA max.
Control output	NPN open collector output models, 5 to 24 VDC, 100 mA load current
Response frequency	1 kHz max. (3 kHz typ.)
Ambient illumination	Fluorescent light, 1 000 lx max.
Ambient temperature	-25°C to 55°C (-13°F to 131°F) (for operating); -30°C to 80°C (-22°F to 176°F) (for storing)
Ambient humidity	5 to 85% RH (for operating); 5 to 95% RH (for storing)
Connecting method	EE-1001/1006 Connectors, soldering terminals
N-4 1\ D t l	· · ·

Notes: 1) Do not make a wrong connection.


2) Please contact NSK for PNP output type.

Type	Movement mode	Time chart	Connection terminal	Output circuit
	Light-ON	Incident Interrupted Indicator ON (red) OFF Output ON transistor OFF (relay) Releases Load 2	When terminals L and ⊕ are short circuited	// indicator ©: Load OUT OUT DC
EE-SX674 type	Dark-ON	Incident Interrupted ON (red) OFF ON Utput Uransistor OFF Claud 1 Operates (relay) Releases Charles ON Utput Uransistor OFF Claud 1 Operates (relay) Releases Charles OFF Claud 2 H	When terminals L and ⊕ are open circuited	Main circuit IC(Control output) 5 to 24 V

EE-SX674 (Sensor)

EE-1001 (Connector)

A connector is mounted to the sensor in the right figure.

C25
C26
C27
C29
C33
C37
C41
C45
C49
C51

MCM Series

C-2 MCM Series

C-2-1 MCM Series Reference Number Coding

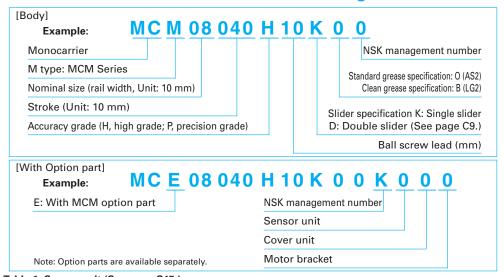


Table 1 Sensor unit (See page C45.)

Reference No. code	Specification	Reference No.
0	N/A	_
1	Proximity switch (normally close contact 3 pieces)	MC – SRxx – 10
2	Proximity switch (normally open contact 3 pieces)	MC – SRxx – 11
3	Proximity switch (normally open contact 1 piece, normally close contact 2 pieces)	MC – SRxx – 12
4	Photo sensor 3 pieces	MC – SRxx – 13

Note 1) xx: Reference number

2) Sensor rail is not included in sensor unit. If you require the rail, please request separately. (See page C46 to C48.)

Table 2 Cover unit (See pages C49 to C50.)

Reference No. code	Specification	Reference No.
0	N/A	_
1	With top cover	MC - CVxxxxx - 01 (02) *
2	Full cover	MC – CVxxxxx – 00

Note 1) xxxxx: Reference number and stroke number 2)*: "-02" is only used for Monocarrier MCM03.

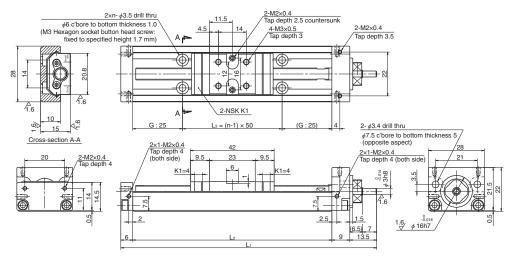

3) When a sensor unit is used, full cover unit cannot be used.

Table 3 Motor bracket (See pages C51 to C67.)

Reference			Reference No.		
No. code	MCM03	MCM05	MCM06	MCM08	MCM10
0	N/A	N/A	N/A	N/A	N/A
1	MC-BK03-146-00	MC-BK05-145-00	MC-BK06-145-00	MC-BK08-145-00	MC-BK10-170-00
2	MC-BK03-148-01	MC-BK05-146-00	MC-BK06-146-00	MC-BK08-146-00	MC-BK10-170-01
3	MC-BK03-231-00	MC-BK05-148-00	MC-BK06-148-00	MC-BK08-160-00	MC-BK10-190-00
4	_	MC-BK05-160-00	MC-BK06-160-00	MC-BK08-170-00	MC-BK10-270-00
5	_	MC-BK05-250-00	MC-BK06-170-00	MC-BK08-170-01	_
6	_	_	MC-BK06-170-01	MC-BK08-190-00	_
7	_	_	MC-BK06-250-00	MC-BK08-250-00	_
8	_	_	_	MC-BK08-270-00	_

C-2-2 MCM Series Dimension Table of Standard Products

MCM02

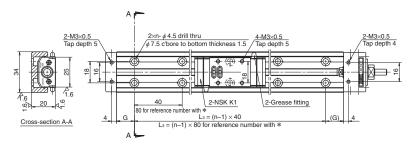
Dimension of MCM02 (Single slider)

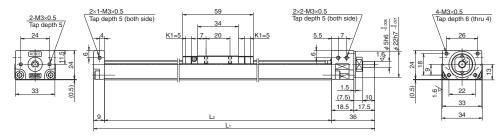
Reference No.	Nominal stroke	Stroke limit	Ball screw lead	Bod	y length (r		No. of mounting hole		Mass
	(mm)	(mm)	(mm)	L ₁	L ₂	Lз	n	× 10 ⁻⁷ (kg · m ²)	(kg)
MCM02005H01K	50		1						
MCM02005P01K		58	'	128.5	100	50	2	0.93	0.26
MCM02005H02K	50	58	2	120.0		50	2	0.93	
MCM02005P02K			2						
MCM02010H01K		108	1	- 178.5	8.5 150	50 100	3	1.36	0.32
MCM02010P01K	100								
MCM02010H02K	. 100		2						
MCM02010P02K									
MCM02015H01K			1			200 150	4	1.81	0.39
MCM02015P01K	150	50 158 -	1	228.5	5 200				
MCM02015H02K	150		2	220.5					
MCM02015P02K									

Monocarrier dynamic	torc	jue specifica	ition (N · cr
		High grade	Precision
Ball screw lead	1	0.1 – 1.3	02 16
(mm)	2	0.1 – 1.3	0.2 - 1.6

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table. 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating


Lead	Shaft dia		Basic dynamic load rating (N)				ad rating (N)	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	L_{a} (km)	C_{0a}	C_0	load IIITIIC (IV)
1		340 (High grade)	4910		1	555 (High grade)		
		405 (Precision)	4910	0.15	ı	615 (Precision)		
0	φ6	340 (High grade)	3900	615	0	555 (High grade)	2120	490
		405 (Precision)	3900		2	615 (Precision)		


Basic static moment load of linear guide

01.1	Basic static moment load (N · m)					
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}			
Single	24	8	8			

Accuracy grade: Precision (P)

Ball screw lead 1 and 2

Dimension of MCM03 (Single slider)

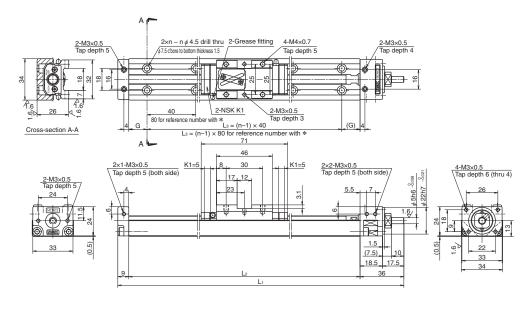
Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	В	ody len	gth (mn	1)	No. of mounting hole	Inertia	Mass
neterence No.	(mm)	(without K1)	(mm)	L ₁	L ₂	G	Lз	n	$\times 10^{-5} (kg \cdot m^2)$	(kg)
*MCM03005P01K00	50	56	1	160	115	17.5	80	2	0.015	0.6
*MCM03005P02K00	50	(66)	2	160	115	17.5	00		0.016	0.0
MCM03010P01K00	100	131	1	235	190	15	160	5	0.021	0.7
MCM03010P02K00	100	(141)	2	235	190	15	160	5	0.022	0.7
MCM03015P01K00	150	181	1	285	240	20	200	6	0.025	0.8
MCM03015P02K00	150	(191)	2	200				0	0.026	0.0

Note: Bolt hole pitch L_3 on items marked with * is 80 mm.

Monocarrier dynamic torque specification (N · cm)								
Ball screw lead	1							

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.
- A spacer plate is required when using a cover unit or sensor unit for MCM03 with the lead of 1 or 2 mm. (See page C49.)


Basic load rating

	Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo		
	l	d	Ball screw	screw Linear guides		Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)		(mm)	C_{a}	С	C_{a}	L_{a} (km)	C_{0a}	C_0	load IIITIIL (IV)
	1		735	10 900	0.070	1	4.000		4.040
	2	φ6	735	8 650	2 670	2	1 230	4 900	1 040

Basic static moment load of linear guide

Clister	Basic static moment load (N · m)								
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}						
Single	68	28	28						

Ball screw lead 10 and 12

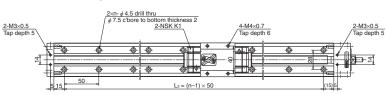
Dimension of MCM03 (Single slider)

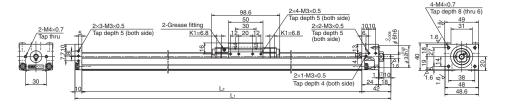
Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	В <i>L</i> ₁	ody len	gth (mn G	n) L3	No. of mounting hole	Inertia × 10 ⁻⁵ (kg · m ²)	Mass (kg)
*MCM03005H10K00 *MCM03005H12K00	- 50	69 (79)	10 12	185	140	30	80	2	0.080 0.097	0.6
MCM03010H10K00 MCM03010H12K00	100	119 (129)	10 12	235	190	15	160	5	0.092 0.109	0.7
MCM03015H10K00 MCM03015H12K00	150	169 (179)	10 12	285	240	20	200	6	0.105 0.122	0.8
MCM03020H10K00 MCM03020H12K00	200	219 (229)	10 12	335	290	25	240	7	0.118 0.135	0.9
MCM03025H10K00 MCM03025H12K00	250	269 (279)	10 12	385	340	30	280	8	0.131 0.147	1.0

Note: Bolt hole pitch L_3 on items marked with * is 80 mm.

Monocarrier dynamic torque specification (N ⋅ cm) Ball screw lead 10 1

Notes:


- Frictional resistance of NSK K1 is included in dynamic torque in table.
 Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating

Lead	Shaft dia		Basic dynamic		Basic static lo	ad rating (N)		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C _a C C _a		$L_{\rm a}$ (km)	C_{0a}	C_0	load IIIIII (IV)	
10		1 230	6 250	0.070	10	4.000	0.000	
12	- d 8	1 230	5 880	2 670	12	1 690	6 620	1 040

Basic static moment load of linear guide

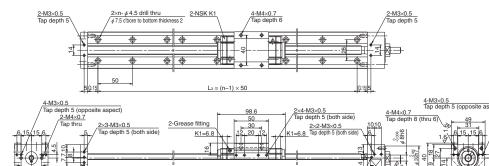
01.1	Basic st	Basic static moment load (N · m)							
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}						
Single	92	51	51						

Dimension of MCM05 (Single slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Boo L ₁	ly length (r L ₂	nm) L3	No. of mounting hole n	Inertia × 10 ⁻⁴ (kg · m ²)	Mass (kg)
MCM05005H05K00 MCM05005H10K00 MCM05005H20K00	50	80 (95)	5 10 20	232	180	150	4	0.025 0.035 0.073	1.4
MCM05010H05K00 MCM05010H10K00 MCM05010H20K00	100	130 (145)	5 10 20	282	230	200	5	0.031 0.040 0.078	1.6
MCM05015H05K00 MCM05015H10K00 MCM05015H20K00	150	180 (195)	5 10 20	332	280	250	6	0.036 0.046 0.084	1.8
MCM05020H05K00 MCM05020H10K00 MCM05020H20K00	200	230 (245)	5 10 20	382	330	300	7	0.042 0.051 0.089	2.0
MCM05025H05K00 MCM05025H10K00 MCM05025H20K00	250	280 (295)	5 10 20	432	380	350	8	0.047 0.057 0.095	2.2

Monocarrier dynamic tord	Monocarrier dynamic torque specification (N · cm)										
	5	1.0 - 4.8									
Ball screw lead	10	1.1 - 5.8									
(mm)	20	1.6 - 7.9									
	30	1 0 _ 11 1									

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating

	Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo	ad rating (N)	
	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
	(mm)	(mm)	C _a C		$C_{\rm a}$	$L_{\rm a}$ (km)	C_{0a}	C_0	load liffit (N)
	5		3 760	15 600		5	6 310		
_	10		2 260	12 400	4 400	10	3 780	40.000	1 450
	20	φ12	2 260	9 850		20	3 780	10 900	
	30		3 260	8 600	6 550	30	5 400		2 730

Basic static moment load of linear guide

Cli-l	Basic static moment load (N · m)								
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}						
Single	229	89	89						

Ball screw lead 30

Dimension of MCM05 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead		ly length (r	· .	No. of mounting hole	Inertia	Mass
	(mm)	(without K1)	(mm)	L ₁	L ₂	L3	n	× 10 ⁻⁴ (kg · m ²)	(kg)
MCM05030H05K00			5	482	430	400		0.053	2.3
MCM05030H10K00	300	330	10				9	0.063	
MCM05030H20K00	300	(345)	20					0.101	2.5
MCM05030H30K00			30	487				0.164	
MCM05040H05K00	400		5					0.064	
MCM05040H10K00		430	10	582	530	500	11	0.074	2.7
MCM05040H20K00		(445)	20		330	300		0.112	
MCM05040H30K00			30	587	1			0.175	2.8
MCM05050H05K00			5			600	13	0.076	
MCM05050H10K00	500	530	10	682	630			0.085	3.1
MCM05050H20K00	300	(545)	20		030	000	15	0.123	
MCM05050H30K00			30	687				0.186	3.2
MCM05060H05K00			5					0.087	
MCM05060H10K00	600	630	10	782	730	700	15	0.096	3.5
MCM05060H20K00	000	(645)	20		/30	700	15	0.134	1
MCM05060H30K00			30	787				0.198	3.6

2×1-M3×0.5 Tap depth 4 (both side

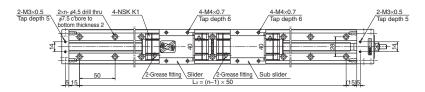
Monocarrier dynamic torque specification (N · cm)

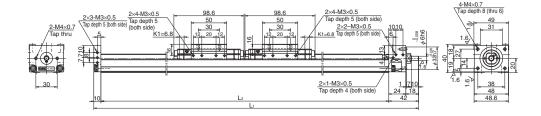
	5	1.0 - 4.8
Ball screw lead	10	1.1 - 5.8
(mm)	20	1.6 - 7.9
	30	1.8 – 11.1

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table. 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	C	C_{a}	L_{a} (km)	C_{0a}	C_0	load IIIIII (N)
5		3 760	15 600		5	6 310		
10		2 260	12 400	4 400	10	3 780	40.000	1 450
20	φ12	2 260	9 850		20	3 780	10 900	
30		3 260	8 600	6 550	30	5 400		2 730


Basic static moment load of linear guide


01.1	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single 229		89	89

Accuracy grade: High grade (H)

MCM05 (Double slider)

Accuracy grade: High grade (H)

Dimension of MCM05 (Double slider)

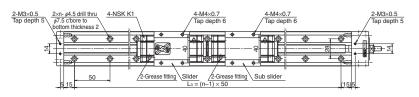
	D.f. N	Nominal stroke Stroke limit (mm) Ball screw lead Body length (r		mm) No. of mounting hole		Inertia	Mass			
	Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	$ imes 10^{-4}$ (kg \cdot m ²)	(kg)
ı	MCM05006H10D00	60	83 (110)	10	332	280	250	6	0.058	2.3
	MCM05011H10D00	110	133 (160)	10	382	330	300	7	0.064	2.5
	MCM05016H10D00	160	183 (210)	10	432	380	350	8	0.070	2.7
	MCM05021H10D00	210	233	10	482	430	400	0	0.075	2.8
	MCM05021H20D00	210	(260)	20	402	402 430	400	9 1	0.151] 2.0

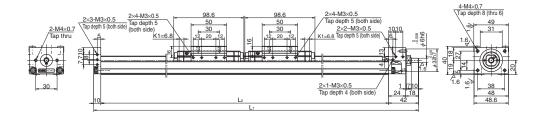
...

Monocarrier dynamic torque specification (N · cm)							
Ball screw lead	10	1.5 - 7.6					
(mm)	20	2.3 – 11.8					

1. Frictional resistance of NSK K1 is included in dynamic torque in table.

- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating


Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	L _a (km)	C_{0a}	C_0	ioau iiriit (iv)
5		3 760	15 600		5	6 310		
10	φ 12	2 260	12 400	4 400	10	3 780	10 900	1 450
20		2 260	9 850		20	3 780		

Basic static moment load of linear guide

Cli-l	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Double	455	765	765				

MCM05 (Double slider)

Dimension of MCM05 (Double slider)

Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass
(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	× 10 ⁻⁴ (kg · m ²)	(kg)
210	333	10	582	530	530 500	11	0.086	3.2
310	(360)	20					0.162	
410	433	10	682	630	30 600	13	0.098	3.6
	(460)	20					0.174	
510	533	10	702	720	700	15	0.109	4.2
	(560)	20	702	/30	700	15	0.185	
	(mm) 310 410	(mm) (without K1) 310 333 (360) 410 433 (460) 510 533	(mm) (without K1) (mm) 310 333 10 (360) 20 410 433 10 (460) 20 510 533 10	(mm) (without K1) (mm) L1 310 333 10 582 410 433 10 682 440 433 10 682 510 533 10 782	(mm) (without K1) (mm) L1 L2 310 333 10 582 530 410 433 10 682 630 410 (460) 20 682 630 510 533 10 782 730	(mm) (without K1) (mm) L1 L2 L3 310 333 10 582 530 500 410 433 10 682 630 600 4600 20 682 630 600 510 533 10 782 730 700	(mm) (without K1) (mm) L1 L2 L3 n 310 333 10 582 530 500 11 410 433 10 682 630 600 13 510 533 10 782 730 700 15	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Monocarrier dynamic torque specification (N · cm)

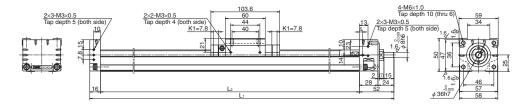
Ball screw lead	10	1.5 - 7.6
(mm)	20	2.3 – 11.8

Notes:

			.00 01 140			40 ti iii	a y		ordao ta	
-	2. Grease i	s packed	into ball	screw,	linear	guide	parts	and	support ur	nit.

3. Consult NSK for life estimates under large moment loads.

Basic load rating


	Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo		
-	l	d	Ball screw	Linear guides	ides Support unit Rated running distance Ball screw Linear gu		Linear guides	Support unit load limit (N)	
	(mm)	(mm)	C_{a}	С	C_{a}	L _a (km)	C_{0a}	C_0	load IIITIII (N)
Ξ	5		3 760	15 600		5	6 310		
	10	φ 12	2 260	12 400	4 400	10	3 780	10 900	1 450
	20		2 260	9 850		20	3 780		

Basic static moment load of linear guide

		Ū					
Clister	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Double 455		765	765				

C31 C32

Accuracy grade: High grade (H)

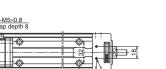
Dimension of MCM06 (Single slider)

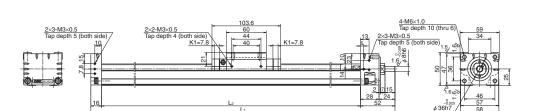
Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass
hererence No.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	\times 10 ⁻⁴ (kg \cdot m ²)	(kg)
		85	5		190			0.083	
◇MCM06005H10K00	50	(102)	10	258		100	2	0.077	2.7
◇MCM06005H20K00		(102)	20					0.122	
MCM06010H05K00		135	5					0.103	
MCM06010H10K00	100	(152)	10	308	240	200	3	0.092	3.0
MCM06010H20K00		(102)	20					0.137	
	150	185 (202)	5	358	290	200	3	0.122	3.5
			10					0.106	
			20					0.152	
MCM06020H05K00		235 (252)	5	408	340	300	4	0.142	3.8
MCM06020H10K00	200		10					0.121	
MCM06020H20K00		(202)	20					0.167	
		285	5					0.161	4.2
	250	(302)	10	458	390	300	4	0.136	
		(502)	20					0.181	
MCM06030H05K00		335	5					0.180	
MCM06030H10K00	300	300 (352)	10	508	440	400	5	0.150	4.5
MCM06030H20K00			20					0.196	

Note: Dimension G is 45 for items marked with \diamondsuit .

Monocarrier dynamic torque specification (N \cdot cm)							
Dell sees leed	5	1.9 - 7.4					
Ball screw lead	10	2.2 - 8.6					
(111111)							

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table. 2. Grease is packed into ball screw, linear guide parts and support unit.
 - 3. Consult NSK for life estimates under large moment loads. 20 2.8 – 11.0


Basic load rating


Lead	Shaft dia		Basic dynamic load rating (N)				Basic static load rating (N)		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)	
(mm)	(mm)	Ca	С	C_{a}	L_a (km)	C_{0a}	C_0	ioau iiriit (iv)	
5	φ16	7 310	25 200		5	13 500			
10		7 060	20 000	6 550	10	12 700	17 000	2 730	
20	φ 15	4 560	15 900		20	7 750			

Basic static moment load of linear guide

Slider	Basic static moment load (N · m)							
	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Single	415	174	174					

2×n- φ 6 drill thru φ 9.5 c'bore to bottom thickness 5

2-NSK K1

Dimension of MCM06 (Single slider)

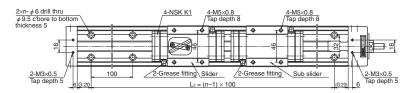
Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass	
Tiererenee 146.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	$\times 10^{-4} (kg \cdot m^2)$	(kg)	
MCM06040H05K00		435	5					0.219		
MCM06040H10K00	400	(452)	10	608	540	500	6	0.180	5.2	
MCM06040H20K00		(402)	20					0.225		
MCM06050H05K00		535	5		640	600		0.258		
MCM06050H10K00	500	(552)	10	708			7	0.209	6.0	
MCM06050H20K00		(332)	20					0.255		
MCM06060H05K00		635 (652)	5	808	740	700	8	0.297		
MCM06060H10K00	600		10					0.239	6.7	
MCM06060H20K00			20					0.284		
MCM06070H05K00		735	5	908	840	800	9	0.335		
MCM06070H10K00	700	(752)	10					0.268	7.4	
MCM06070H20K00		(752)	20					0.314		
MCM06080H05K00		835	5	1 008		900		0.374		
MCM06080H10K00	800	800 (852)	10		940		10	0.298	8.1	
MCM06080H20K00				(032)	20					0.343

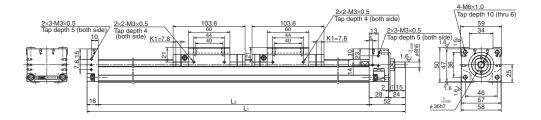
Monocarrier dynamic torque specification (N · cm)

Dell sees leed	5	1.9 - 7.4
Ball screw lead (mm)	10	2.2 - 8.6
(11111)	20	2.8 – 11.0

3. Consult NSK for life estimates under large moment loads.

Basic load rating


Lead	Shaft dia		Basic dynamic	load rating (N)	Basic static lo				
l	d	Ball screw	Linear guides Support unit Rated running distance		Ball screw	Linear guides	Support unit load limit (N)		
(mm)	(mm)	C_{a}	С	C _a L _a (km)		C_{0a}	C_0	load IIIIII (N)	
5	φ16	7 310	25 200		5	13 500			
10		7 060	20 000	6 550	10	12 700	17 000	2 730	
20	φ 15	4 560	15 900		20	7 750			


Basic static moment load of linear guide

Clister	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Single	415	174	174				

MCM06 (Double slider)

Accuracy grade: High grade (H)

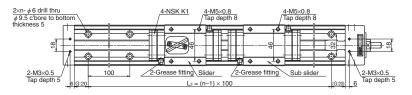
Dimension of MCM06 (Double slider)

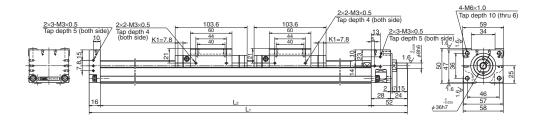
Reference No.	Nominal stroke	,	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass
Tiererenee 146.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	× 10 ⁻⁴ (kg · m ²)	(kg)
MCM06011H05D00	110	133	5	408	340	300	4	0.145	4.4
MCM06011H10D00	110	(164)	10	400	540		4	0.136	4.4
MCM06021H05D00		233	5					0.184	
MCM06021H10D00	210	(264)	10	508	440	440 400	5	0.166	5.1
MCM06021H20D00		(204)	20					0.257	
MCM06031H05D00		333	5					0.223	
MCM06031H10D00	310	(364)	10	608	540	500	6	0.195	5.8
MCM06031H20D00			20					0.286	

Monocarrier dynamic torque specification (N · cm)						
B. II	5	2.3 - 8.5				
Ball screw lead (mm)	10	2.7 – 10.9				
(111111)	20	4.0 - 15.9				

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating


Lead	Shaft dia		Basic dynamic	load rating (N)	Basic static lo			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	L_a (km)	C_{0a}	C_0	ioau iiriit (iv)
5	φ16	7 310	25 200		5	13 500		
10		7 060	20 000	6 550	10	12 700	17 000	2 730
20	φ 15	4 560	15 900		20	7 750		

Basic static moment load of linear guide

Cli-l	Basic st	Basic static moment load (N · m)							
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}						
Double	825	1 220	1 220						

MCM06 (Double slider)

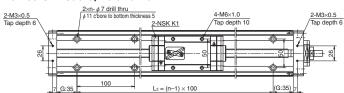
Dimension of MCM06 (Double slider)

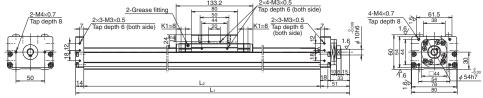
D.C. N	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	ly length (r	nm)	No. of mounting hole	Inertia	Mass
Reference No.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	\times 10 ⁻⁴ (kg \cdot m ²)	(kg)
MCM06041H05D00		433 5					0.262		
MCM06041H10D00	410	(464)	10	708	640	600	7	0.224	6.6
MCM06041H20D00		(404)	20					0.316	
MCM06051H10D00	510	533	10	808	740	700	8	0.254	7.3
MCM06051H20D00	510	(564)	20	000	740	700	٥	0.345	7.3
MCM06061H10D00	610	633	10	908	840	800	9	0.283	8.0
MCM06061H20D00	010	(664)	20	908	040	000	9	0.375	0.0
MCM06071H10D00	710	733	733 10 1 008	940	900	900 10	0.313	8.7	
MCM06071H20D00	710	(764)	20	1 000	540	300	10	0.404	0.7

Monocarrier dynamic torque specification (N · cm)

D 11 1 1	5	2.3 - 8.5
Ball screw lead (mm)	10	2.7 – 10.9
(11111)	20	4.0 - 15.9

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table. 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating


Lead	Shaft dia		Basic dynamic	load rating (N)	Basic static lo	ad rating (N)			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)	
(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	ioad iimit (N)	
5	φ 16	7 310	25 200		5	13 500			
10		7 060	20 000	6 550	10	12 700	17 000	2 730	
20	φ 15	4 560	15 900		20	7 750			

Basic static moment load of linear guide

OI: I	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Double	825	1 220	1 220				

C35 C36

Dimension of MCM08 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass
herefelice No.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	$\times 10^{-4} (kg \cdot m^2)$	(kg)
◇MCM08005H05K00	50	85	5	285	220	100	2	0.101	4.1
◇MCM08005H10K00	00	(101)	10	200		100		0.100	1 4.1
MCM08010H05K00		135	5					0.120	
MCM08010H10K00	100	(151)	10	335	270	200	3	0.114	4.6
MCM08010H20K00		(101)	20					0.190	
	150	185	5					0.139	
		(201)	10	385	320	320 200	3	0.129	5.1
			20					0.205	
MCM08020H05K00		235	5					0.159	
MCM08020H10K00	200	(251)	10	435	370	300	4	0.144	5.5
MCM08020H20K00		, . ,	20					0.220	
○MCM08025H05K00		285	5					0.178	
◇MCM08025H10K00	250	(301)	10	485	420	300	4	0.159	6.0
		,,	20					0.235	
MCM08030H05K00		335	5					0.198	
MCM08030H10K00	300	300 (351)	10	535	470	400	5	0.173	6.5
MCM08030H20K00		,,	20					0.249	

Note: Dimension G is 60 for items marked with \diamondsuit .

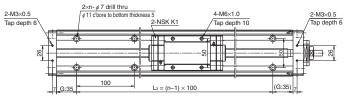
30

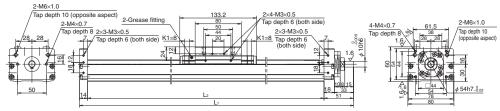
2.8 - 12.0

Monocarrier dynamic torque specification (N · cm)									
	5	1.0 - 5.9	1						
Ball screw lead	10	2.0 - 7.8	2						
(mm)	20	2.5 – 10.8	3						

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating


Lead	Shaft dia		Basic dynamic	load rating (N)	Basic static lo			
l	d	Ball screw	Linear guides	inear guides Support unit Ra		Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	$C_{\rm a}$	С	$C_{\rm a}$	$L_{\rm a}$ (km)	C_{0a}	C_0	load liffit (N)
5	φ16	7 310	30 800		5	13 500		
10		7 060	24 400		10	12 700		
20	φ 15	4 560	19 400	7 100	20	7 750	22 800	3 040
30		5 070	169 300		30	8 730		

Basic static moment load of linear guide

Clinter	Basic st	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Single	770	300	300					

Ball screw lead 30

Dimension of MCM08 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead	Bod	y length (r	nm)	No. of mounting hole	Inertia	Mass
hererence No.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	\times 10 ⁻⁴ (kg \cdot m ²)	(kg)
MCM08040H05K00			5					0.236	
MCM08040H10K00	400	435	10	635	570	500	6	0.203	7.4
MCM08040H20K00	400	(451)	20	- 000	370	300		0.279] /.4
MCM08040H30K00			30					0.405	
MCM08050H05K00			5					0.275	
MCM08050H10K00	500	535	10	735	670	600	7	0.232	8.4
MCM08050H20K00	300	(551)	20	755	070	000		0.308	
MCM08050H30K00			30					0.435	
MCM08060H05K00			5					0.314	
MCM08060H10K00	600	635	10	835	770	700	8	0.262	9.3
MCM08060H20K00		(651)	20		770	700		0.338	- 0.0
MCM08060H30K00			30					0.464	
MCM08070H05K00			5					0.353	
MCM08070H10K00	700	735	10	935	870	800	9	0.291	10.5
MCM08070H20K00	700	(751)	20	333	070	000		0.367	10.5
MCM08070H30K00			30					0.494	
MCM08080H05K00			5					0.391	
MCM08080H10K00	800	835 (851)	10	1 035	970	900	10	0.320	11.2
MCM08080H20K00			20	1 000	1 035 970	900	10	0.396	
MCM08080H30K00			30					0.396	

Monocarrier dynamic torque specification (N · cm)

	5	1.0 - 5.9
Ball screw lead	10	2.0 - 7.8
(mm)	20	2.5 – 10.8
	30	2.8 – 12.0

Notes:

- Frictional resistance of NSK K1 is included in dynamic torque in table.
 Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

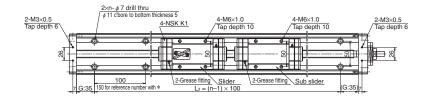
Lead	Shaft dia		Basic dynamic	load rating (N)	Basic static lo	ad rating (N)		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	$C_{\rm a}$	$L_{\rm a}$ (km)	C_{0a}	C_0	load liffit (N)
5	φ 16	7 310	30 800		5	13 500		
10		7 060	24 400		10	12 700		
20	φ 15	4 560	19 400	7 100	20	7 750	22 800	3 040
30		5 070	169 300		30	8 730		

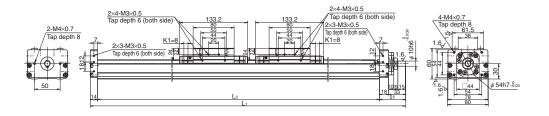
CI	Slider	Basic st	Basic static moment load (N · m)						
5110		Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Sin	gle	770	300	300					

2-M3×0.5 Tap depth 6

MCM08 (Double slider)

Accuracy grade: High grade (H)


MCM08 (Double slider)


2×n- ϕ 7 drill thru $\int \phi$ 11 c'bore to bottom thickness 5

4-NSK K1

Accuracy grade: High grade (H)

2-M3×0.5 Tap depth 6

2×4-M3×0.5 Tap depth 6 (both side) 2×3-M3×0.5 2-M4×0.7 Tap depth 8 2×3-M3×0.5

4-M6×1.0

Tap depth 10

4-M6×1.0

Tap depth 10

Dimension of MCM08 (Double slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Body length (mm)			No. of mounting hole	Inertia	Mass	
neterence No.	(mm)	(without K1)	(mm)	L ₁	L ₂	L ₃	n	× 10 ⁻⁴ (kg · m ²)	(kg)
*MCM08008H10D00	80	104 (136)	10	435	370	300	3	0.169	6.5
MCM08018H10D00	180	204	10	535	470	400	-	0.199	7.5
MCM08018H20D00	180	(236)	20	555	470	400	5	0.351	7.5
MCM08028H10D00	280	304	10	635	570	500	6	0.228	8.4
MCM08028H20D00	200	(336)	20	635			0	0.380	0.4
MCM08038H10D00	380	404	10	735	670	600	7	0.257	9.4
MCM08038H20D00	360	(436)	20	735	070	000	/	0.409	

Note: Bolt hole pitch L_3 on item marked with * is 150 mm.

Dimension of MCM08 (Double slider)

Monocarrier dynamic torque specification (N · cm)

10

2.5 - 10.8

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod <i>L</i> ₁	y length (r L2	nm) <i>L</i> 3	No. of mounting hole	Inertia ×10 ⁻⁴ (kg·m²)	Mass (kg)
MCM08048H10D00	480	504	10	835	770	700		0.287	10.3
MCM08048H20D00		(536)	20					0.439	10.5
MCM08058H10D00	580	604	10	935	870	800	0	0.316	11.5
MCM08058H20D00	300	(636)	20	930			9	0.468	11.5
MCM08068H10D00	680	704	10	1035	970	900	10	0.346	12.2
MCM08068H20D00	000	(736)	20	1035	3/0		10	0.498	12.2

Monocarrier dynamic torque specification (N · cm)

	1	
Ball screw lead	10	2.5 – 10.8
(mm)	20	4.0 – 17.2

Basic load rating

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia		Basic dynamic	load rating (N)	Basic static lo			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load littilt (N)
5	φ16	7 310	30 800		5	13 500		
10		7 060	24 400	7 100	10	12 700	22 800	3 040
20	φ 15	4 560	19 400		20	7 750		

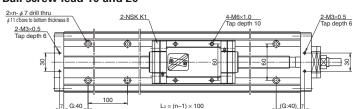
Lead	Shaft dia		Basic dynamic	load rating (N)	Basic static lo			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C _a	L_{a} (km)	C_{0a}	C_0	load liffiit (N)
5	φ16	7 310	30 800		5	13 500		
10		7 060	24 400	7 100	10	12 700	22 800	3 040
20	φ 15	4 560	19 400		20	7 750		

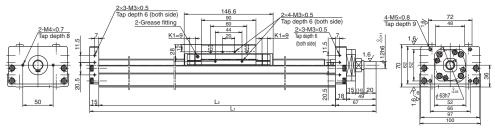
Basic static moment load of linear guide

Slider	Basic static moment load (N · m)						
Silder	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Double	1 540	2 050	2 050				

Ball screw lead

Lead	Shaft dia		Basic dynamic	load rating (N)	Basic static lo	ad rating (N)		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load IIITIIL (IV)
5	φ 16	7 310	30 800		5	13 500		
10		7 060	24 400	7 100	10	12 700	22 800	3 040
20	φ 15	4 560	19 400		20	7 750		


1. Frictional resistance of NSK K1 is included in dynamic torque in table.


2. Grease is packed into ball screw, linear guide parts and support unit. Consult NSK for life estimates under large moment loads.

Basic static moment load of linear guide

	Slider	Basic static moment load (N · m)						
5		Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
D	Double 1 540		2 050	2 050				

C39 C40

Dimension of MCM10 (Single slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r L ₂	mm) <i>L</i> 3	No. of mounting hole	Inertia × 10 ⁻⁴ (kg·m ²)	Mass (kg)
MCM10010H10K00	100	130	10	362	280	200	2*	0.332	7.8
MCM10010H20K00		(151)	20		200	200	_	0.446	
	150	180	10	412	330	300	4	0.378	8.7
◇MCM10015H20K00	150	(201)	20	412	330	330 300	4	0.492	0.7
MCM10020H10K00	200	230	10	462	380	300	4	0.425	9.5
MCM10020H20K00	200	(251)	20	402	360	300	4	0.539	0.0
◇MCM10025H10K00	250	280	10	512	430	400	5	0.472	10.4
◇MCM10025H20K00	250	(301)	20	512	430	400	5	0.586	10.4
MCM10030H10K00	300	330	10	562	480	400	5	0.519	11.2
MCM10030H20K00	300	(351)	20	302	400	400	5	0.633	1 11.2
MCM10040H10K00	400	430	10	662	580	500	6	0.612	13.0
MCM10040H20K00	400	(451)	20	002	300	300	0	0.726	1 13.0
MCM10050H10K00		530	10					0.706	
MCM10050H20K00	500	(551)	20	762	680	600	7	0.820	14.6
MCM10050H30K00		(551)	30					1.010	

Note:1) Dimension G is 15 for items marked with \diamondsuit .

2) *: Use mounting holes on each end of the rail.

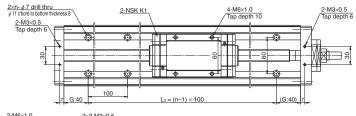
Monocarrier	dynamic	torque	specification	(N	С

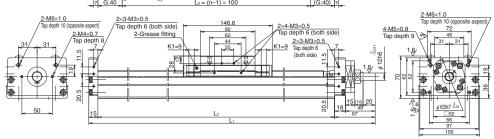
specification (iv - cm)					
10	2.7 – 10.8				
20	3.1 – 12.7				
30	5.1 – 18.0				

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

Ball screw lead


Lead	Shaft dia		Basic dynamic	load rating (N)	Basic static lo			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	L_a (km)	C_{0a}	C_0	load littit (N)
10		10 900	33 500		10	21 700		
20	φ20	7 060	26 600	7 600	20	12 700	29 400	3 380
30		11 700	23 200		30	22 700		


Basic static moment load of linear guide

Clister	Basic static moment load (N · m)							
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Single	1 170	425	425					

Accuracy grade: High grade (H)

Ball screw lead 30

Dimension of MCM10 (Single slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r L ₂	nm) L ₃	No. of mounting hole	Inertia ×10 ⁻⁴ (kg·m ²)	Mass (kg)
MCM10060H10K00 MCM10060H20K00 MCM10060H30K00	600	630 (651)	10 20 30	862	780	700	8	0.800 0.914 1.104	16.3
MCM10070H10K00 MCM10070H20K00 MCM10070H30K00	700	730 (751)	10 20 30	962	880	800	9	0.893 1.007 1.197	18.0
MCM10080H10K00 MCM10080H20K00 MCM10080H30K00	800	830 (851)	10 20 30	1 062	980	900	10	0.987 1.101 1.291	19.7
MCM10090H10K00 MCM10090H20K00	900	930 (951)	10 20	1 162	1 080	1 000	11	1.081 1.195	21.4
○MCM10100H10K00 ○MCM10100H20K00	1 000	1 030 (1 051)	10 20	1 262	1 180	1 000	11	1.174 1.288	23.1

Note: Dimension G is 90 for items marked with \diamondsuit .

Monocarrier dynamic torque specification (N · cm)

Dell sesson less	10	2.7 – 10.8
Ball screw lead (mm)	20	3.1 – 12.7
(111111)	30	5.1 – 18.0

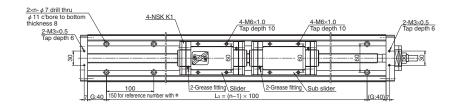
- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- Consult NSK for life estimates under large moment loads.

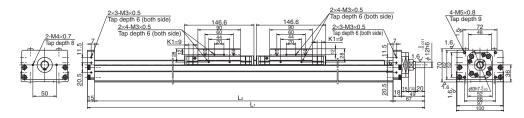
Basic load rating

Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo	6		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)	
(mm)	(mm)	C_{a}	С	C_{a}	L _a (km)	C_{0a}	C_0	load IIIIII (N)	
10		10 900	33 500		10	21 700			
20	φ20	7 060	26 600	7 600	20	12 700	29 400	3 380	
30		11 700	23 200		30	22 700			

Basic static moment load of linear guide

01.1	Basic static moment load (N · m)						
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
Single	1 170	425	425				

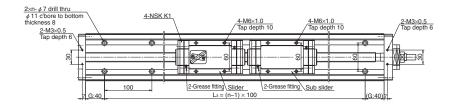

C41

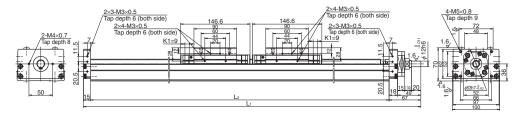

MCM₁₀

Accuracy grade: High grade (H)

MCM10 (Double slider)

Accuracy grade: High grade (H)




Dimension of MCM10 (Double slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r L ₂	mm) <i>L</i> 3	No. of mounting hole	Inertia $\times 10^{-4}$ (kg · m ²)	Mass (kg)
*MCM10007H10D00	70	86 (122)	10	462	380	300	3	0.463	11.0
MCM10017H10D00	170	186	10	562	480	400	5	0.557	12.7
MCM10017H20D00	170	(222)	20	562	400	400	5	0.785	12.7
MCM10027H10D00	270	286	10	662	580	500	6	0.650	13.4
MCM10027H20D00	270	(322)	20	002	560	300	٥	0.878	13.4
MCM10037H10D00	370	386	10	762	680	600	7	0.744	15.1
MCM10037H20D00	370	(422)	20	702	000	000	′	0.972	15.1
MCM10047H10D00	470	486	10	862	780	700	8	0.838	17.8
MCM10047H20D00	470	(522)	20	002	700	700	0	1.066	17.0

Note: Bolt hole pitch L_3 on item marked with \ast is 150 mm.

MCM10 (Double slider)

Dimension of MCM10 (Double slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	Bod L ₁	y length (r L ₂	nm) L ₃	No. of mounting hole	Inertia ×10 ⁻⁴ (kg·m ²)	Mass (kg)
MCM10057H10D00 MCM10057H20D00	570	586 (622)	10 20	962	880	800	9	0.931 1.159	19.5
MCM10067H10D00 MCM10067H20D00	670	686 (722)	10 20	1 062	980	900	10	1.025 1.253	21.2
	870	886 (922)	10 20	1 262	1 180	1 000	11	1.212 1.440	23.6

Note: Dimension G is 90 for items marked with \diamondsuit .

Monocarrier dynamic torque specification (N · cm)							
Ball screw lead	10	4.2 – 15.6					
(mm)	20	5.0 - 19.6					

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo	ad rating (N)	
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	L_{a} (km)	C_{0a}	C_0	ioau iiriit (N)
10		10 900	33 500	= 000	10	21 700		
20	φ 20	7 060	26 600	7 600	20	12 700	29 400	3 380

Basic static moment load of linear guide

Clister	Basic static moment load (N · m)					
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}			
Double	2 340	2 940	2 940			

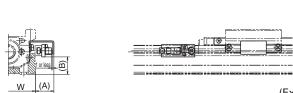
Monocarrier dynamic torque specification (N · cm)

Ball screw lead	10	4.2 – 15.6
(mm)	20	5.0 - 19.6

Notes

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating


Lead	Shaft dia		Basic dynamic	load rating (N)		Basic static lo			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)	
(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	load limit (IV)	
10		10 900	33 500		10	21 700			
20	20 ¢ 20	7 060	26 600	7 600	20	12 700	29 400	3 380	

Basic static moment load of linear guide

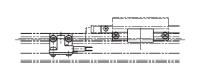
Clister	Basic static moment load (N · m)				
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}		
Double	2 340	2 940	2 940		

C43 C44

Proximity switch

(Example of assembly)

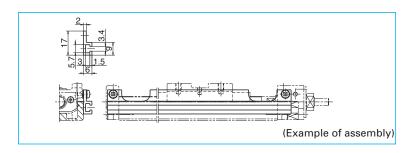
	Model No.	Reference No.			A (mm)	B (mm)	Body width W (mm)
MCM02		MC-SR02-00	MC-SR02-01	MC-SR02-02	17	2	28
MCM03		MC-SR03-10	MC-SR03-11	MC-SR03-12	17	3	34
MCM05		MC-SR05-10	MC-SR05-11	MC-SR05-12	17	15	48.6
	MCM06	MC-SR06-10	MC-SR06-11	MC-SR06-12	17	19	58
	MCM08	MC-SR08-10	MC-SR08-11	MC-SR08-12	16	27	80
	MCM10	MC-SR10-10	MC-SR10-11	MC-SR10-12	16	35	100
Quantity	Proximity switch (normally open contact)	_	3 1		E2S-W13 (OMRON Corp.)		N Corp.)
Quantity	Proximity switch (normally close contact)	3	_	2	E2S-W1	4 (OMRO	N Corp.)


Notes: 1. See page C21 for proximity switch specification.

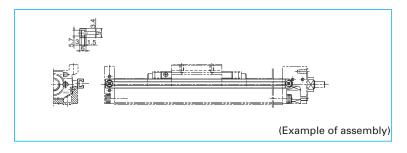
A sensor unit consists of sensors, a sensor dog and sensor mounting parts.
 Sensor unit for MCM02 contains two sensor dogs.

4. A spacer plate is required when using a cover unit or sensor unit for MCM03 with the lead of 1 or 2 mm. (Refer to page C49.)

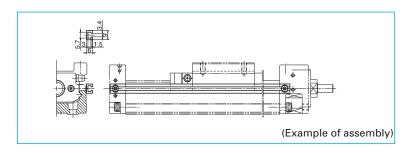
Photo sensor


(Example of assembly)

Model No.	Reference No.	C (mm)	D (mm)	Body width W (mm)	Remarks
MCM03	MC-SR03-13	24	0.5	34	
MCM05	MC-SR05-13	24	5	48.6	EE-SX674 (OMRON Corp.)
MCM06	MC-SR06-13	24	9	58	3 sets
MCM08	MC-SR08-13	23	17	80	(EE-1001 connector attachment)
MCM10	MC-SR10-13	22	24	100	


Notes: 1. See page C22 for photo sensor specification.
2. A sensor unit consists of sensors, a sensor dog and sensor mounting parts.
3. A spacer plate is required when using a cover unit or sensor unit for MCM03 with the lead of 1 or 2 mm. (Refer to page C49.)

(1) Sensor Rail


Sensor rail for MCM03: MC-SRL3- * * * *

Sensor rail for MCM05: MC-SRL5- * * * *

Sensor rail for MCM02: MC-SRL2- * * * * Sensor rail for MCM06: MC-SRL6- * * * * Sensor rail for MCM08: MC-SRL8- * * * * Sensor rail for MCM10: MC-SRL1- * * * *

Notes: 1. * * * * is the same as rail dimension L_2 .

- 2. Please assemble the attached seat between the sensor rail and the support unit for MCM03, MCM05, MCM06 and MCM08.
- 3. For combinations of sensors and rails, see pages C47 to C48.

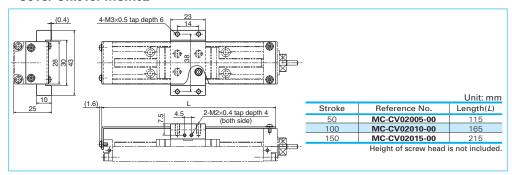
MCM Series and Sensor Rail Combination Table

Model No.	Body length L_2 (mm)	Reference No.	Sensor rail reference No.
		MCM02005H01K	
	100	MCM02005P01K MCM02005H02K	MC-SRL2-0100*
		MCM02005P02K	
		MCM02010H01K	
		MCM02010P01K	
MCM02	150	MCM02010H02K	MC-SRL2-0150
		MCM02010P02K	
		MCM02015H01K	
	200	MCM02015P01K	MC-SRL2-0200
		MCM02015H02K	
		MCM02015P02K MCM03005P01K00	
	115	MCM03005P02K00	MC-SRL3-0115
		MCM03005H10K00	
	140	MCM03005H12K00	MC-SRL3-0140
		MCM03010P01K00	
	190	MCM03010P02K00	MC-SRL3-0190
	190	MCM03010H10K00	IVIC-30L3-0190
MCM03		MCM03010H12K00	
IVICIVIOO		MCM03015P01K00	
	240	MCM03015P02K00	MC-SRL3-0240
		MCM03015H10K00	
		MCM03015H12K00 MCM03020H10K00	
	290	MCM03020H10K00	MC-SRL3-0290
		MCM03025H10K00	
	340	MCM03025H12K00	MC-SRL3-0340
		MCM05005H05K00	
	180	MCM05005H10K00	MC-SRL5-0180
		MCM05005H20K00	
	230	MCM05010H05K00	
		MCM05010H10K00	MC-SRL5-0230
		MCM05010H20K00 MCM05015H05K00	
		MCM05015H10K00	MC-SRL5-0280
	280	MCM05015H10K00	1010 01120 0200
		MCM05006H10D00	
		MCM05020H05K00	
	330	MCM05020H10K00	MC-SRL5-0330
	330	MCM05020H20K00	
		MCM05011H10D00	
		MCM05025H05K00	
	380	MCM05025H10K00 MCM05025H20K00	MC-SRL5-0380
		MCM05016H10D00	
MCM05		MCM05030H05K00	
		MCM05030H10K00	
	420	MCM05030H20K00	MC CDLE 0420
	430	MCM05030H30K00	MC-SRL5-0430
		MCM05021H10D00	
		MCM05021H20D00	
		MCM05040H05K00	
		MCM05040H10K00 MCM05040H20K00	
	530	MCM05040H30K00	MC-SRL5-0530
		MCM05031H10D00	
		MCM05031H20D00	
		MCM05050H05K00	
		MCM05050H10K00	
	630	MCM05050H20K00	MC-SRL5-0630
	030	MCM05050H30K00	WIG-311E3-0030
		MCM05041H10D00	
		MCM05041H20D00	

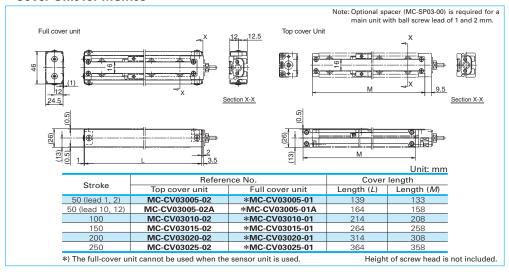
Model No.	Body length L ₂ (mm)	Reference No.	Sensor rail reference No.			
		MCM05060H05K00				
		MCM05060H10K00				
MCM05	730	MCM05060H20K00	MC-SRL5-0730			
IVICIVIOO	700	MCM05060H30K00	1010 01120 0700			
		MCM05051H10D00				
		MCM05051H20D00				
		MCM06005H05K00				
	190	MCM06005H10K00	MC-SRL6-0190			
		MCM06005H20K00				
		MCM06010H05K00				
	240	MCM06010H10K00	MC-SRL6-0240			
		MCM06010H20K00				
		MCM06015H05K00				
	290	MCM06015H10K00	MC-SRL6-0290			
		MCM06015H20K00	IVIC-3NL0-0290			
		MCM06020H05K00				
		MCM06020H10K00				
	340	MCM06020H20D00	MC-SRL6-0340			
	040	MCM06011H05D00	MC-SRL6-0340			
		MCM06011H10D00				
		MCM06025H05K00				
	390	MCM06025H10K00	MC-SRL6-0390			
	330	MCM06025H20K00	IVIC-311E0-0330			
		MCM06030H05K00				
	440	MCM06030H10K00				
		440 MCM06030H20K00 M MCM06021H05D00 M				
		MCM06021H10D00				
		MCM06021H20D00				
		MCM06040H05K00				
MCM06		MCM06040H10K00				
	540	MCM06040H20K00	MC-SRL6-0540			
		MCM06031H05D00				
		MCM06031H10D00				
		MCM06031H20D00				
		MCM06050H05K00				
		MCM06050H10K00				
	640	MCM06050H20K00	MC-SRL6-0640			
	040	MCM06041H05D00	1010-31120-0040			
		MCM06041H10D00				
		MCM06041H20D00				
		MCM06060H05K00				
		MCM06060H10K00				
	740	MCM06060H20K00	MC-SRL6-0740			
		MCM06051H10D00				
		MCM06051H20D00				
		MCM06070H05K00				
		MCM06070H10K00				
	840	MCM06070H20K00	MC-SRL6-0840			
	0	MCM06061H10D00				
		MCM06061H10D00				
		MCM06080H05K00				
		MCM06080H10K00				
	940	MCM06080H20K00	MC-SRL6-0940			
	340	MCM06071H10D00	1010-31120-0340			
		MCM06071H10D00				
		IVICIVIU0U/ IHZUDUU	I			

Model No.	Body length L_2 (mm)	Reference No.	Sensor rail reference No.
	220	MCM08005H05K00 MCM08005H10K00	MC-SRL8-0220
	270	MCM08010H05K00 MCM08010H10K00	MC-SRL8-0270
	320	MCM08010H20K00 MCM08015H05K00 MCM08015H10K00	MC-SRL8-0320
	370	MCM08015H20K00 MCM08020H05K00 MCM08020H10K00	MC-SRL8-0370
		MCM08020H20K00 MCM08008H10D00 MCM08025H05K00	
	420	MCM08025H10K00 MCM08025H20K00	MC-SRL8-0420
	470	MCM08030H05K00 MCM08030H10K00 MCM08030H20K00 MCM08018H10D00 MCM08018H20D00	MC-SRL8-0470
MCM08	570	MCM08040H05K00 MCM08040H10K00 MCM08040H20K00 MCM08040H30K00 MCM08028H10D00 MCM08028H20D00	MC-SRL8-0570
	670	MCM08050H05K00 MCM08050H10K00 MCM08050H20K00 MCM08050H30K00 MCM08038H10D00 MCM08038H20D00	MC-SRL8-0670
	770	MCM08060H05K00 MCM08060H10K00 MCM08060H20K00 MCM08060H30K00 MCM08048H10D00 MCM08048H20D00	MC-SRL8-0770
	870	MCM08070H05K00 MCM08070H10K00 MCM08070H20K00 MCM08070H30K00 MCM08070H30K00 MCM08058H10D00 MCM08058H20D00	MC-SRL8-0870
	970	MCM080381120500 MCM08080H05K00 MCM08080H10K00 MCM08080H30K00 MCM08088H10D00 MCM08068H20D00	MC-SRL8-0970

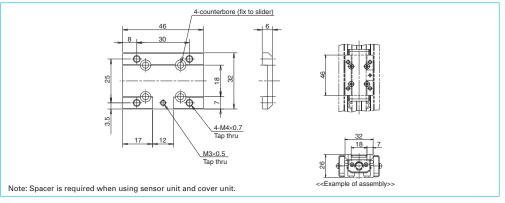
Model No.	Body length L ₂ (mm)	Reference No.	Sensor rail reference No.
	280	MCM10010H10K00 MCM10010H20K00	MC-SRL1-0280
	330	MCM10015H10K00 MCM10015H20K00	MC-SRL1-0330
	380	MCM10020H10K00 380 MCM10020H20K00 M0	
		MCM10007H10D00 MCM10025H10K00	MC-SRL1-0380
	430	MCM10025H20K00	MC-SRL1-0430
	480	MCM10030H10K00 MCM10030H20K00 MCM10017H10D00 MCM10017H20D00	MC-SRL1-0480
	580	MCM10040H10K00 MCM10040H20K00 MCM10027H10D00 MCM10027H20D00	MC-SRL1-0580
MCM10	680	MCM10050H10K00 MCM10050H20K00 MCM10050H30K00 MCM10037H10D00 MCM10037H20D00	MC-SRL1-0680
	780	MCM10060H10K00 MCM10060H20K00 MCM10060H30K00 MCM10047H10D00 MCM10047H20D00	MC-SRL1-0780
	880	MCM10070H10K00 MCM10070H20K00 MCM10070H30K00 MCM10057H10D00 MCM10057H20D00	MC-SRL1-0880
	980	MCM10080H10K00 MCM10080H20K00 MCM10080H30K00 MCM10067H10D00 MCM10067H20D00	MC-SRL1-0980
	1 080	MCM10090H10K00 MCM10090H20K00	MC-SRL1-1080
	1 180	MCM10100H10K00 MCM10100H20K00 MCM10087H10D00 MCM10087H20D00	MC-SRL1-1180

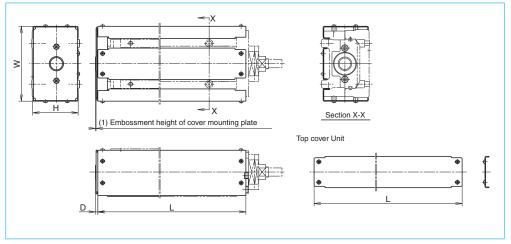

C47 C48

^{*)} When using NSK standard sensors, prepare two sensor rails. Two sensor rails will also be required for another Monocarriers depending on signal points of sensors. Contact NSK for details.


NSK

C-2-3. 2 Cover Unit


Cover Unit for MCM02

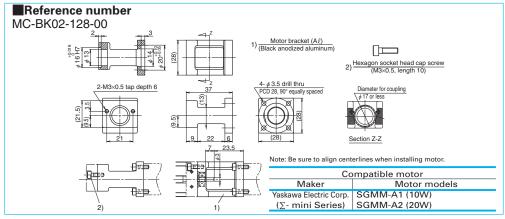

Cover Unit for MCM03

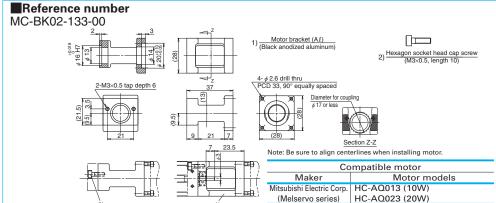
Spacer for MCM03 (Optional) MC-SP03-00 (for ball screw lead 1 and 2 mm)

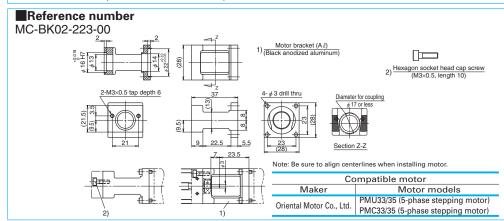
Cover unit for MCM05, 06, 08, and 10

Unit: mm

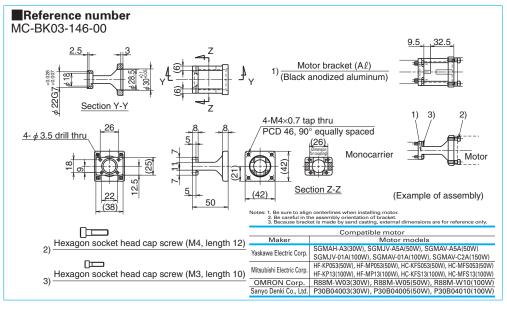
Model No.	Str	oke	Cover unit reference No.		Cover length				
Model No.	Single slider	Double slider	Top cover Unit	Full cover Unit*1	Length (L)	Height (H)	Width (W)	End part (D)	
	50	_	MC-CV05005-01	MC-CV05005-00	200				
	100	_	MC-CV05010-01	MC-CV05010-00	250	1			
	150	60	MC-CV05015-01	MC-CV05015-00	300	i			
	200	110	MC-CV05020-01	MC-CV05020-00	350	1			
MCM05	250	160	MC-CV05025-01	MC-CV05025-00	400	38.5	65	2.6	
	300	210	MC-CV05030-01	MC-CV05030-00	450				
	400	310	MC-CV05040-01	MC-CV05040-00	550				
	500	410	MC-CV05050-01	MC-CV05050-00	650				
	600	510	MC-CV05060-01	MC-CV05060-00	750	1			
	50	_	MC-CV06005-01	MC-CV06005-00	225				
	100	_	MC-CV06010-01	MC-CV06010-00	275	1			
	150	_	MC-CV06015-01	MC-CV06015-00	325	48.5			
Г	200	110	MC-CV06020-01	MC-CV06020-00	375				
	250	_	MC-CV06025-01	MC-CV06025-00	425			*2	
MCM06	300	210	MC-CV06030-01	MC-CV06030-00	475		48.5	75	_
	400	310	MC-CV06040-01	MC-CV06040-00	575				
	500	410	MC-CV06050-01	MC-CV06050-00	675	1			
	600	510	MC-CV06060-01	MC-CV06060-00	775	1			
	700	610	MC-CV06070-01	MC-CV06070-00	875	1			
	800	710	MC-CV06080-01	MC-CV06080-00	975				
	50	_	MC-CV08005-01	MC-CV08005-00	248				
	100	_	MC-CV08010-01	MC-CV08010-00	298	1			
	150	_	MC-CV08015-01	MC-CV08015-00	348	1			
	200	80	MC-CV08020-01	MC-CV08020-00	398				
	250		MC-CV08025-01	MC-CV08025-00	448	1	.5 90		
MCM08	300	180	MC-CV08030-01	MC-CV08030-00	498	56.5		2.6	
	400	280	MC-CV08040-01	MC-CV08040-00	598	- 55.5	1	00	
	500	380	MC-CV08050-01	MC-CV08050-00	698				
	600	480	MC-CV08060-01	MC-CV08060-00	798	1			
	700	580	MC-CV08070-01	MC-CV08070-00	898	1			
	800	680	MC-CV08080-01	MC-CV08080-00	998	1			
	100	_	MC-CV10010-01	MC-CV10010-00	308				
	150	_	MC-CV10015-01	MC-CV10015-00	358	1			
	200	70	MC-CV10020-01	MC-CV10020-00	408	1			
	250		MC-CV10025-01	MC-CV10025-00	458	1			
	300	170	MC-CV10030-01	MC-CV10030-00	508	1			
	400	270	MC-CV10040-01	MC-CV10040-00	608	1			
MCM10	500	370	MC-CV10050-01	MC-CV10050-00	708	66.5	110	3.6	
	600	470	MC-CV10060-01	MC-CV10060-00	808	1			
	700	570	MC-CV10070-01	MC-CV10070-00	908	1			
	800	670	MC-CV10080-01	MC-CV10080-00	1008	1			
	900		MC-CV10090-01	MC-CV10090-00	1108	1			
	1000	870	MC-CV10100-01	MC-CV10100-00	1208	1			

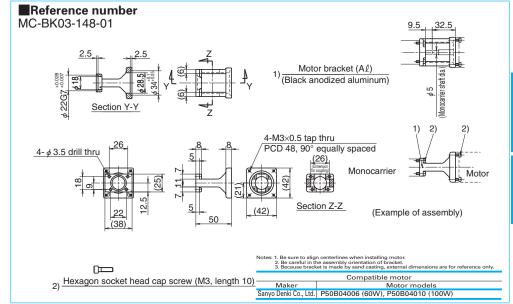

Note: The dimensions of cover shown above do not include the head height of fixing machine screws. Add the head of machine screws of approximately 2.5 mm to the outer measurement of a cover unit. Set a margin for mechanical interference with surrounding components.

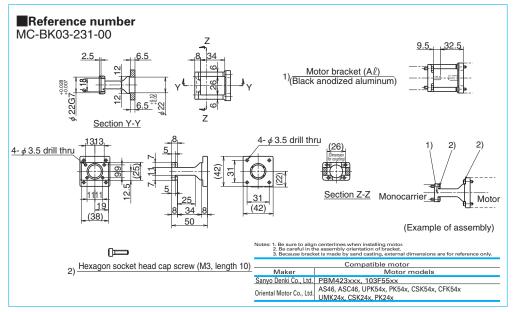

^{*1)} When using sensor unit, full-cover unit cannot be used.

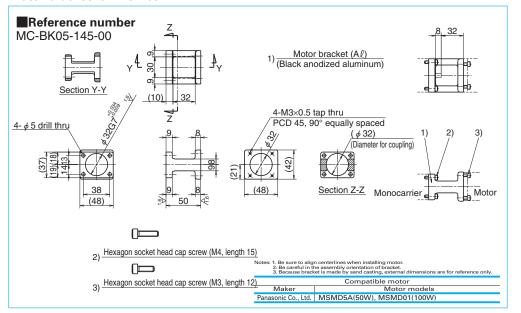

^{*2)} A cover mounting plate is not used to MCM06.

Motor models are subject to change at the motor manufacturers. For details, please contact the manufacturer.

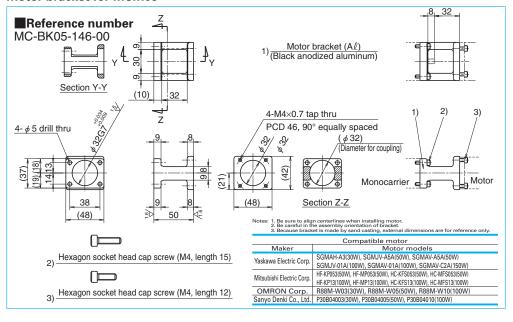

Motor bracket for MCM02

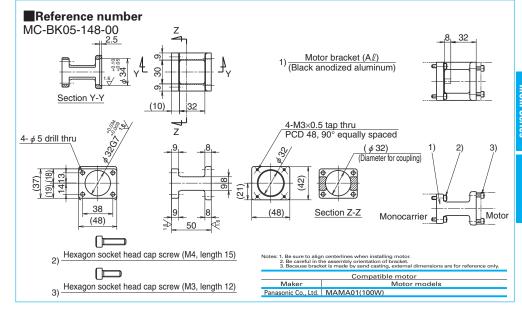


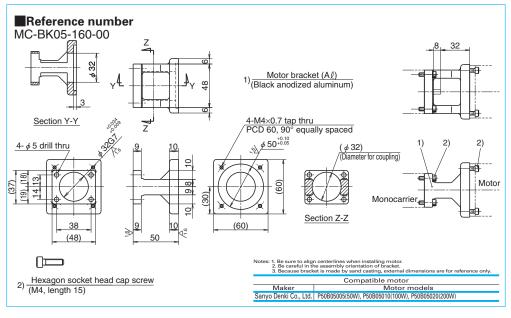

Motor bracket for MCM03

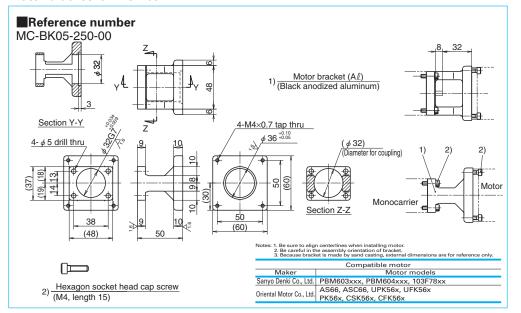


NSK

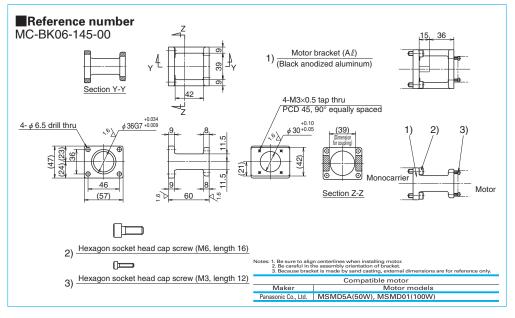

Motor bracket for MCM03

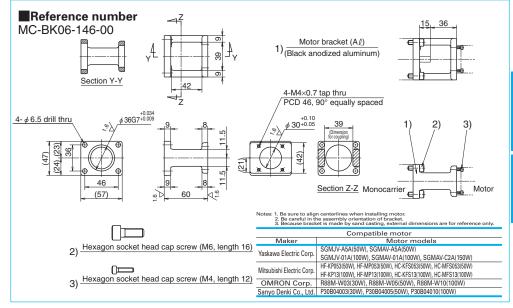


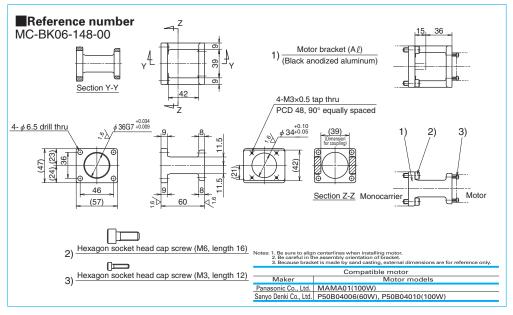

Motor bracket for MCM05

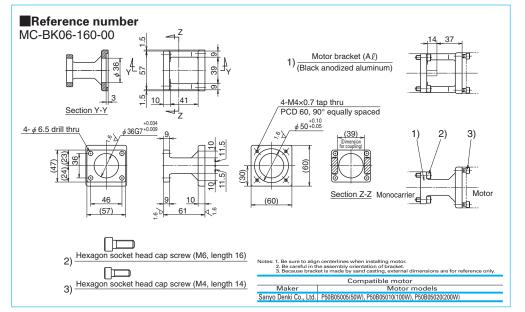


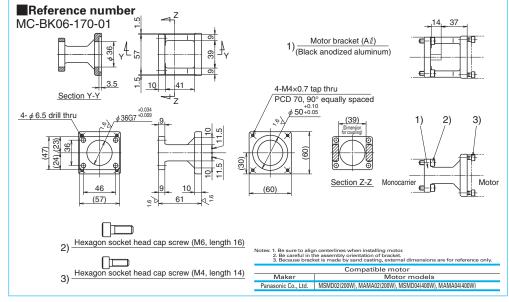
Motor bracket for MCM05

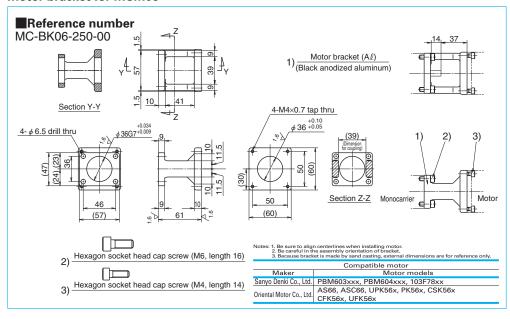


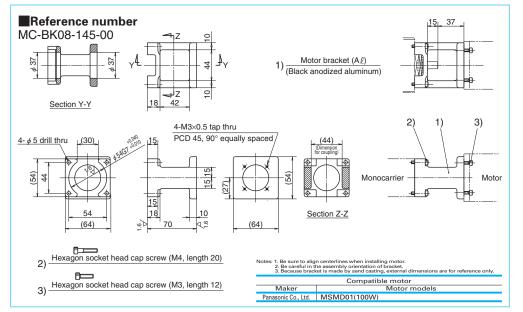




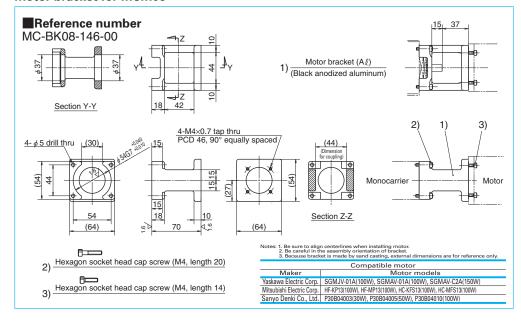

Motor bracket for MCM06

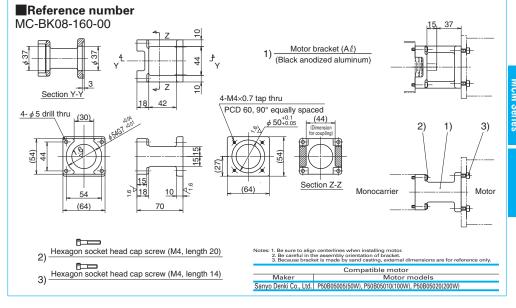


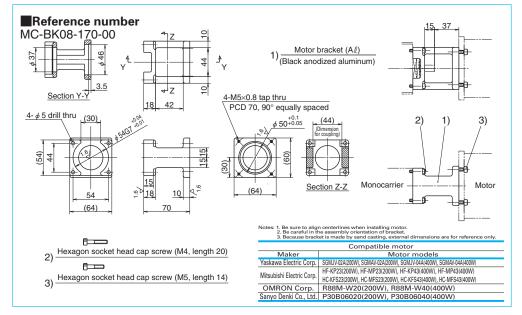

C57

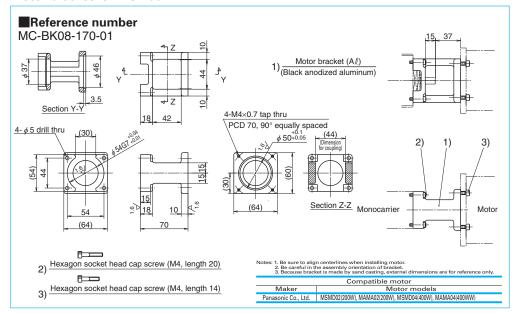


Motor bracket for MCM06

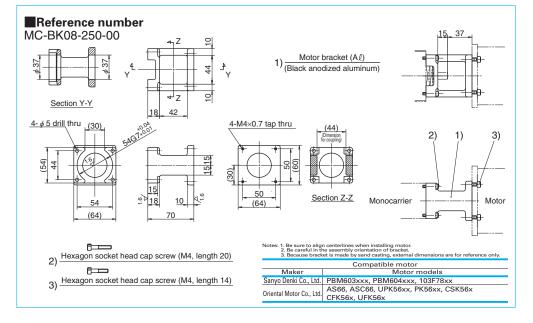


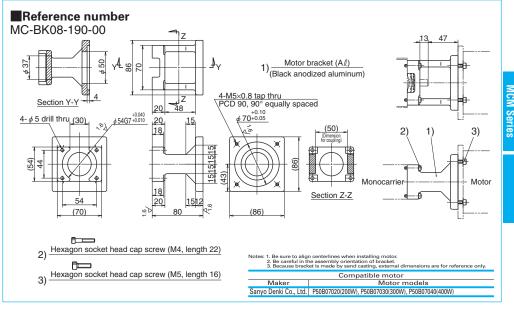


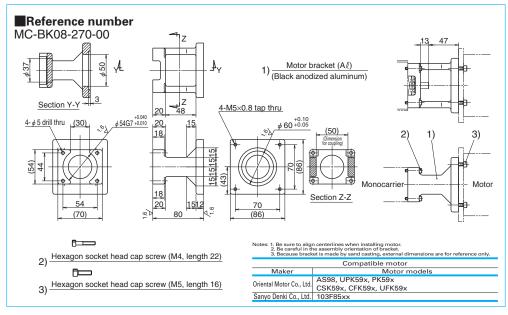

Motor bracket for MCM08

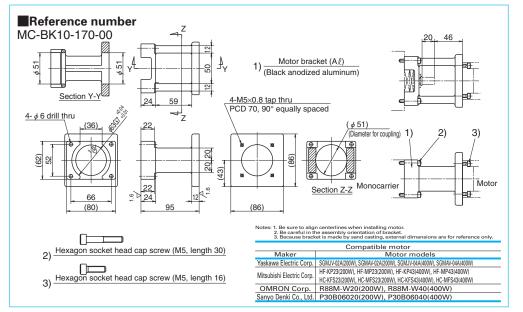


NSK

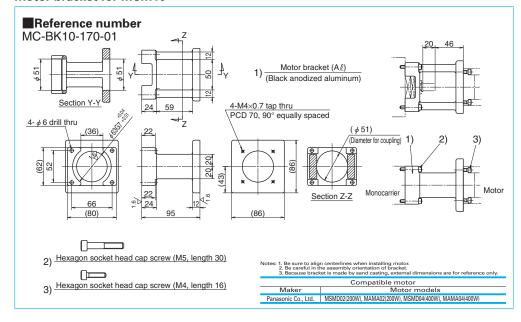

Motor bracket for MCM08

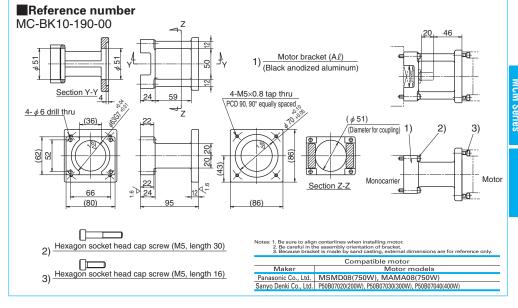


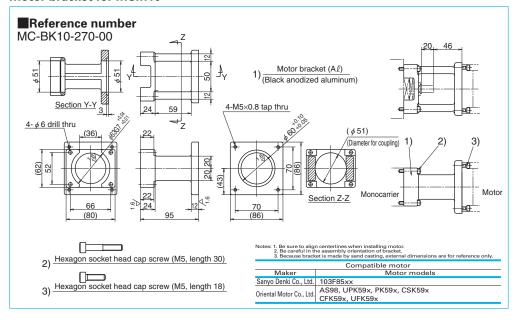

Motor bracket for MCM08



Motor bracket for MCM08







Motor bracket for MCM10

Motor Availability Table of Motor Bracket for MCM Series

	e 5														
Model No.	Reference No.	Motor bracket	Motor manufacturer	Stepping motor					Wattag	je of AC serve	motor				
viouel No.	code	reference No.	wiotor manufacturer	model No.	10	20	30	50	60	100	150	200	300	400	750
	1	MC-BK02-128-00	Yaskawa Electric Corp.		SGMM-A1	SGMM-A2									
MCM02	2	MC-BK02-133-00	Mitsubishi Electric Corp.		HC-AQ013	HC-AQ023									
	3	MC-BK02-223-00	Oriental Motor Co., Ltd.	PMU33/35 (5-phase)											
				PMC33/35 (5-phase)											
			Yaskawa Electric Corp.				SGMAH-A3	SGMJV-A5A		SGMJV-01A	SGMAV-C2A				
								SGMAV-A5A		SGMAV-01A					
								HF-KP053		HF-KP13					
	1	MC-BK03-146-00	Mitsubishi Electric Corp.					HF-MP053		HF-MP13					
								HC-KFS053		HC-KFS13					
								HC-MFS053		HC-MFS13					
			OMRON Corp.				R88M-W03 P30B04003	R88M-W05 P30B04005		R88M-W10 P30B04010					
NCM03	2	MC-BK03-148-01	Sanyo Denki Co., Ltd.				P30B04003	P30B04005	DEODO4000						
	2	IVIC-BKU3-148-U1	Sanyo Denki Co., Ltd. Sanyo Denki Co., Ltd.	PBM423xxx					P50B04006	P50B04010					
			Sanyo Denki Co., Ltd.	103F55xx											
			Saliyo Deliki Co., Etd.	AS46, ASC46											
	3	MC-BK03-231-00		UPK54x, PK54x											
		INIC BROD 201 00	Oriental Motor Co., Ltd.	CSK54x, CFK54x											
				UMK24x. CSK24x											
				PK24x											
	1	MC-BK05-145-00	Panasonic Co., Ltd.					MSMD5A		MSMD01					
			Yaskawa Electric Corp.	İ			SGMAH-A3	SGMJV-A5A		SGMJV-01A	SGMAV-C2A				
			таркама стесите СОГР.				JOIVIAN-A3	SGMAV-A5A		SGMAV-01A	JGIVIAV-CZA				
								HF-KP053		HF-KP13					
	2	MC-BK05-146-00	Mitsubishi Electric Corp.					HF-MP053		HF-MP13					
	-	THE BROOT 140 CC	Withdoon Liberia Corp.					HC-KFS053		HC-KFS13					
MCM05								HC-MFS053		HC-MFS13					
			OMRON Corp.				R88M-W03	R88M-W05		R88M-W10					
			Sanyo Denki Co., Ltd.				P30B04003	P30B04005		P30B04010					
	3	MC-BK05-148-00	Panasonic Co., Ltd.							MAMA01					
	4	MC-BK05-160-00	Sanyo Denki Co., Ltd.					P50B05005		P50B05010		P50B05020			
			Sanyo Denki Co., Ltd.	PBM603xx,											
				PBM604xx											
	5		Sanyo Denki Co., Ltd.	103F78xx											
		MC-BK05-250-00		AS66, ASC66											
			Oriental Motor Co., Ltd.	UPK56x, UFK56x PK56x, CSK56x,											
				CFK56x											
	1	MC-BK06-145-00	Panasonic Co., Ltd.	CFKB6X				MSMD5A		MSMD01					
		1410 BROO 140 00						SGMJV-A5A		SGMJV-01A					
			Yaskawa Electric Corp.					SGMAV-A5A		SGMAV-01A	SGMAV-C2A				
								HF-KP053		HF-KP13					
	2		A.E. 111151 6					HF-MP053		HF-MP13					
	2	MC-BK06-146-00	Mitsubishi Electric Corp.					HC-KFS053		HC-KFS13					
								HC-MFS053		HC-MFS13					
			OMRON Corp.				R88M-W03	R88M-W05		R88M-W10					
			Sanyo Denki Co., Ltd.				P30B04003	P30B04005		P30B04010					
	3	MC-BK06-148-00	Sanyo Denki Co., Ltd.						P50B04006						
	3	140-00	Panasonic Co., Ltd.							MAMA01					
	4	MC-BK06-160-00	Sanyo Denki Co., Ltd.					P50B05005		P50B05010		P50B05020			
			Yaskawa Electric Corp.									SGMJV-02A		SGMJV-04A	
MCM06												SGMAV-02A		SGMAV-04A	
												HF-KP23		HF-KP43	
	5	MC-BK06-170-00	Mitsubishi Electric Corp.				1					HF-MP23 HC-KES23		HF-MP43 HC-KES43	
			OLIDON O									HC-MFS23		HC-MFS43	
	1		OMRON Corp.			-	1		-			R88M-W20 P30B06020		R88M-W40 P30B06040	
	1	-	Sanyo Denki Co., Ltd.	-			-					MSMD02		MSMD04	
			1									MAMA02		MAMA04	
	6	MC-BK06-170-01	Panasonic Co., Ltd.				1					IVIAIVIAU2		IVIAIVIAU4	
	6	MC-BK06-170-01	Panasonic Co., Ltd.	DDM602mm							I				
	6	MC-BK06-170-01	Sanyo Denki Co., Ltd.	PBM603xxx,											
	6	MC-BK06-170-01	Sanyo Denki Co., Ltd.	PBM604xxx											
				PBM604xxx 103F78xx											
	6	MC-BK06-170-01	Sanyo Denki Co., Ltd. Sanyo Denki Co., Ltd.	PBM604xxx 103F78xx AS66, ASC66											
			Sanyo Denki Co., Ltd.	PBM604xxx 103F78xx											

C65 C66

Andel No	Reference No.	Motor bracket	Motor manufacturer	Stepping motor					Watta	ge of AC serve	motor				
IOUEI IVO.	code	reference No.	Wotor manufacturer	model No.	10	20	30	50	60	100	150	200	300	400	750
	1	MC-BK08-145-00	Panasonic Co., Ltd.							MSMD01					
	'	WIC-BK00-145-00													
			Yaskawa Electric Corp.							SGMJV-01A	SGMAV-C2A				
			тазкама Егосите согр.							SGMAV-01A	DOIVING CEN				
										HF-KP13					
	2	MC-BK08-146-00	Mitsubishi Electric Corp.							HF-MP13					
			Witsdoishi Electric Corp.							HC-KFS13					
										HC-MFS13					
			Sanyo Denki Co., Ltd.				P30B04003	P30B04005		P30B04010					
	3	MC-BK08-160-00	Sanyo Denki Co., Ltd.					P50B05005		P50B05010		P50B05020			
			Yaskawa Electric Corp.									SGMJV-02A		SGMJV-04A	
			raskawa Electric Corp.									SGMAV-02A		SGMAV-04A	
												HF-KP23		HF-KP43	
	4	MC-BK08-170-00	Mitsubishi Electric Corp.									HF-MP23		HF-MP43	
	4	IVIC-BKU6-170-00	Witsubishi Electric Corp.									HC-KFS23		HC-KFS43	
												HC-MFS23		HC-MFS43	
VCM08			OMRON Corp.									R88M-W20		R88M-W40	
			Sanyo Denki Co., Ltd.									P30B06020		P30B06040	
	5	MC-BK08-170-01										MSMD02		MSMD04	
	5	MC-BK08-170-01	Panasonic Co., Ltd.									MAMA02		MAMA04	
	6	MC-BK08-190-00	Sanyo Denki Co., Ltd.									P50B07020	P50B07030	P50B07040	
	7 MC-B			PBM603xxx,											
			Sanyo Denki Co., Ltd.	PBM604xxx											
			Sanyo Denki Co., Ltd.	103F78xx											
		MC-BK08-250-00		AS66, ASC66											
				UPK56x, PK56x											
			Oriental Motor Co., Ltd.	CSK56x, CFK56x											
				UFK56x											
			Sanyo Denki Co., Ltd.	103F85xx											
		MC-BK08-270-00		AS98											
	8		Oriental Motor Co., Ltd.	UPK59x, PK59x											
				CSK59x, CFK59x											
				UFK59x											
												SGMJV-02A		SGMJV-04A	
			Yaskawa Electric Corp.									SGMAV-02A		SGMAV-04A	
												HF-KP23		HF-KP43	
												HF-MP23		HF-MP43	
	1	MC-BK10-170-00	Mitsubishi Electric Corp.									HC-KFS23		HC-KFS43	
												HC-MFS23		HC-MFS43	
			OMRON Corp.									R88M-W20		R88M-W40	
			Sanyo Denki Co., Ltd.									P30B06020		P30B06040	
												MSMD02		MSMD04	
ACM10	2	MC-BK10-170-01	Panasonic Co., Ltd.									MAMA02		MAMA04	
													l		MSMI
	3	MC-BK10-190-00	Panasonic Co., Ltd.												MAM
	"	W.C.DK 10-130-00	Sanyo Denki Co., Ltd.				1					P50B07020	P50B07030	P50B07040	.VIPGIVI)
			Sanyo Denki Co., Ltd.	103F85xx			1					. 30007020	. 50007030	. 50007040	
			ounyo benki co., Ett.	AS98			1								
	4	MC-BK10-270-00		UPK59x, PK59x											
	"	14.0-BK10-270-00	Oriental Motor Co., Ltd.	CSK59x, FK59x											
				UFK59x											
				UFK59X			1			1					

1	MC	H Series Reference Number	C71
	Cod	ling	
2	MC	H Series Dimension Table of	
	Sta	ndard Products	
		MCL06	C72
		MCH06	C 73
		MCH09	C 75
		MCH10	C77
3	MC	H Series Option Part	
	3. 1	Sensor Unit	C 79
	3. 2	Cover Unit	C81
	3. 3	Intermediate Plate for Motor	C85

MCH Series

C69

NSK

C-3 MCH Series

C-3-1 MCH Series Reference Number Coding

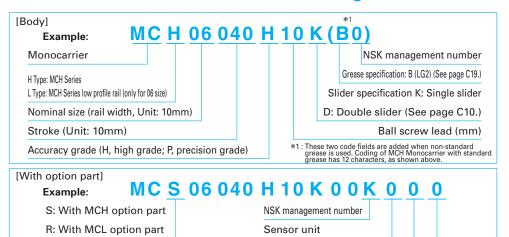


Table 1 Sensor unit (See page C79.)

Note: Option parts are available separately.

Reference No. code	Specification	Reference No.
0	N/A	_
1	Proximity switch (Normally close contact 3 pieces)	MC—SRHxx—10
2	Proximity switch (Normally open contact 3 pieces)	MC—SRHxx—11
3	Proximity switch (Normally open contact 1 piece, Normally close contact 2 pieces)	MC—SRHxx—12
4	Photo sensor 3 pieces	MC—SRHxx—13

Cover unit

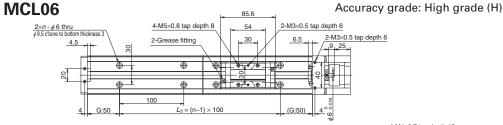
Intermediate plate for motor

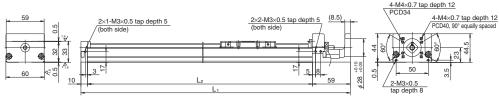
Notes: 1) xx: Nominal size

2) Sensor rail is not included in a sensor unit. If you require the rail, please specify upon ordering. (See page C79 to C80.)

Table 2 Cover unit (See page C81 to C83.)

Reference No. code	Specification	Reference No.		
0	N/A	_		
1	For single slider	MC—HVxxxxx—00		
'	For double slider	MC—HVxxxxxD00		


Note: xxxxx; Nominal size and stroke number


Table 3 Intermediate plate for motor (See page C85 to C88.)

Reference		Model No.	
No. code	MCH06 (MCL06)	MCH09	MCH10
0	N/A	N/A	N/A
1	MC-BKH06-145-00	MC-BKH09-145-00	MC-BKH10-170-00
2	MC-BKH06-146-00	MC-BKH09-146-00	MC-BKH10-170-01
3	MC-BKH06-231-00	MC-BKH09-170-00	MC-BKH10-190-00
4	MC-BKH06-250-00	MC-BKH09-170-01	MC-BKH10-190-01
5	_	MC-BKH09-231-00	MC-BKH10-250-00
6	_	MC-BKH09-250-00	MC-BKH10-270-00

N/A: Not applicable

C-3-2 MCH Series Dimension Table of Standard Products

- ●Rail of MCL 06 is made lighter than that of MCH 06 by lowering rail height. Weight ratio between MCH 06 and MCL 06 is 5 to 4.
- Double slider specification is also available for MCL 06.
- Combinations of stroke and ball screw lead of MCL 06 are the same as those of MCH 06.

Dimension of MCL06 (Single slider)

Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead		Bod	y length (r	nm)	Inertia	Mass	
hererence No.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	× 10 ⁻⁶ (kg · m ²)	(kg)	
	50	53	5	219	150	100	2	2.38	1.0	
	50	(65)	10	219	150	100	2	3.45		
MCL06010H05K	100	103	5	269	200	100	2	3.17	1.3	
MCL06010H10K	100	(115)	10	209	200	100	2	4.12	1.3	
MCL06020H05K	200	203	5	369	300	200	3	4.51	1.9	
MCL06020H10K	200	(215)	10		300		3	5.46		
MCL06030H10K	300	303	10	469	400	300	4	6.80	2.6	
MCL06030H20K	300	(315)	20	409	400	300	4	10.6		
MCL06040H10K	400	403	10	569	500	400	5	8.13	3.2	
MCL06040H20K	400	(415)	20	569	500	400	ວ	11.9	3.2	
MCL06050H10K	500	503	10	669	600	500	6	9.47	2.0	
MCL06050H20K	500	(515)	20	600	600	500	6	13.3	3.9	

Note: Dimension G is 25 for items marked with \diamondsuit .

Monocarrier dynamic torque specification (N · cm)

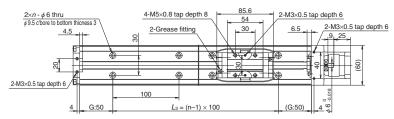
Dall assess land	5	1.0 – 4.8
Ball screw lead (mm)	10	1.1 – 5.8
(11111)	20	1.6 – 7.9

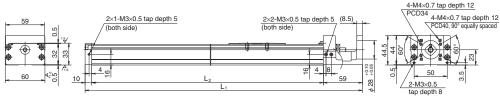
Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

	Lead	Shaft dia		Basic dy	namic load rating	j (N)	Basic static lo	Support unit		
	l	d Ball screw Linear gui		Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	load limit (N)	
	(mm)	(mm)	C_{a}	С	C_{a}	L_a (km)	C_{0a} C_{0}		1000 111111 (14)	
	5		3 000 (High grade)	22.000		-	5 410 (High grade)			
			3 760 (Precision)	22 800	4 400	5	6 310 (Precision)		1.450	
	10	, 10	1 930 (High grade)	18 100		10	3 160 (High grade)	10 900		
	10	φ 12 2 260	2 260 (Precision)	16 100	4 400	10	3 780 (Precision)	10 900	1 450	
	20		1 930 (High grade)	14 400		20	3 160 (High grade)			
			2 260 (Precision)	14 400		20	3 780 (Precision)			


Basic static moment load of linear guide


Clister	Basic static moment load (N · m)							
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}					
Single	335	133	133					

C71

MCH06

Accuracy grade: High grade (H)

Dimension of MCH06 (Single slider)

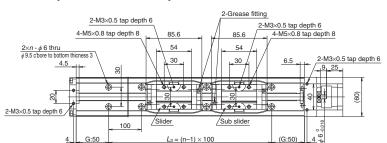
Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead		Bod	ly length (r	nm)	Inertia	Mass	
Tiererence 140.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	× 10 ⁻⁶ (kg · m ²)	(kg)	
		53	5					2.38		
	50	(65)	10	219	150	100	2	3.45	1.8	
			20					7.25		
MCH06010H05K		103	5	269				3.17		
MCH06010H10K	100	(115)	10		200	100	2	4.12	2.2	
MCH06010H20K			20					7,92		
MCH06020H05K		203 (215)	5	369		200	3	4.51		
MCH06020H10K	200		10		300			5.46	3.0	
MCH06020H20K			20					9.26		
MCH06030H05K		303	5	469	400	300	4	5.85	3.7	
MCH06030H10K	300	(315)	10					6.80		
MCH06030H20K	1	(313)	20					10.6		
MCH06040H05K		403	5					7.18		
MCH06040H10K	400	(415)	10	569	500	400	5	8.13	4.5	
MCH06040H20K		(415)	20					11.9		
MCH06050H05K		503	5					8.52		
MCH06050H10K	500	(515)	10	669	600	500	6	9.47	5.2	
MCH06050H20K		(010)	20					13.3		

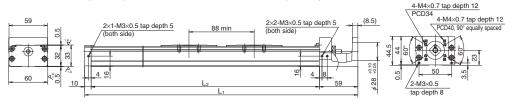
Note: Dimension G is 25 for items marked with .

Monocarrier	dynamic	torque	specifi	cation	(N ·	cm
			5	1.0	- 4.	.8

D.II. I. I.	5	1.0 – 4.8
Ball screw lead (mm)	10	1.1 – 5.8
(11111)	20	16-79

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating


Lead	Shaft dia		Basic dy	namic load rating	j (N)	Basic static lo		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	$L_{\rm a}$ (km)	C_{0a}	C_0	loau IIITIIL (IV)
-		3 000 (High grade)	22 800	4 400 10	5	5 410 (High grade)		1 450
5		3 760 (Precision)	22 800			6 310 (Precision)		
10	, 10	1 930 (High grade)	18 100		10	3 160 (High grade)		
10	φ 12 2 2 6	2 260 (Precision)	18 100		3 780 (Precision)	16 300	1 450	
20		1 930 (High grade)	14 400		20	3 160 (High grade)		
20		2 260 (Precision)	14 400		20	3 780 (Precision)		

Basic static moment load of linear guide

Clister.	Slider Basic static moment load Rolling M _{RO} Pitching M _{PO} Single 335 133	d (N · m)	
Slider		Pitching M _{PO}	Yawing M _{YO}
Single	335	133	133

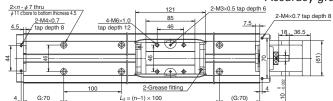
MCH06 (Double slider)

Dimension of MCH06 (Double slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	L ₁	Bod L ₂	y length (r L3	nm)	Inertia × 10 ⁻⁶ (kg · m²)	Mass (kg)
MCH06010H05D MCH06010H10D	100	115 (139)	5 10	369	300	200	3	4.82 6.72	3.5
MCH06020H05D MCH06020H10D	200	215 (239)	5 10	469	400	300	4	8.06 15.7	4.2
MCH06030H05D MCH06030H10D	300	315 (339)	5 10	569	500	400	5	9.40 17.0	5.0
MCH06040H10D MCH06040H20D	400	415 (439)	10 20	669	600	500	6	10.7 18.3	5.7

Monocarrier dynamic torque specification (N · cm)

Dell service d	5	1.2 - 5.2
Ball screw lead (mm)	10	1.5 - 9.6
(11111)	20	2.3 - 11.8


- 1. Frictional resistance of NSK K1 is included in dynamic torque in table. 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.

Basic load rating

	Lead	Shaft dia		Basic dy	namic load rating	(N)	Basic static lo	ad rating (N)	
-	l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
	(mm)	(mm)	C_{a}	С	C_{a}	L_{a} (km)	C_{0a}	C_0	1080 1111111 (14)
	5		3 000 (High grade)	22 800		5	5 410 (High grade)	16 300	
	5		3 760 (Precision)	22 800		5	6 310 (Precision)		
	10	φ12	1 930 (High grade)	18 100	4 400	4 400 10	3 160 (High grade)		1 450
	10	φιΖ	2 260 (Precision)	16 100	4 400		3 780 (Precision)		
	20		1 930 (High grade)	14 400		20	3 160 (High grade)		
	20		2 260 (Precision)	14 400		20	3 780 (Precision)		

Clister	Basic st	atic moment load	d (N·m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Double	770	730	730

Accuracy grade: High grade (H)

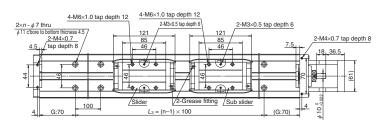
Dimension of MCH09 (Single slider)

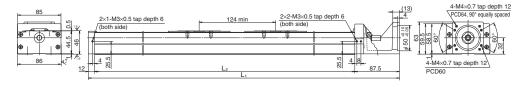
Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead		Body length (mm)				Mass
Tiererence ivo.	(mm)	(without K1)	(mm)	L ₁	L ₂	Lз	n	× 10 ⁻⁶ (kg · m ²)	(kg)
MCH09010H05K		107	5					9.2	
MCH09010H10K	100	(121)	10	339.5	240	100	2	10.7	5.0
MCH09010H20K		(121)	20					16.8	
MCH09020H05K	200	207	5 10	400 F	340	200	3	12.4	0.5
MCH09020H10K MCH09020H20K	200	(221)	20	439.5	340	200		13.9 20.0	6.5
MCH09030H05K			5					15.6	
MCH09030H10K	300	307	10	539.5	440	300	4	17.1	8.1
MCH09030H20K	-	(321)	20					23.2	
MCH09040H05K		407 (421)	5	639.5	540	400	5	18.8	
MCH09040H10K	400		10					20.3	9.7
MCH09040H20K		(421)	20					26.4	
MCH09050H05K	500	507	5	739.5	640	500	6	22.0	44
MCH09050H10K MCH09050H20K	500	(521)	10 20					23.5 29.6	11
MCH09060H05K			5					25.2	
MCH09060H10K	600	607	10	839.5	740	600	7	26.7	13
MCH09060H20K	1 000	(621)	20	000.0	, 10	000	,	32.8	
MCH09070H05K		707	5					28.4	
MCH09070H10K	700	707 (721)	10	939.5	840	700	8	30.0	14.5
MCH09070H20K		(721)	20					36.0	
MCH09080H05K		807	5				9	31.6	
MCH09080H10K	800	(821)	10	1 039.5	940	940 800		33.2	16
MCH09080H20K		(021)	20					39.2	

Monocarrier dynamic torque specification (N · cm)

Dell sees lead	5	1.0 - 5.9
Ball screw lead (mm)	10	2.0 - 7.8
(111111)	20	2.0 - 10.8

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating


Lead	Shaft dia		Basic dy	namic load rating	j (N)	Basic static lo	0		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)	
(mm)	(mm)	C_{a}	С	C_{a}	L_a (km)	C_{0a}	C_0	loau III III (IV)	
5		6 820 (High grade)	40 600	7 100	5	13 200 (High grade)		2.040	
5		7 100 (Precision)	40 600		5	13 000 (Precision)			
10	, 15	5 110 (High grade)	32 200		10	9 290 (High grade)			
10	φ 15 7 060 (Precision)	32 200	7 100 10		12 700 (Precision)	30 500	3 040		
20		3 290 (High grade)	25 500		20	5 620 (High grade)			
20		4 560 (Precision)	25 500		20	7 750 (Precision)			

Basic static moment load of linear guide

Clister	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	890	385	385

MCH09 (Double slider)

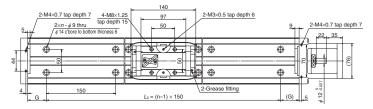
Dimension of MCH09 (Double slider)

Reference No.	Nominal stroke (mm)	Stroke limit (mm) (without K1)	Ball screw lead (mm)	L ₁	Bod L ₂	ly length (r	nm)	Inertia × 10 ⁻⁶ (kg · m²)	Mass (kg)
MCH09015H05D MCH09015H10D	150	183 (211)	5 10	539.5	440	300	4	16.1 19.2	8.9
MCH09025H05D MCH09025H10D	250	283 (311)	5 10	639.5	540	400	5	19.3 22.4	11
MCH09035H05D MCH09035H10D	350	383 (411)	5 10	739.5	640	500	6	22.5 25.6	12
MCH09045H10D MCH09045H20D	450	483 (511)	10 20	839.5	740	600	7	28.8 40.9	14
MCH09065H10D MCH09065H20D	650	683 (711)	10 20	1 039.5	940	800	9	35.2 47.3	17

Monocarrier dynamic torque specification (N · cm)

Dell service d	5	1.5 - 7.0
Ball screw lead (mm)	10	2.5 – 10.8
(11111)	20	4.0 - 17.2

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table. 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating

Lead	Shaft dia		Basic dynamic load rating (N) Basic static load rating (N)								
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)			
(mm)	(mm)	C_{a}	С	C_{a}	L_{a} (km)	C_{0a}	C_0	load IIITIII (IV)			
5		6 820 (High grade)	40 600			_	13 200 (High grade)				
5		7 100 (Precision)	40 600		5	13 000 (Precision)					
10	φ15	5 110 (High grade)	ligh grade) 32 200 7 100	7 100	7 100	7 100	10	9 290 (High grade)	30 500	3 040	
10	φιο	7 060 (Precision)	32 200	7 100	10	12 700 (Precision)	30 500	3 040			
20		3 290 (High grade)	25 500			0		20	5 620 (High grade)		
20		4 560 (Precision)	20 000		20	7 750 (Precision)					

Clister	Basic static moment load (N · m)					
Slider	Rolling M _{RO}	Rolling M _{RO} Pitching M _{PO}				
Double	1 780	2 070	2 070			

MCH10

Accuracy grade: High grade (H)

Dimension of MCH10 (Single slider)

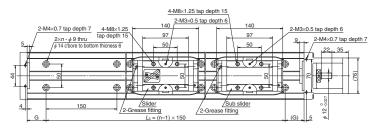
Reference No.	Nominal stroke	Stroke limit (mm)	Ball screw lead		Bod	ly leng		Inertia	Mass	
Tiererenee 140.	(mm)	(without K1)	(mm)	L ₁	L ₂	G	Lз	n	× 10 ⁻⁶ (kg · m ²)	(kg)
MCH10010H10K	100	126	10	200	200	65	150	2	33.2	7.3
MCH10010H20K	100	(142)	20	389	280	65	150	2	41.1	7.3
MCH10020H10K	200	226	10	489	380	40	300	3	43.4	9.5
MCH10020H20K	200	(242)	20	100	000		000		51.3	0.0
MCH10030H10K	300	326	10	589	480	15	450	4	53.7	12
MCH10030H20K MCH10040H10K		(342) 426	20 10					·	61.6 62.4	
MCH10040H10K	400	(442)	20	689	580	65	450	4	71.8	14
MCH10050H10K		526	10						74.7	
MCH10050H20K	500	(542)	20	789	680	40	600	5	82.3	16
MCH10060H10K	000	626	10	000	700	4.5	750		84.9	10
MCH10060H20K	600	(642)	20	889	780	15	750	6	92.5	19
MCH10070H10K	700	726	10	989	880	000 65	65 750	6	95.1	21
MCH10070H20K	700	(742)	20	303	000	05		ь	103	21
MCH10080H10K	800	826	10	1 089	980	40	900	7	105	23
MCH10080H20K	000	(842)	20	1 000	000	40	000	,	113	20
MCH10090H10K	900	926	10 20	1 189	1 080	15	1 050	8	116	25
MCH10090H20K		(942)	10						123	
MCH10100H10K MCH10100H20K	1 000	1 026 (1 042)	20	1 289	1 180	65	1 050	8	126 133	27
MCH10100H20K		1 126	10						136	
MCH10110H20K	1 100	(1 142)	20	1 389	1 280	40	1 200	9	143	29
MCH10120H10K		1 226	10						146	
MCH10120H20K	1 200	(1 242)	20	1 489	1 380	15	1 350	10	154	32

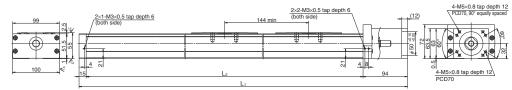
Monocarrier dynamic to	orque	specifi	cation (N · cm)	
Ball screw lead		10	27 - 108	

ivionocarrier dynamic tor	que speciti	cation (IN - cm)
Ball screw lead	10	2.7 – 10.8
(mm)	20	3.1 – 12.7

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table.
- 2. Grease is packed into ball screw, linear guide parts and support unit.
- 3. Consult NSK for life estimates under large moment loads.


Basic load rating


Lead	Shaft dia		Basic dy	namic load rating	Basic static lo	ad rating (N)			
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)	
(mm)	(mm)	C_{a}	С	$C_{\rm a}$	L_a (km)	$C_{\mathtt{0a}}$	C_0	load IIITIIL (IV)	
10		8 230 (High grade)	44 600		10	17 100 (High grade)			
10	, 00	10 900 (Precision))	7.000	7.000	10	21 700 (Precision)		0.000
20	φ20	5 300 (High grade)	25 400	7 600	20	10 300 (High grade)	42 000	3 380	
20		7 060 (Precision)	35 400		20	12 700 (Precision)			

Basic static moment load of linear guide

Cli-l	Basic st	atic moment load	d (N · m)
Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}
Single	1 460	610	610

MCH10 (Double slider)

Dimension of MCH10 (Double slider)

Reference No.	Nominal stroke	Stroke limit (mm)	oke limit (mm) Ball screw lead Body length (mm)						Inertia	Mass	
Tiererence ivo.	(mm)	(without K1)	(mm)	L ₁	L ₂	G	Lз	n	× 10 ⁻⁶ (kg · m ²)	(kg)	
MCH10025H10D	250	282	10	689	580	65	450	4	67.1	15	
MCH10025H20D	250	(314)	20	009	580	05	450	4	82.4	15	
MCH10035H10D	350	382	10	789	680	30 40	600	5	77.3	17	
MCH10035H20D		(414)	20	769 000 4	40	000	5	92.5	7 1/		
MCH10045H10D	450	482	10	889	780	780 15	15	750	6	87.5	20
MCH10045H20D		(514)	20	003			750	0	103	20	
MCH10055H10D	550	582	10	989	000	880 65	65	750	6	97.7	22
MCH10055H20D	550	(614)	20	303	000	05	750	0	113	1 22	
MCH10065H10D	650	682	10	1 089	980	40	900	7	108	24	
MCH10065H20D	650	(714)	20	1 009	960	40	900	/	123		
MCH10075H20D	750	782 (814)	20	1 189	1 080	15	1 050	8	133	26	
MCH10085H20D	850	882 (914)	20	1 289	1 180	65	1 050	8	143	28	
MCH10095H20D	950	982 (1 014)	20	1 389	1 280	40	1 200	9	154	30	
MCH10105H20D	1 050	1 082 (1 114)	20	1 489	1 380	15	1 350	10	164	33	

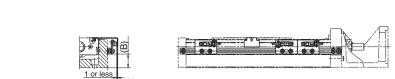
Monocarrier dynamic tor	que specifi	cation (N · cm
Ball screw lead	10	4.2 – 15.6

Notes:

- 1. Frictional resistance of NSK K1 is included in dynamic torque in table. 2. Grease is packed into ball screw, linear guide parts and support unit.
- 20 5.0 19.6 3. Consult NSK for life estimates under large moment loads.

Basic load rating

Lead	Shaft dia		Basic dy	namic load rating	j (N)	Basic static loa		
l	d	Ball screw	Linear guides	Support unit	Rated running distance	Ball screw	Linear guides	Support unit load limit (N)
(mm)	(mm)	C_{a}	С	C_{a}	L_{a} (km)	C_{0a}	C_0	load littlit (IV)
10		8 230 (High grade)	44 600		10	17 100 (High grade)		
10		10 900 (Precision)	44 600	7.000	10	21 700 (Precision)		0.000
20	φ20	5 300 (High grade)	25 400	7 600	20	10 300 (High grade)	42 000	3 380
20		7 060 (Precision)	35 400		20	12 700 (Precision)		

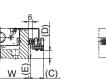

	OI: I	Basic static moment load (N · m)						
	Slider	Rolling M _{RO}	Pitching M _{PO}	Yawing M _{YO}				
[Double	2 920	3 430	3 430				

C-3-3 MCH Series Option Part

C-3-3. 1 Sensor Unit

Proximity switch

Sensor rail is not included in a sensor unit.


(Example of assembly)

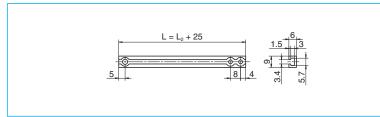
						-	-
	Model No.	Reference No.			A (mm)	B (mm)	Body width W (mm)
	MCH06	MC-SRH06-10	MC-SRH06-11	MC-SRH06-12	17	10	60
	MCH09	MC-SRH09-10	MC-SRH09-11	MC-SRH09-12	16	21	86
	MCH10	MC-SRH10-10	MC-SRH10-11	MC-SRH10-12	16	16	100
Quantity	Proximity switch (normally open contact)	_	3	1	E2S-W13 (OMRON Corp.)		
Qualitity	Proximity switch (normally close contact)	3	_	2	E2S-W1	4 (OMRO	N Corp.)

Notes: 1. See page C21 for proximity switch specifications. 2. A sensor unit consists of sensors, a sensor dog and sensor mounting parts.

Photo sensor

Sensor rail is not included in a sensor unit.

(Example of assembly)


Model No.	Reference No.	C (mm)	D (mm)	E (mm)	Body width W (mm)	Remarks
MCH06	MC-SRH06-13	24	2	11	60	EE-SX674 (OMRON Corp.)
MCH09	MC-SRH09-13	23	12	21	86	3 sets
MCH10	MC-SRH10-13	23	29	16	100	(EE-1001 connector attachment)

Notes: 1. See page C22 for proximity switch specifications. 2. A sensor unit consists of sensors, a sensor dog and sensor mounting parts.

(1) Sensor rail

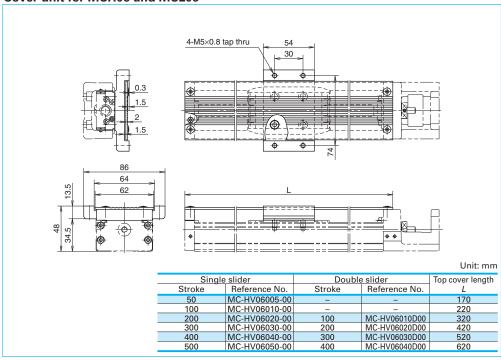
Reference number: MC-SRL- * * * *

 \bullet * * * * is the same as rail dimension L_2 .

Note: For combinations of sensors and rails, see page C80.

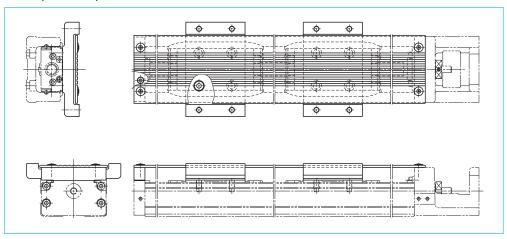
Body of MCH Series and Sensor Rail Combination Table

Table 4

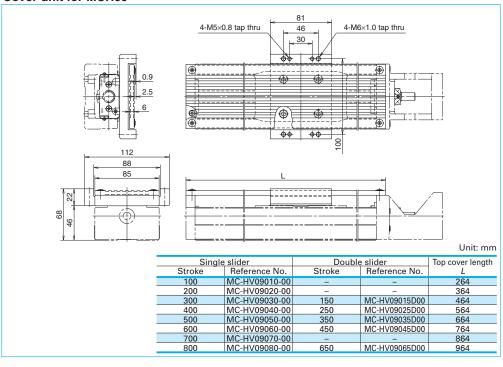

Body length L ₂ (mm)	Reference No.	Sensor rail reference No
	MCH06005H05K	
150	MCH06005H10K	MC-SRL-0150
	MCH06005H20K	
	MCH06010H05K	
200	MCH06010H10K	MC-SRL-0200
	MCH06010H20K	
	MCH06020H05K	
	MCH06020H10K	
300	MCH06020H20K	MC-SRL-0300
	MCH06010H05D	
	MCH06010H10D	
400		MC-SRL-0400
		1110 0112 0100
500		MC-SRL-0500
000		IVIC-SHL-USUU
600		MC-SRL-0600
150	MCL06005H05K	MC-SRL-0150
130	MCL06005H10K	IVIC-SITE-0130
200	MCL06010H05K	MC-SRL-0200
200	MCL06010H10K	IVIC-3NL-0200
200	MCL06020H05K	MC-SRL-0300
300	MCL06020H10K	IVIC-SHL-0300
	MCL06030H10K	140.001.0400
400	MCL06030H20K	MC-SRL-0400
500		MC-SRL-0500
600		MC-SRL-0600
240		MC-SRL-0240
240		IVIO ONE 0240
240		MC-SRL-0340
340		IVIC-3NL-0340
440		MC-SRL-0440
440		IVIC-SRL-0440
540	MCH09040H20K	MC-SRL-0540
	MCH09025H05D	
	MCH09025H10D	
	MCH09050H05K	
	MCH09050H10K	
640	MCH09050H10K MCH09050H20K	MC-SRL-0640
640		MC-SRL-0640
640	MCH09050H20K MCH09035H05D	MC-SRL-0640
640	MCH09050H20K MCH09035H05D MCH09035H10D	MC-SRL-0640
640	MCH09050H20K MCH09035H05D MCH09035H10D MCH09060H05K	MC-SRL-0640
	MCH09050H20K MCH09035H05D MCH09035H10D MCH09060H05K MCH09060H10K	
640 740	MCH09050H20K MCH09035H05D MCH09035H10D MCH09060H05K	MC-SRL-0640
	(mm) 150 200 300 400 500 600 150 200 300 400 500 600 240 340 440	(mm) MCH06005H05K MCH06005H05K MCH06005H10K MCH06005H10K MCH06001H10K MCH06010H10K MCH06010H10K MCH06020H05K MCH06020H05K MCH06020H05K MCH06020H05K MCH06020H05K MCH06030H05D MCH06030H05K MCH06030H10D MCH06030H05K MCH06030H10K MCL06030H10K MCH09010H10K MCH09030H10K

Model No.	Body length L ₂ (mm)	Reference No.	Sensor rail reference No.
		MCH09070H05K	
	840	MCH09070H10K	MC-SRL-0840
		MCH09070H20K	
MCH09		MCH09080H05K	
		MCH09080H10K	
	940	MCH09080H20K	MC-SRL-0940
		MCH09065H10D	
		MCH09065H20D	
	280	MCH10010H10K	MC-SRL-0280
	200	MCH10010H20K	WIG GIVE GEOD
	380	MCH10020H10K	MC-SRI -0380
		MCH10020H20K	
	480	MCH10030H10K	MC-SRL-0480
	.00	MCH10030H20K	1110 0112 0100
	580	MCH10040H10K	MC-SRL-0580
	550	MCH10025H10D	IVIO OTIL 0000
		MCH10050H10K	
	680	MCH10050H20K	MC-SRL-0680
	000	MCH10035H10D	IVIO ONE OCCO
		MCH10035H20D	
		MCH10060H10K	
	780	MCH10060H20K	MC-SRI -0780
	780	MCH10045H10D	IVIC-SITE-0700
		MCH10045H20D	
		MCH10070H10K	
	880	MCH10070H20K	MC-SRL-0880
MCH10	000	MCH10055H10D	IVIO ONE OCCO
IVICITIO		MCH10055H20D	
		MCH10080H10K	
	980	MCH10080H20K	MC-SRL-0980
	550	MCH10065H10D	IVIO ONE OCCO
		MCH10065H20D	
		MCH10090H10K	
	1 080	MCH10090H20K	MC-SRL-1080
		MCH10075H20D	
		MCH10100H10K	
	1 180	MCH10100H20K	MC-SRL-1180
		MCH10085H20D	
		MCH10110H10K	
	1 280	MCH10110H20K	MC-SRL-1280
		MCH10095H20D	
		MCH10120H10K	
	1 380	MCH10120H20K	MC-SRL-1380
		MCH10105H20D	

Sallac H

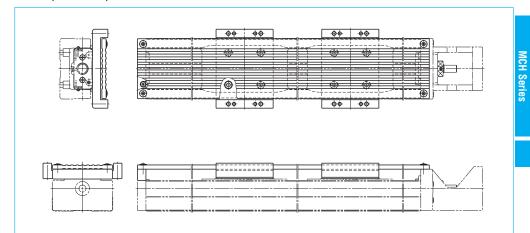

C-3-3. 2 Cover Unit

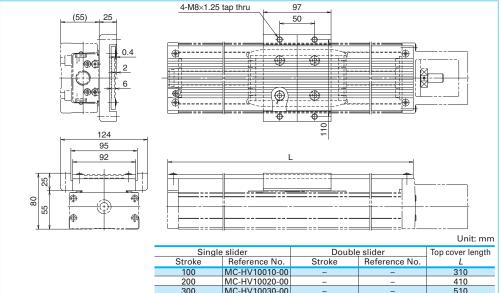
Cover unit for MCH06 and MCL06



Cover unit for double sliders

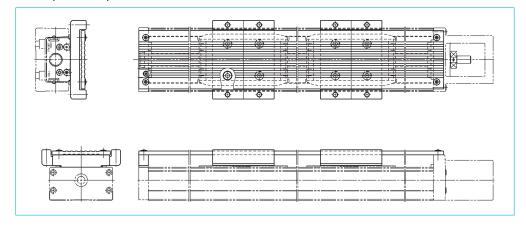
Two spacers are provided for double slider.




Cover unit for MCH09

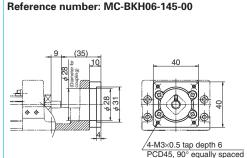
Cover unit for double sliders

Two spacers are provided for double slider.



Single	slider	Double slider		Top cover length
Stroke	Reference No.	Stroke	Reference No.	L
100	MC-HV10010-00	-	_	310
200	MC-HV10020-00	-	-	410
300	MC-HV10030-00	_	_	510
400	MC-HV10040-00	250	MC-HV10025D00	610
500	MC-HV10050-00	350	MC-HV10035D00	710
600	MC-HV10060-00	450	MC-HV10045D00	810
700	MC-HV10070-00	550	MC-HV10055D00	910
800	MC-HV10080-00	650	MC-HV10065D00	1 010
900	MC-HV10090-00	750	MC-HV10075D00	1 110
1000	MC-HV10100-00	850	MC-HV10085D00	1 210
1100	MC-HV10110-00	950	MC-HV10095D00	1 310
1200	MC-HV10120-00	1050	MC-HV10105D00	1 410

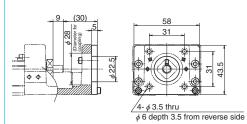
●Cover unit for double sliders


Two spacers are provided for double slider.

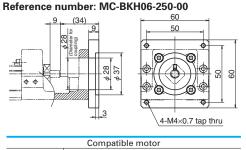
In case of parallel motor mount, please consult with NSK.
Be sure to align centerlines when installing motor.

• Motor models are subject to change at the motor manufacturers. For details, please contact the manufacturer.

Motor Bracket for MCH06 and MCL06

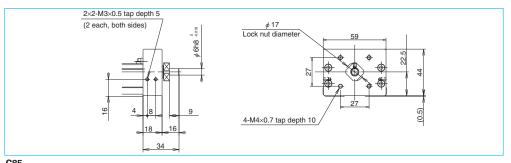


	,
	Compatible motor
Maker	Motor models
Panasonic Co., Ltd.	MSMD5A(50W), MSMD01(100W)

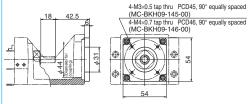

Reference number: MC-BKH06-146-00

Compatible motor			
Maker	Motor models		
Yaskawa Electric Corp.	SGMAH-A3(30W), SGMJV-A5A(50W), SGMAV-A5A(50W)		
raskawa Electric Corp.	SGMJV-01A(100W), SGMAV-01A(100W)		
	HF-KP053(50W), HF-MP053(50W), HC-KFS053(50W)		
Mitsubishi Electric Corp.	HC-MFS053(50W), HF-KP13(100W), HF-MP13(100W)		
	HC-KFS13(100W), HC-MFS13(100W)		
OMRON Corp.	R88M-W03(30W), R88M-W05(50W), R88M-W10(100W)		
Sanyo Denki Co., Ltd.	P30B04xxx P Series		

Reference number: MC-BKH06-231-00



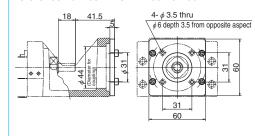
	Compatible motor		
Maker	Motor models		
Oriental Motor	AS46, ASC46, UPK54x, PK54x,		
Co., Ltd. CSK54x, CFK54x, UMK24x, CSK24x, PK24x Sanyo Denki Co., Ltd. PBM423xxx, 103F55xx			


Compatible motor				
Maker	Motor models			
Oriental Motor	AS66, ASC66, UPK56x, UFK56x,			
Co., Ltd.	PK56x, CSK56x, CFK56x			
OMRON Corp.	MUMS02(200W), MUMS04(400W)			
Sanyo Denki Co., Ltd.	PBM603xx, PBM604xx, 103F78xx			

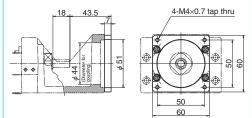
Diameter of ball screw shaft end to install a pulley for parallel motor mount of MCH06

Motor Bracket for MCH09

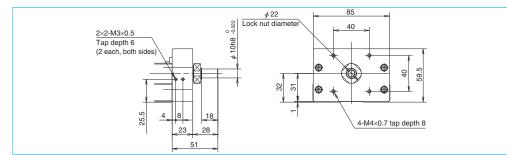
Reference number: MC-BKH09-145-00 MC-BKH09-146-00



Reference No.	Compatible motor		
neierence No.	Maker	Motor models	
MC-BKH09-145-00	Panasonic Co., Ltd.	MSMD5A(50W), MSMD01(100W)	
	VI FI C	SGMJV-A5A(50W), SGMAV-A5A(50W)	
	Yaskawa Electric Corp.	SGMJV-01A(100W), SGMAV-01A(100W)	
	Mitsubishi Electric Corp.	HF-KP053(50W), HF-MP05(50W), HC-KFS053(50W)	
MC-BKH09-146-00		HC-MFS053(50W), HF-KP13(100W), HF-MP13(100W)	
		HC-KFS13(100W), HC-MFS13(100W)	
	OMRON Corp.	R88M-W05(50W), R88M-W10(100W)	
	Sanyo Denki Co., Ltd.	P30B04xxx P Series	



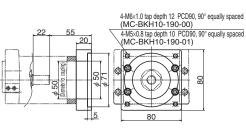
Compatible motor		
Maker	Motor models	
Vankaus Electric Corn	SGMJV-02A(200W), SGMAV-02A(200W)	
raskawa Liccurc Corp.	SGMJV-04A(400W), SGMAV-04A(400W)	
	HF-KP23(200W), HF-MP23(200W), HF-KP43(400W)	
Mitsubishi Electric Corp.	HF-MP43(400W), HC-KFS23(200W), HC-MFS23(200W)	
	HC-KFS43(400W), HC-MFS43(400W)	
OMRON Corp.	R88M-W20(200W), R88M-W40(400W)	
Sanyo Denki Co., Ltd.	P30B06xxx P Series	
Panasonic Co., Ltd.	MSMD02(200W), MSMA02(200W)	
	MSMA04(400W), MSMD04(400W)	
	Maker Yaskawa Electric Corp. Mitsubishi Electric Corp. OMRON Corp. Sanyo Denki Co., Ltd.	

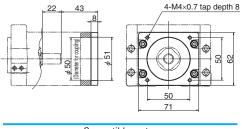

	Compatible motor		
Maker	Motor models		
	PBM423xxx, 103F55xx		
Oriental Motor	AS46, ASC46, UPK54x, PK54x, CSK54x, CFK54x		
Co., Ltd.	UMK24x, CSK24x, PK24x		

Reference number: MC-BKH09-250-00

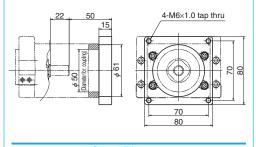
	Compatible motor				
Maker	Motor models				
Sanyo Denki Co., Ltd.	PBM603xx, PBM604xx, 103F78xx				
Oriental Motor	AS66, ASC66, UPK56x, UFK56x, PK56x				
Co., Ltd.	CSK56x, CFK56x				

Diameter of ball screw shaft end to install a pulley for parallel motor mount of MCH09

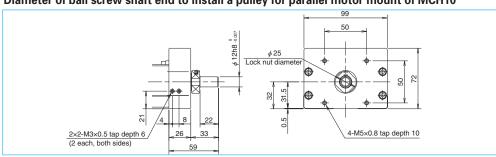



Reference No.	Compatible motor			
neierence No.	Maker	Motor models		
	Yaskawa Electric Corp.	SGMJV-02A(200W), SGMAV-02A(200W)		
	raskawa Electric Corp.	SGMJV-04A(400W), SGMAV-04A(400W)		
		HF-KP23(200W), HF-MP23(200W), HF-KP43(400W)		
MC-BKH10-170-00	Mitsubishi Electric Corp.	HF-MP43(400W), HC-KFS23(200W), HC-MFS23(200W)		
		HC-KFS43(400W), HC-MFS43(400W)		
	OMRON Corp.	R88M-W20(200W), R88M-W40(400W)		
	Sanyo Denki Co., Ltd.	P30B06xxx P Series		
MC-BKH10-170-01	Panasonic Co., Ltd.	MSMD02(200W), MSMA02(200W)		
IVIC-DNT 10-1/0-01	r anasonic Co., Etd.	MSMD04(400W), MSMA04(400W)		

Reference number: MC-BKH10-190-00 MC-BKH10-190-01


Reference No.	Compatible motor				
neierence ivo.	Maker	Motor models			
MC-BKH10-190-00	Mitsubishi Electric Corp.	HC-KFS73(750W), HC-MFS73(750W) HF-KP73(750W), HF-MP73(750W)			
MC-BKH10-190-01	Sanyo Denki Co., Ltd.	P50B07xxx P Series			

Reference number: MC-BKH10-250-00


Compatible motor					
Maker	Motor models				
Sanyo Denki Co., Ltd.	PBM603xx, PBM604xx, 103F78xx				
Oriental Motor	AS66, ASC66, UPK56x, PK56x, CSK56x, CFK56x				
Co., Ltd.	UMK56x, UFK56X				

Reference number: MC-BKH10-270-00

Compatible motor					
Maker	Motor models				
Oriental Motor	AS98, ASC98, UPK59x, PK59x, CSK59x, CFK59x				
Co., Ltd.	UMK59x, UFK59x				

Diameter of ball screw shaft end to install a pulley for parallel motor mount of MCH10

Motor Availability Table of Intermediate Plate for MCH Series

Model No.	Reference No.	Motor bracket	Motor manufacturer	Stepping motor			Wattage of A		r	
	code	reference No.		model No.	30	50	100	200	400	750
	1	MC-BKH06-145-00	Panasonic Co., Ltd.		1	MSMD5A SGMJV-A5A	MSMD01 SGMJV-01A			
			Yaskawa Electric Corp.		SGMAH-A3	SGMAV-A5A				
						HF-KP053	HF-KP13			
	2	MC-BKH06-146-00	Mitsubishi Electric Corp.			HF-MP053	HF-MP13			
MCH06		WIC-BIX 100-140-00	Wittaubishi Licctric Corp.			HC-KFS053	HC-KFS13			
			OMBON Core		DOOM A VA /OO	HC-MFS053	HC-MFS13 R88M-W10			
			OMRON Corp. Sanyo Denki Co., Ltd.	P30B04xxx (P Series)	H88IVI-VVU3	H88IVI-VVU5	H88IVI-VV I U			
				PBM423xxx						
			Sanyo Denki Co., Ltd.	103F55xx						
MCL06				AS46, ASC46						
IVICEOU	3	MC-BKH06-231-00		UPK54x , PK54x						
			Oriental Motor Co., Ltd.	CSK54x , CFK54x						
				UMK24x , CSK24x PK24x						
				PBM603xx						
			Sanyo Denki Co., Ltd.	PBM604xx						
			·	103F78xx						
	4	MC-BKH06-250-00		AS66 , ASC66						
			Oriental Motor Co., Ltd.	UPK56x , UFK56x PK56x , CSK56x						
				CFK56x						
			OMRON Corp.	CIROOX				MUMS02	MUMS04	
	1	MC-BKH09-145-00	Panasonic Co., Ltd.			MSMD5A	MSMD01			
			Yaskawa Electric Corp.			SGMJV-A5A				
			назкачка шесинс согр.				SGMAV-01A			
	2					HF-KP053	HF-KP13			
		MC-BKH09-146-00	Mitsubishi Electric Corp.			HF-MP05 HC-KFS053	HF-MP13 HC-KFS13			
						HC-KFS053 HC-MFS053				
			OMRON Corp.			R88M-W05	R88M-W10			
			Sanyo Denki Co., Ltd.	P30B04xxx (P Series)						
			Yaskawa Electric Corp.					SGMJV-02A		
			Tubica via Electric corp.					SGMAV-02A		
								HF-KP23 HF-MP23	HF-KP43 HF-MP43	
	3	MC-BKH09-170-00	Mitsubishi Electric Corp.					HC-KES23	HC-KFS43	
								HC-MFS23	HC-MFS43	
			OMRON Corp.					R88M-W20	R88M-W40	
VICH09			Sanyo Denki Co., Ltd.	P30B06xxx (P Series)						
	4	MC-BKH09-170-01	Panasonic Co., Ltd.					MSMD02	MSMD04	
				PBM423xxx	1			MSMA02	MSMA04	
		MC-BKH09-231-00	Sanyo Denki Co., Ltd.	103F55xx						
				AS46, ASC46						
	5			UPK54x , PK54x						
			Oriental Motor Co., Ltd.	CSK54x , CFK54x						
				UMK24x , CSK24x						
				PK24x PBM603xx						
			Sanyo Denki Co., Ltd.	PBM604xx						
			,	103F78xx						
	6	MC-BKH09-250-00		AS66 , ASC66						
			Oriental Motor Co., Ltd.	UPK56x , UFK56x						
				PK56x , CSK56x CFK56x						
				CI KOUX				SGMJV-02A	SGMJV-04A	
			Yaskawa Electric Corp.					SGMAV-02A		
								HF-KP23	HF-KP43	
	1	MC-BKH10-170-00	Mitsubishi Electric Corp.					HF-MP23	HF-MP43	
								HC-KFS23	HC-KFS43	
			OMRON Corp.					HC-MFS23 R88M-W20	HC-MFS43 R88M-W40	
			Sanyo Denki Co., Ltd.	P30B06xxx (P Series)						
	2	MC-BKH10-170-01	Panasonic Co., Ltd.					MSMD02	MSMD04	
		IVIC-DKI110-170-01	i dilasuriic cu., Etu.					MSMA02	MSMA04	116
										HC-KFS HC-MFS
	3	MC-BKH10-190-00	Mitsubishi Electric Corp.							HF-KP
VICH10										HF-MP
	4	MC-BKH10-190-01	Sanyo Denki Co., Ltd.	P50B07xxx (P Series)						
				PBM603xx						
			Sanyo Denki Co., Ltd.	PBM604xx						
	5	MC BKI IAO OFO CC		103F78xx	_					
	5	MC-BKH10-250-00		AS66 , ASC66 UPK56x , PK56x						
			Oriental Motor Co., Ltd.	CSK56x , CFK56x						
				UMK56x , UFK56x						
				AS98 , ASC98						
	6	MC-BKH10-270-00	Oriental Motor Co., Ltd.	UPK59x , PK59x						
	0	IVIC-DKI I I U-2/U-00	Onemai widtor Co., LTG.	CSK59x , CFK59x						
	1		I	UMK59x, UFK59x	1	l .				

C87 C88

MEMO

Other

BLOCK

Other

1. Special Environments D1
1.1 Specifications for Special Environments D1
1.2 Lubrication and Materials D3
1.3 Rust Prevention and Surface Treatment D5
1.4 Measures Against Special Environments ······ D7
1.5 Table to Cope with Special Environments D11
1.6 Precautions for
Handling D12
2. Lubrication ····· D13
2.1 Grease Lubrication ······ D13
2.2 Oil Lubrication ····· D24
3. RoHS Compliant D24

NSK

1 Special Environments

1.1 Specifications for Special Environments

1. Linear guide

Table 1.1 Linear guide specifications

Environment	Condition	NSK linear guide specifications				
LIIVII OIIIIICIIL	Condition	Rail, slide	Steel balls/rollers	Ball recirculation component	Lubrication/surface treatment	Explanation Page No.
		Standard material	Standard material	Standard material	LG2, LGU Grease	D8
	Atmosphere,	Otanidara matemai	Staridara material	Otanaara matema	NSK K1 lubrication unit	D10
	normal temperature				LG2, LGU Grease	D8
Clean	normar temperature				NSK K1 lubrication unit	D10
		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
	Atmosphere-Vacuum up to 200°C					
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
\/	Atmosphere-Vacuum up to 200°C	Manaanitia aastalaan aasal	Managemental and the land of the land	A		
Vacuum	Atmosphere-Vacuum up to 300°C	iviartensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Molybdenum disulfide	
	High vacuum up to 500°C				Special silver film	D7
	Vanor atoom	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel		
	Vapor, steam	Standard material	Standard material Standard material			D5
	Acid, alkali	Standard material	Standard material		Fluoride low temperature chrome plating	D5
			Martensitic stainless steel	Austenitic stainless steel		D5
Corrosion	Asid alkali alaan	Martensitic stainless steel			Fluoride low temperature chrome plating	D5
resistance	Acid, alkali, clean				LG2, LGU Grease	D8
	Strong acid,				Fluoride low temperature chrome plating	D5
	strong alkali				Fluoride grease	
	Organic solvent				Fluoride grease	
	Atmosphere	Standard material	Standard material		ET150 Grease	
Himb	up to 150°C				ET 150 Grease	
High	Atmosphere up to 200°C	Martanaitia atainlaas ataal	Martensitic stainless steel	Austenitic stainless steel	Fluoride grease	
temperature	Atmosphere up to 200°C,	ividitensing stanness steer	ividitensitic stanness steer		Eluarida arasas	
	Corrosion resistant				Fluoride grease	
Low temperature	-273°C and higher	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Solid lubricant	
Radiation	Atmosphere	Standard material	Standard material	Standard material	Radiation resistant grease	
resistance	Atmosphere	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	naulation resistant grease	
	Fine particles,	Standard material	Standard material	Standard material		D10
Foreign	wooden chips		Martensitic stainless steel	Austenitic stainless steel	NSK K1 lubrication unit	D10
matters	Water,	Martensitic stainless steel	Standard material	Standard material	TIUD HOUBSHAUN I'N NOW	D10
	under water		Martensitic stainless steel	Austenitic stainless steel		D10

2. Ball screw

Table 1.2 Ball screw specifications

Environment	Condition		NSK Ball screv	w specification		Technical Explanation
Liivii oiiiileiit	Condition	Screw shaft, ball nut	Steel balls	Ball Recirculation component	Lubrication/surface treatment	Page No.
		Standard material	dard material Standard material Standard material		LG2, LGU Grease	D8
	Atmosphere,	Standard material Standard material Sta		Standard material	NSK K1 lubrication unit	D10
	' '				LG2, LGU Grease	D8
	normal temperature				NSK K1 lubrication unit	D10
Clean		Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Fluoride low temperature chrome plating	D5
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
	Atmosphere-Vacuum up to 200°C					
	Atmosphere-Vacuum up to 200°C, Corrosion resistant	Ceramic	Ceramic	Ceramic	Fluoride grease	
	Atmosphere-Vacuum, normal temperature				Fluoride grease	
Vacuum	Atmosphere-Vacuum up to 200°C	Martanaitia atainlaan ataal	Martensitic stainless steel	Austenitic stainless steel		
vacuum	Atmosphere-Vacuum up to 300°C	iwartensitic stainless steer		Austennic stamiess steer	Molybdenum disulfide	
	High vacuum up to 500°C				Special silver film	D7
		Standard material	Standard material		Fluoride low temperature	D5
Corrosion	Acid, alkali, clean	Martensitic stainless steel	artensitic stainless steel Martensitic stainless steel		chrome plating	D5
resistance		Precipitation hardening stainless steel	Precipitation hardening stainless steel	Austenitic stainless steel	E	
	Strong acid, strong alkali, clean, nonmagnetic		Ceramic		Fluoride grease	
N e	Atmosphere-Vacuum, clean	Special austenitic stainless steel			Fluoride grease	
Nonmagnetic	Atmosphere-Vacuum, up to 200°C, clean	Ceramic	Ceramic	Austenitic stainless steel	Fluoroplastic	
	Atmosphere up to 200°C	Standard material	Standard material		Fluoride grease	
High	Atmosphere up to 200°C	Martensitic stainless steel	Martensitic stainless steel	A	Fluoride low temperature chrome plating	D5
temperature	Atmosphere up to 500°C,	o :		Austenitic stainless steel		
	corrosion resistance	Ceramic	Ceramic		Fluoride grease	
Low temperature	-273°C and higher	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Solid lubricant	
Radiation		Standard material	Standard material	Standard material		
resistance	Atmosphere	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel	Radiation resistant grease	
	Fine particles,	Standard material	Standard material	Standard material		D10
Foreign	wooden chips				NSK K1 lubrication unit	D10
matters	Water, under water	Martensitic stainless steel	Martensitic stainless steel	Austenitic stainless steel		D10
matters	Water, under water					

1.2 Lubrication and Materials

1. Lubrication

Grease can be used for high rotation and magnetic field. However, grease evaporates or solidifies in special environment such as vacuum, high temperature, and low temperature. Solid lubricant is

used when it is difficult to use grease. Functions of solid lubricant differ greatly by condition where it is used. It is important to select the most suitable solid lubrication for the environment.

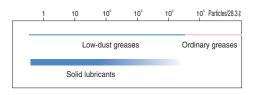


Fig. 2.1 Lubrication in clean environment

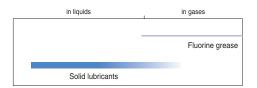


Fig. 2.3 Lubrication in corrosive environment

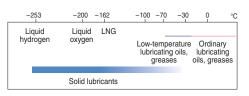


Fig. 2.5 Lubrication in low temperature

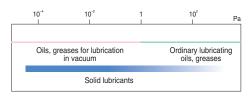


Fig. 2.2 Lubrication in vacuum

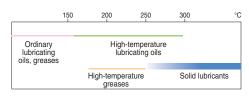


Fig. 2.4 Lubrication in high temperature

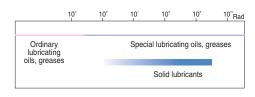


Fig. 2.6 Lubrication in radioactive environment

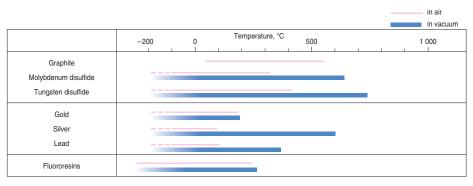


Fig. 2.7 Temperature range for using solid lubricants

2. Materials

Iron type metals are used in vacuum, high temperature, and high speed environments as

the basic material. We generally use nonmagnetic stainless steel for nonmagnetic materials.

Table 2.1 Characteristics of metal materials

Application	Type of steel	Linear expansivity ×10 ⁻⁶ /°C	Young's modulus GPa	Hardness* HB
For clean environment,	Martensitic stainless steel SUS440C	10.1	200	580
corrosion resistance, low temperature,	Austenitic stainless steel SUS304	16.3	193	150
high temperature, radioactive resistance	Precipitation hardening stainless steel SUS630	10.8	200	277 – 363
Nonmagnetic	Nonmagnetic stainless steel	17.0	195	420

^{*)} Hardness of steel is usually indicated by Rockwell C Scale. For comparison, these figures are expressed by Brinell number.

1.3 Rust Prevention and Surface Treatment

1. Fluoride low temperature chrome plating The use environment of NSK linear guides ball screws, and monocarriers is expanding from general industrial machines, semiconductor and liquid crystal manufacturing systems to aerospace equipment.

Among all measures to cope with environment, rust prevention is the most challenging. Such environment includes:

- Moisture for washing machines and other equipment
- Chemicals used in the wet processing of semiconductor and liquid crystal display manufacturing equipment.

NSK has developed electrolytic rust prevention black film treatment (black chrome plating) which is added by fluoro resin impregnating treatment. (Hereinafter referred as "Fluoride low temperature chrome plating".) This surface treatment methods has proved its superiority as the rust prevention of linear guides and ball screws which are used in the above equipment.

What is "Fluoride low temperature chrome plating?"

This is a type of black chrome plating which forms a black film (1 to 2 µm in thickness) on the metal surface. Fluoroplastic coating is added to the film to increase corrosion resistance.

- Accuracy control is easily manageable due to low temperature treatment and to the absence of hydrogen embrittlement.
- Product accuracy is less affected due to the thin film which has high corrosion resistance.
- This method is superior to other surface treatments in durability on the rolling surface.
- Inexpensive compared with products with other surface treatment and stainless steel products.

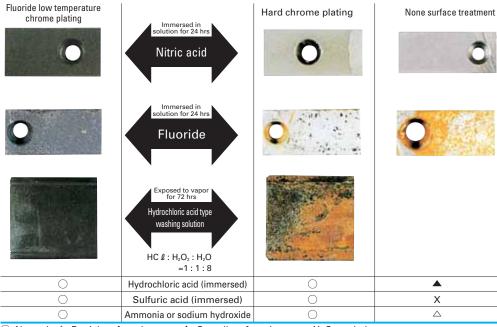
Do not use organic solvent because it adversely affects antirust property of the plating.

Humidity chamber test

Table 3.1 Results of the humidity test

		Test sample	Fluoride low temperature chrome plating	Hard chrome plating	Electroless nickel plating	Equivalent to SUS440C material	Standard steel
Chara	cterist	ic	(recommended)	(reference)	(reference)		
		Тор	(Ground) B	(Ground) B	(Ground) A	(Ground) C	(Ground) D
	Rusting	Side	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
		Bottom	(Ground) A	(Ground) A	(Ground) A	(Ground) C	(Ground) E
	æ	End	(Machined) A	(Machined) C	(Machined) A	(Machined) C	(Machined) E
		Chamfer/grinding recess	(Drawn) A	(Drawn) D	(Drawn) A	(Drawn) C	(Drawn) E
Corrosion-resistant property	(ma	t conditions> Festing chamber: High emperature, highly moist chamber ade by DABAI ESPEC) Femperature: 70°C Relative humidity: 95%	•	0	0	0	O
Corrosio	Tim "rar tem con Rar	Testing time: 96 h The to "ramp-up" and see to "ramp-up" and see to "ramp-down" condition of the see					电线量
		Film thickness	5 µm	0.5 – 7 μm	10 μm	_	_

Rustina


A: No rust C: Spotty rust

B: Not rusted, but slightly discolored

Chemical corrosion resistance test

Table 3.2 Results of the corrosion resistance test

Rail base material: Equivalent to SUS440C Test conditions Chemical density: 1 mol/L

O: Normal △: Partial surface damage ▲: Overall surface damage X: Corroded

Surface treatment durability test

Peeling resistance of surface treatment

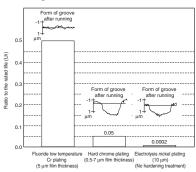


Fig. 3.1 Results of durability test

Total evaluation

Table 3.3 Evaluation

	Available length	Rust prevention ability	Quality stability	Durability	Cost
Fluoride low temperature chrome plating	© (4 m)	0	0	0	0
Hard chrome plating	△ (2 m)	0	Х	\triangle	\triangle
Electroless nickel plating	© (4 m)	0	Δ	Х	Δ
Material equivalent to SUS440C	(3.5 m)	0	0	0	Δ
○: Excellent			○: 9	Suitable	in use

 \triangle : Not so good for use

X: Problem in use

1.4 Measures Against Special Environments

1. In vacuum

Silver-film plated ball screw

Ball screws that are plated by soft metal (special silver film) as a solid lubricant are developed the application for vacuum environment such as semiconductor manufacturing equipment and surface modification systems.

Durability test in high vacuum

Test equipment and conditions

Table 4.1 shows ball screw specifications. Fig. 4.1 is a schematic of the testing system in vacuum chamber. Table 4.2 shows testing conditions.

Table 4.1 Ball screw specifications

Table 4.1 Dali Sci	ew specifications
Shaft diameter	12 mm
Lead	4 mm
Steel ball diameter	2.381 mm
mbers of circuit of balls	2.5 turns, 1 circuit
Axis load (preload)	29.4 N
kimum surface pressure (preload volume)	about 690 MPa
Shaft	SUS630
Nut	SUS440C
Ball return tube	SUS304
Steel balls	SUS440C
Solid lubricant	Special silver film
	Shaft diameter Lead Steel ball diameter mbers of circuit of balls Axis load (preload) ximum surface pressure (preload volume) Shaft Nut Ball return tube Steel balls

Table 4.2 Testing conditions

Rotational speed	300 min ⁻¹	
Vacuum chamber	1.3×10⁻⁵ – 1.3×10⁻ੰ Pa	
pressure	110/110	
Stroke	160 mm	

Evaluation method

It is understood that the rolling bearing with solid lubrication reaches end of life when the lubrication film deteriorates, resulting in sudden rise of friction torque. In this test, ball screw rotation torque was constantly measured to study durability and operation. Results were then evaluated.

Test results

D7

Fig. 4.2 shows two distinctive examples obtained in the torque characteristic test.

Photo 4.1 Vacuum testing system

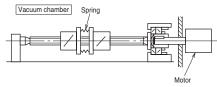


Fig. 4.1 Schematic of the testing system

Test results of the ball screw (a)

The torque tendency was stable until about 1 \times 10 7 rev. Then the torque characteristics slightly deteriorated. At about 1.35 \times 10 7 rev, the torque suddenly rose. At this point, it was determined that the ball screw reached the end of its life.

Test results of the ball screw (b)

Torque value is a little higher in the test (a). The value is also little unstable. The torque momentarily soared several times during the test (some 10 N·cm). It is thought this is attributable to the repeated peeling/sticking of the surface film made of soft metal (silver, etc.).

When the torque finally soared at 1.13×10^7 rev., it was determined that the ball screw reached the end of its life.

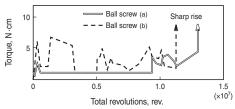
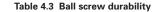



Fig. 4.2 Torque variation

		Classification	Ball screw (a)	Ball screw (b)
		Total revolutions (rev.)	1.35×10 ⁷	1.13×10 ⁷
	Life	Total traveling distance (km)	54.0	45.2
		Total traveling hours*(h)	750	628

^{*)} Total traveling hours when operated constantly at 300 min-

Conclusion

Table 4.3 explains results of the two ball screw durability tests.

From these results and other findings, it is estimated that a life of more than 1×10^7 rev. is possible with a load of about 29.4 N.

Torque may soar momentarily before the ball screw reaches its final life due to peeling/sticking of the surface film made of soft metal like silver. For this reason, it is recommendable to select a drive motor with extra torque capacity.

2. Clean environment

NSK Clean Grease LG2 and LGU

NSK Clean Grease LG2 is used in clean room for NSK linear guides, ball screws, Monocarriers, XY Modules, Megatorque motors, XY tables, etc. with low-dust emitting specifications. For its low dust emission and high durability, LG2 earns trust and high reputation of semiconductor equipment manufacturers.

LG2 is superior in many areas to fluorine greases which are commonly used in clean room.

Features

- Remarkably low dust emission
- Long life -- More than ten times longer than fluoride greases, and equivalent to ordinary greases.
- Excellent rust prevention -- Significantly higher capacity than fluorine greases.
- Low and stable torque -- 20% or less than that of fluorine greases

Table 4.4 Nature of Clean Grease LG2 and LGU

Name	Thickener	Base oil	Base oil kinematic viscosity mm²/s (40°C)	Consistency	Dropping point °C
Clean Grease LG2	Lithium soap	Synthetic hydrocarbon oil + mineral oil	30	207	200
Clean Grease LGU	Diurea	Synthetic hydrocarbon oil	100	209	260

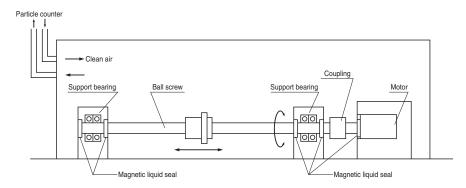
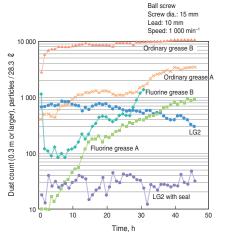



Fig. 4.3 Setting to measure dust generated by ball screw

Feature 1: Remarkably low dust emission

Compared with fluoride greases, dust emission by LG2 is low and stable for long period of time.

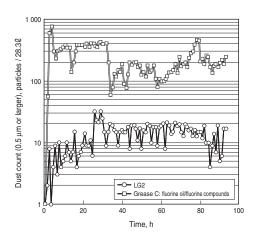


Fig. 4.4 Comparison in dust emission characteristics

Fig. 4.5 Dust emission from linear guide (Linear guide: LU09)

Feature 2: Long life

Life is ten times or longer than fluorine greases, and equivalent to ordinary greases. This stretches maintenance intervals.

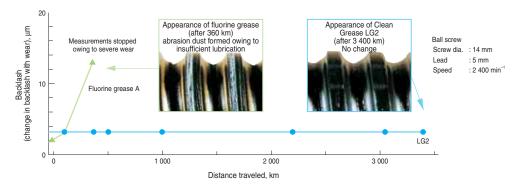
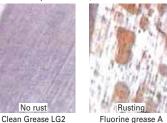



Fig. 4.6 Results of ball screw durability test

● Feature 3: Excellent rust prevention capacity

The rust prevention capacity is significantly higher than fluoride type greases. Handling and preparation for operation are easy.

Ball screw rust prevention test (test conditions: 96 hr at humidity 95%, temperature 70°C)

Ordinary grease A

Photo 4.2

Table 4.5 Rust prevention test on bearing

Туре	Rusting after 7 days
NSK Clean Grease LG2	No rust
Fluorine grease B	Rusted

Test conditions: 19 mg is sealed in ball bearing 695

: Temp. 90°C, Humidity 60%

Evaluation : Studied by microscope

● Feature 4: Stable torque

Torque is 20% or lower than fluorine greases.

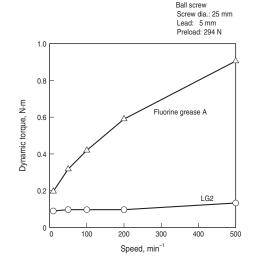


Fig. 4.7 Comparison of torque characteristics

Total evaluation

Table 4.6 Evaluation

Characteristic	LG2	Fluorine grease	General grease
Dust generation	0	○-△	△ – X
Torque	0	Х	O- △
Durability	0	△ – X	0
Rust prevention ability	0	△ - X	0

○: Suitable △: Not very suitable X: Problem in use

3. Environment with foreign matters

NSK K1 lubrication unit (linear guide and ball screw)

Molded oil is made of a lubrication oil and polyolefin which has affinity with the lubrication oil. More than 70% of the mass is lubrication oil.

Molded oil which is formed into NSK K1 lubrication unit effectively seals linear guides, continually supplying lubrication oil. NSK K1 lubrication unit has made it possible to use linear guides in water or powder dust.

NSK K1 lubrication unit for ball screws is also

For monocarriers, NSK K1 is equipped as a standard feature.

Features

- Extend maintenance-free intervals
- No contamination of surrounding environment
- Prolong life of the products exposed to water

Refer to pages A38, B533 and C18 for details of NSK K1 lubrication unit.

1.5 Table to Cope With Special Environments

1. Linear guides

Series	Model No.		environm				
స్ట		Clean	Vacuum	Corrosion	High temp.	Hygienic	High dust proofing
	LH08	0		0			
	LH10	0		0			
	LH12	0		0		0	
	LH15	0		0		0	
	LH20	0	0	0	0	0	
LH	LH25	0	0	0	0	0	
	LH30	0	0	0	0		
	LH35	0		0	0	0	
	LH45	0		0	0		
	LH55	0		0			
	LH65	0		0			
	SH15	0		0			
	SH20	0		0			
	SH25	0		0			
SH	SH30	0		0			
	SH35	0		0			
	SH45	0		0			
	SH55	0		0			
	VH15	0		0			0
VH	VH20	0		0			0
	VH25	0		0			0
	VH30	0		0			0
	VH35	0		0			0
	VH45	0		0			0
	VH55	0		0			0
	TS15	0		0			
	TS20	0		0			
TS	TS25	0		0			
	TS30	0		0			
	TS35	Ô		Ô			
	LS15	Ó	0	Ö	0	0	
	LS20	Ó	0	Ó	Ö	Ö	
LS	LS25	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ	
	LS30	Ŏ	Ö	Ŏ	O*	Ŏ	
	LS35	Ó		Ô		Ô	
	SS15	Ô		Õ			
	SS20	Ô		Ô			
SS	SS25	Ô		Ô			
	SS30	Ô		Ô			
	SS35	Ŏ		Ô			
	LW17	Ŏ		Ö	O*	0	
	LW21	0		Õ	O*	Õ	
LW	LW27	Ĭŏ		ŏ	Ö	ŏ	
,	LW35	l ŏ		ŏ		ŏ	
	LW50	ŏ		ŏ			
	PU05	l ŏ		ŏ			
PU	PU07	l ŏ		ŏ			
	1 007						

Series	Model No.	Special	environm	nent whic	h linear g	juide can	tolerate
Ser	iviodei ivo.	Clean	Vacuum	Corrosion	High temp.	Hygienic	High dust proofing
	PU09	0		0		0	
PU	PU12	0		0		0	
	PU15	0		0		0	
	LU05	0		0			
	LU07	0		0			
	LU09_L	0	0	0	0	0	
LU	LU09_R	0		0		0	
	LU12_L	0	0	0	0	0	
	LU12_R	0		0		0	
	LU15	0	0	0	O*	0	
	PE05	0		0			
	PE07	0		0			
PΕ		0		0		0	
	PE12	0		0		0	
	PE15	0		0		0	
	LE05	0		0			
	LE07	0	0	0	O*		
	LE09_L	0	0	0	O*	0	
LE	LE09_R	0		0		0	
	LE12_L	0	0	0	0	0	
	LE12_R	0		0		0	
	LE15_L	0	0	0	0	0	
	LE15AR	0		0		0	
	RA15	0		0			
	RA20	0		0			
	RA25	0		0			
RA	RA30	0		0			
	RA35	0		0			
	RA45	0		0			
	RA55	0		0			
	RA65	0		0			
	LA25	0		0			
	LA30	0		0			
LA	LA35	0		0			
	LA45	0		0			
	LA55	0		0			
_	LA65	0		0			
	HA25	0		0			
	HA30	0		0			
HA	HA35	0		0			
	HA45	0	-	0			
	HA55	2	-	9			
	HS15	2	-	2			
110	HS20	2	-	2			
н5	HS25	2	-	2			
	HS30	0	-	0			
	HS35			0			

^{*)} Dust-proof parts are not applicable to high-temperature environmental use.

2. Ball screws

Series	Special environment				
	Clean	Vacuum	Rust prevention	High temp.	Foreign matters
KA Series	0	0	0		
For Contaminated environments VSS Type					0
Made-to-order ball screw	0*		0*	0*	0*

*Available in the made-to-order ball screw.

Please consult NSK.

3. Monocarriers

Please consult with NSK for special environmental use.

1.6 Precautions for Handling

Please observe the following precautions to maintain high functions of ball screws and linear motion guide bearings in special environment over a long period.

- Products are washed to remove oil, and wrapped in a way to protect them from moisture. Use the product as soon as possible after opening the package.
- After opening, store the ball slide (randommatching type linear guide) and ball nut (R series ball screw) in a clean, air-tight container such as desiccater with desiccating agent (e.g. silica gel).
 Do not apply rust preventive oil or paper or product that vaporizes rust preventive agent.
- Wear plastic gloves and handle product in clean place.

2. Lubrication

There are two types of lubricating method -- grease and oil -- for ball screws, linear guides and monocarriers.

Use a lubricant agent and method most suitable to condition requirements and purpose to optimize functions of ball screws, linear guides and monocarriers.

In general, lubricants with low base oil kinematic viscosity are used for high-speed operation, in which thermal expansion has a large impact, and in low temperatures.

Lubrication with high base oil kinematic viscosity is used for oscillating operations, low speeds and high temperatures.

The following are lubrication methods using grease and oil.

2.1 Grease Lubrication

Grease lubrication is widely used because it does not require a special oil supply system or piping. Grease lubricants made by NSK are:

- Various types of grease in bellows tubes that can be instantly attached to a grease pump;
- NSK Grease Unit that consists of a hand grease pump and various nozzles. They are compact and easy to use.

1. NSK grease lubricants

Table 1.1 shows the marketed general grease widely used for linear guides, ball screws, and monocarrier for specific uses, conditions and purposes.

Table 1.1 Grease lubricant for linear guides, ball screws and monocarriers

Type	Thickener	Base oil	Base oil kinematic viscosity	Range of use	Purpose
			mm²/s (40°C)	temperature (°C)	
AS2	Lithium type	Mineral oil	130	-10 - 110	For general use at high load
PS2	Lithium type	Synthetic oil + mineral oil	15	-50 - 110	For low temperature and high frequency operation
LR3	Lithium type	Synthetic oil	30	-30 - 130	For high speed, medium load
LG2	Lithium type	Mineral oil + synthetic hydrocarbon oil	30	-20 - 70	For clean environment
LGU	Diurea	Synthetic hydrocarbon oil	100	-30 - 120	For clean environment
NF2	Urea composite type	Synthetic hydrocarbon oil	27	-40 - 100	For fretting resistance

(1) NSK Grease AS2

Features

It is an environmentally friendly and widely used grease for high load application. It is mineral oil based grease containing lithium thickener and several additives. It is superb in load resistance as well as stability in oxidization. It not only maintains good lubrication over a long period of time, but also demonstrates superb capability in retaining water. Even containing a large amount of water, it does not lose grease when it is softened.

Application

It is a standard grease for general NSK linear guides, ball screws and monocarriers. It is prevalently used in many applications because of its high base oil viscosity, high load resistance, and stability in oxidization.

(2) NSK Grease LR3

Features

It contains a special synthetic oil for high temperature and stability, and a carefully selected anti-oxidation agent. This grease dramatically increases lubrication life under high temperature conditions. It is used for high speed, medium load. Lubrication life exceeded 2 000 hours in the endurance test at 150°C. Its rust prevention capacity in severe conditions such as water and moist environments is further strengthened.

Application

It is a standard grease for ball screws PSS type (shaft dia. 15 mm or over), FSS type, FA type (except shaft dia. 10 mm with lead of 4mm and shaft dia. 12 mm with lead of 5 mm) and VFA type. It is ideal for operation with medium load, at high speed such as positioning in high tact material handling equipment.

(3) NSK Grease PS2

Features

The major base oil component is synthetic oil with mineral oil. It is an excellent lubrication especially for low temperature operation. It is for high speed and light load.

Application

It is a standard grease for NSK miniature linear guides and ball screws. It is especially superb for low temperature operation, but also functions well in normal temperatures, making it ideal for small equipment with light load.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil
Consistency	275
Dropping point	181°C
Volume of evaporation	0.24% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr
Oil separation	2.8% (100°C, 24 hr)
Base oil kinematic viscosity	130 mm ² /s (40°C)

Nature

Thickener	Lithium soap base
Base oil	Synthetic oil
Consistency	227
Dropping point	208°C
Volume of evaporation	0.30% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	1.9% (100°C, 24 hr)
Base oil kinematic viscosity	30 mm²/s (40°C)
	•

Nature

Thickener	Lithium soap base
Base oil	Synthetic oil + mineral oil
Consistency	275
Dropping point	190°C
Volume of evaporation	0.60% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	3.6% (100°C, 24 hr)
Base oil kinematic viscosity	15 mm²/s (40°C)

D13 Cquipment with right load.

(4) NSK Grease LG2

Features

This grease was developed by NSK to be exclusively used for linear guides and ball screws in clean room. Compared to the fluorine grease which are commonly used in clean room, LG2 has several advantages such as:

- Higher in lubrication function
- Longer lubrication life
- More stable torque (resistant to wear)
- · Higher rust prevention.

In dust generation, LG2 is more than equal to fluorine grease in keeping dust volume low. Since the base oil is not a special oil but a mineral oil, LG2 can be handled in the same manner as general greases.

Application

LG2 is a lubrication grease for rolling element products such as linear guides and ball screws for semiconductor and liquid crystal display (LCD) processing equipment which require a highly clean environment. Because LG2 is exclusively for a clean environment at normal temperatures, however, it cannot be used in a vacuum environment.

Refer to "Special environment" in page D8 for detailed data on superb characteristics of NSK Grease LG2.

Nature

Thickener	Lithium soap base
Base oil	Mineral oil + Synthetic hydrocarbon oil
Consistency	207
Dropping point	200°C
Volume of evaporation	1.40% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.8% (100°C, 24 hr)
Base oil kinematic viscosity	30 mm²/s (40°C)

(5) NSK Grease LGU

Features

This is a proprietary urea base grease of NSK featuring low dust emission exclusively for ball screws and linear guides which are used in clean rooms.

In comparison with fluorine base grease, which has been used commonly in clean rooms. LGU has better

lubricating property, longer duration of lubricant, better torque variation, much better anti-rust property, and equivalent or better dust emission. In addition, this grease can be handled in the same way as the other common grease because high-grade synthetic oil is used as the base oil.

LGU grease contains much less metallic elements compared to LG2 grease. It can be used in high temperature environment.

Application

This is exclusive lubrication grease for ball screws and linear guides that are installed in equipment that requires cleanliness, as same as LG2 grease, and it can be used in high temperature range of -30 to 180°C.

This cannot be used in vacuum.

Nature

Thickener	Diurea
Base oil	Synthetic hydrocarbon oil
Consistency	209
Dropping point	260°C
Volume of evaporation	0.09% (99°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.6% (100°C, 24 hr)
Base oil kinematic viscosity	100 mm²/s (40°C)

(6) NSK Grease NF2

Features

It uses high-grade synthetic oil as the base oil and urea base organic compound as the thickener. It has remarkable anti-fretting corrosion property. It can be used in wide temperature range, from low to high, and has superior lubrication life.

Application

This grease is suitable for ball screws and linear guides of which application include oscillating operations. Allowable temperature range is -40 to 100°C.

Nature

Thickener	Diurea
Base oil	Synthetic hydrocarbon oil
Consistency	288
Dropping point	269°C
Volume of evaporation	7.9% (177°C, 22 hr)
Copper plate corrosion test	Satisfactory (Method B, 100°C, 24 hr)
Oil separation	0.6% (100°C, 24 hr)
Base oil kinematic viscosity	27 mm ² /s (40°C)

Precautions for handling

- Wash the linear guides and ball screws to remove oil prior to applying Clean Grease LG2 or LGU, so the grease functions are fully utilized.
- Clean grease is exclusively used for clean environments at normal temperatures.

Note) Refer to NSK Grease Unit Catalog (CAT. No.3317) for details of NSK Grease.

2. Before use of NSK Precision Products

Wipe off the rust preventive oil before use for the products that the oil is applied.

If grease is not applied, apply grease, and move a ball slide or ball nut a few strokes so the grease permeates into the ball slide and inside the nut. (Move the ball slide or the ball nut 5 to 10 times with full stroke.)

Then wipe off the excess grease.

How to replenish grease and volume of grease to be replenished

Use grease fitting if exclusive grease supply component is not used. Supply required amount through grease fitting by a grease pump.

Wipe off old grease and accumulated dust before supplying new grease. If grease fitting is not used, apply grease directly to the rail or to the ball groove of the screw shaft. Move a ball slide or ball nut a few strokes so the grease permeates into the ball slide and inside the nut.

Once grease is replenished, another supply is not required for a long time. But under some operational conditions, it is necessary to periodically replenish grease. The following are replenishing methods.

* When replenishing using a grease pump:

Use a grease pump and fill the inside of ball slide, ball nut and monocarrier slider with grease. Supply grease until it comes out from the ball slide, ball nut or monocarrier slider area. Move ball slide, ball nut or monocarrier slider by hand while filling them with grease, so the grease permeates all areas. Do not operate the machine immediately after replenishing. Always try the system a few times to spread the grease throughout the system and to remove excess grease. Trial operations are necessary because the resistance to sliding force and screw torque greatly increases immediately after replenishment (full-pack state) and may cause problems. The agitating resistance of grease is accountable for this phenomenon. Wipe off excess grease that accumulates at end of rail and screw shaft after trial runs so the grease does not move to other areas.

- * When there is an exclusive grease supply system and the volume from the spout can be controlled, the criterion is:
- All at once, replenish the amount that fills about 50% of the internal space of the ball slide or the internal space of the ball nut. This method eliminates waste of grease and is efficient.

Tables 1.2, 1.3 and **1.4** show internal spaces of ball slide, ball nut and monocarrier slider for reference.

Other

Table 1.2 Inside space of the ball slide of linear guide

LH. SH Series

0 .				
Series		LH		Н
Model No. High	-load type	Super-high-load type	High-load type	Super-high-load type
08	0.2	-	-	_
10	0.4	-	_	-
12	1.2	_	-	_
15	3	4	2	3
20	6	8	5	7
25	9	13	9	12
30	13	20	11	17
35	22	30	20	27
45	47	59	42	53
55	80	100	73	93
65 1	39	186	_	_

Unit: cm³

LW Series	Unit: cm
Series Model No.	LW
17	3
21	3
27	7
35	24
50	52

VH Series

		OTHE. OTH
Series	VH	
Model No.	High-load type	Super-high-load type
15	3	4
20	6	8
25	9	13
30	13	20
35	22	30
45	47	59
55	80	100

PI	1 1	II S	erie

•				Unit: cm ³
Series	PU		L	U
Model No.	Standard type	High-load type	Standard type	High-load type
05	0.1	-	0.1	-
07	0.1	-	0.1	-
09	0.2	0.3	0.2	0.3
12	0.3	0.4	0.3	0.4
15	0.8	1.1	0.8	1.1

TS Series Unit: cm³

Series Model No.	TS
15	2
20	3
25	6
30	9
35	15

PE, LE Series

					Onit: cm
Series	PE			LE	
Model No.	Standard type	High-load type	Medium-load type	Standard type	High-load type
05	0.1	-	0.1	0.1	-
07	0.2	-	0.1	0.2	0.3
09	0.4	0.5	0.2	0.4	0.5
12	0.5	0.7	0.3	0.5	0.7
15	1.2	1.6	0.8	1.2	1.6

LS, SS Series

				Offic. Citis
Series	L	S	S	S
Model No.	Medium-load type High-load type		Medium-load type	High-load type
15	2	3	1.5	2
20	3	4	3	4
25	5	8	5	7
30	8	12	7	11
35	12	19	11	17

RA Series	Unit: cm³

		OTHE. CITE				
Series	RA					
Model No.	High-load type	Super-high-load type				
15	1	1.5				
20	2	2.5				
25	3	3.5				
30	5	6				
35	6	8				
45	10	13				
55	15	20				
65	33	42				

LA Series

Unite om3

LA Series	;	Unit: cm³				
Series	LA					
Model No.	High-load type	Super-high-load type				
25	8	12				
30	14	18				
35	21	29				
45	38	48				
55	68	86				
65	130	177				

HA.	HS	Series
11/7,		OCITES

,		Unit: cm ³
Series Model No.	HA	HS
15	-	5
20	-	9
25	16	16
30	27	25
35	42	40
45	67	_
55	122	_

Units am

Limite ana

Table 1.3 Inside space of ball nut

Return tube type (single nut)

	Unit: cm³		Unit: cm³		Unit: cm³		Unit: cm³
Nut model	Inside space	Nut model	Inside space	Nut model	Inside space	Nut model	Inside space
1004 – 2.5	0.8	2005 – 5	4.3	2525 – 1.5	7.5	4005 – 10	14
1205 – 2.5	1.2	2010 - 2.5	4.7	2805 – 5	6	4010 – 5	30
1210 – 2.5	1.4	2020 - 1.5	4.2	3205 – 5	7	4012 – 5	34
1405 – 2.5	2.2	2504 – 5	3.2	3206 – 5	9.5	4510 – 5	34
1510 – 2.5	2.3	2505 – 5	5	3210 – 5	22	5010 – 5	37
1605 – 2.5	2.6	2506 – 5	7	3225 - 2.5	17	5010 – 10	59
1616 – 1.5	2.1	2510 – 3	9.5	3232 – 1.5	15		
2004 – 5	2.7	2520 – 2 5	12	3610 – 5	32		

1.9

2.8

4.2

End cap type

Nut model

1520 – 1.5

2040 - 1

2550 - 1

Deflector type (single nut)

(single	nut) _{Uni}	it: cm³
Nut model	Inside space	9
2505 – 6	6.5	
2510 – 4	10	
3205 – 8	9.5	
3210 – 6	28	_
4010 – 8	42	
5010 – 8	52	

Note:

Nut model: shaft diameter, lead, total number of turns Unit: cm³ Inside space Please consult NSK for other specifications.

Refer to B110 to B142 for Compact FA Series.

Table 1.4 Inside space of the monocarrier

MCM Series

s					MCH Series	s	
		Model No.	Lead (mm)	Inside space	Model No.	Lead (mm)	Inside
1	1		5	11.6		5	2.8
2	0.9	MCM08	10	9.8	MCH06	10	2.7
10	1.8		20	8.7		20	2.7
12	1.7		30	4.3		5	5.8
5	4.2		10	19.4	MCH09	10	5.8
10	4	MCM10	20	17.4		20	5.6
20	2.1		30	8.8		10	10.9
30	2.0				MCH10	20	10.1
5	8.3						
10	6.5						
Ī	Lead (mm) 1 2 10 12 5 10 20 30 5	Lead Inside (mm) space 1 1 2 0.9 10 1.8 12 1.7 5 4.2 10 4 20 2.1 30 2.0 5 8.3	Lead Inside (mm) space 1	Lead Inside (mm) space 1	Nodel No. Lead Inside (mm) space 1	Lead Inside (mm) space 1	Lead Inside (mm) space 1

4. Intervals of checks and replenishments

20 5.5

Although the grease is of high quality, it gradually deteriorates and its lubrication function diminishes. Also, the grease in the ball slide and ball nut is gradually removed by stroke movement. In some environments, the grease becomes dirty, and foreign objects may enter. Grease should be replenished depending on frequency of use. The following is a guide of grease replenishment intervals for linear guides and ball screws.

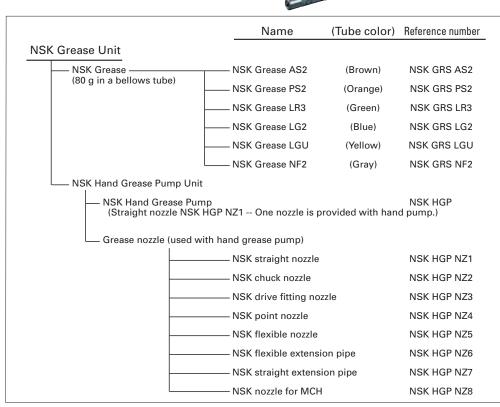
Table 1.5 Intervals of checks and replenishments for grease lubrication

Intervals of checks	Items to check	Intervals of replenishments			
3-6 months	Dirt, foreign matters such as	Usually once per year. Every 3 000 km for material handling			
	cutting chips	system that travels more than 3 000 km per year. Replenish			
		if checking results warrant it necessary.			

Notes: 1) As a general rule, do not mix greases of different brands.

- 2) Grease viscosity varies by temperature. Viscosity is particular high in winter due to low temperatures. Pay attention to increases in linear guide and monocarrier sliding resistance and ball screw and monocarrier torque in such conditions.
- 3) When the ambient temperature is low, or in Winter, if it is difficult to pump out the grease from the container, wait until the grease is softened.
- 4) In locations where coolant is dispersed or scattered, emulsification of lubricants and rinsing with water may significantly deteriorate the integrity of the lubricant and efficiency of the grease. Protect the grease unit from coolant by shielding it with a cover, etc.

5. NSK Grease Unit


Supply grease to NSK linear guides and ball screws by manual type hand grease pump. Install grease in bellows tube to the pump. Several types of grease (80 g) are available.

Grease in bellows tube

(1) Composition of NSK Grease Unit

Components and grease types are shown below.

(2) NSK Greases (80 g in bellows tube)

Refer to pages D14 and D15 for their natures and details.

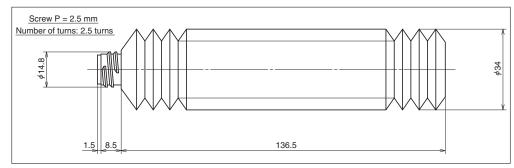


Fig. 1.1 Bellows tube

(3) NSK Manual Grease Pump Unit

a) NSK Hand Grease Pump (Reference number: NSK HGP)

Features

- Light-weight ····· Can be operated by one hand, yet there is no worry to make a mistake.
- Inserting by high pressure ···· Insert at 15 Mpa.
- No leakingDoes not leak when held upside down.
- Easy to change grease ···· Simply attach grease in bellows tube.
- Remaining grease ····· Can be confirmed through slit on tube.
- Several nozzles ······ Six types of nozzles to choose from.

Specifications

- Discharge pressure ·· 15 Mpa
- Spout volume ······ 0.35 cc/shot
- Mass of main body ... Without nozzle 240 g
 Provided nozzle 90 g
- Grease tube outer diameter ϕ 38.1
- Accessory Several nozzles for a unique application can be attached

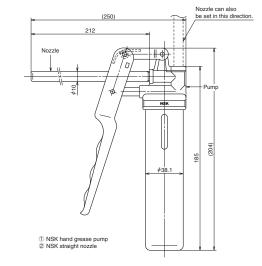


Fig. 1.2 NSK Hand Grease Pump with NSK straight nozzle

Other

b) Nozzles

Table 1.5 Nozzles that can be attached to NSK Hand Grease Pump

Name	Designation code	Use	Dimensions
NSK straight nozzle	NSK HGP NZ1	Can be used with grease fitting A, B, and C under JIS B1575 standard.	R1/8
NSK chuck nozzle	NSK HGP NZ2	Same as above. However, there is no need to press the hand pump because the grease fitting and the nozzle come to contact due to the chucking mechanism at the tip.	R1/8
NSK fitting nozzle	NSK HGP NZ3	Dedicated for the $-\phi 3$ drive-in grease fitting.	30 111 M6V1.0 0 155
NSK point nozzle	NSK HGP NZ4	Used for linear guides and ball screws which do not have grease fitting. Supplies grease directly to the ball grooves, or through the opening of ball slide or ball slide to inside.	Tip. \$\phi 1.5 \\ \text{P1/8} \\ \text{136}
NSK flexible nozzle	NSK HGP NZ5	The tip of the flexible nozzle is chuck nozzle. Used to supply grease to the area where hand cannot reach.	14HEX. 14HEX. R1/8
NSK flexible extension pipe	NSK HGP NZ6	Flexible extension pipe connects the grease pump and the nozzle	Rp1/8 14HEX. 14HEX. R1/8
NSK straight extension pipe	NSK HGP NZ7	Straight extension pipe connects the grease pump and the nozzle.	Rp1/8 12HEX. R1/8
NSK nozzle for MCH	NSK HGP NZ8	For MCH Series grease replenishment	\$5.5 R 1/8

Table 1.6 Grease fittings used for NSK linear guide

Series Model number		Tap hole for grease fitting	Standard grease fitting	Straight nozzle NZ1	Chuck nozzles NZ2	Drive-in nipple nozzle NZ3	Point nozzle NZ4	Flexible nozzle NZ5
	LH08, 10	_	_				0	
LH	LH12, 15	φ3	Drive-in type			0		
LΠ	LH20, 25, 30, 35*	M6×0.75	B type	0	0			0
	LH45, 55, 65, 85	Rc1/8	B type	0	0			0
	SH15	φ3	Drive-in type			0		
SH	SH20, 25, 30, 35*	M6×0.75	B type	0	0			0
	SH45, 55	Rc1/8	B type	0	0			0
	VH15	φ3	Drive-in type					
VH	LH20, 25, 30, 35*	M6×0.75	B type	0	0			0
	VH45, 55	Rc1/8	B type	0	0			0
TC	TS15	φ3	Drive-in type			0		
TS	TS20, 25, 30, 35*	M6×0.75	B type	0	0			0
LS	LS15	φ3	Drive-in type			0		
	LS20, 25, 30, 35*	M6×0.75	B type	0	0			0
SS	SS15	φ3	Drive-in type					
	SS20, 25, 30, 35*	M6×0.75	B type	0	0			0
	LW17	φ3	Drive-in type			0		
LW	LW21, 27, 35*	M6×0.75	B type	0	0			0
	LW50	Rc1/8	B type	0	0			0
DII	PU05, 07, 09, 12	_					0	
PU	PU15	φ3	Drive-in type			0		
LU	LU05, 07, 09, 12, 15	·_	_				0	
DE	PE05, 07, 09, 12	_	-				0	
PE	PE15	φ3	Drive-in type			0		
LE	LE05, 07, 09, 12, 15		_				0	
	RA15, 20	φ3	Drive-in type			0		
RA	RA25, 30, 35*	M6×0.75	B type	0	0			0
	RA45, 55, 65	Rc1/8	B type	0	0			0
	LA25, 30, 35*	M6×0.75	B type	0	0			0
LA	LA45, 55, 65	Rc1/8	B type	0	0			0
114	HA25, 30, 35*	M6×0.75	B type	0	0			0
HA	HA45, 55	Rc1/8	B type	0	Ō			0
110	HS15	φ3	Drive-in type			0		
HS	HS20, 25, 30, 35*	M6×0.75	B type	0	0	-		0

^{*)} If using a chuck nozzle, avoid interference with table and rail.

Note: 1) For PU, PE, LU, and LE Series, apply grease directly to ball groove, etc. using point nozzle.

2) A long threaded grease fitting is required for NSK linear guides because of dust-proof parts. Please refer to the sections pertaining to the lubrication and dust-proof parts of each series.

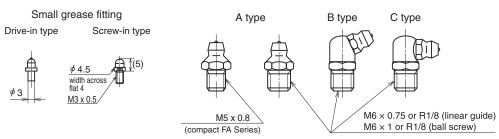


Fig. 1.3 Grease fittings

Table 1.7 Applicable grease nozzle for ball screws

Series		Model no.		Tap hole for grease fitting	Standard grease fitting	Straight nozzle NZ1	Chuck nozzles NZ2	Drive-in fitting nozzle NZ3	Point nozzle NZ4	Flexible nozzle NZ5	
		High-accuracy, clean	USS		ME OO	A type	0	0			0
	Compact FA	General	PSS		M5×0.8	A type	0	0			0
		Transfer equipment	FSS			A type	0	0			0
	NA::		MA	Shaft dia. 12 or less	-	_				0	
	Miniature, f	ine lead	IVIA	Shaft dia. 16 or over	M6×1	_	0	0			0
	Small equi	pment	FA		M6×1	_	0	0			0
Finished	Machine	+00l0	SA	Shaft dia. 36 or less	M6×1	-	0	0			0
shaft end	iviacnine	toois	SA	Shaft dia. 40 or over	Rc1/8	-	0	0			0
	Stainless steel		KA	Shaft dia. 12 or less and lead 2 or less	M3×0.5	-			0		
				except above	M6×1	_	0	0			0
	Transfer equipment			Shaft dia. 12 or less	φ 2.7	-				0	
			VFA	Shaft dia. 15 or over	φ 3.5	-				0	
			RMA		-	-				0	
	Miniature, f	ina laad	MS	Shaft dia. 12 or less	-	-				0	
	iviiniature, i	ine iead	IVIS	Shaft dia. 16 or over	M6×1	-	0	0			0
	Small equi	pment	FS	FS		_	0	0			0
	Machine	toolo	SS	Shaft dia. 36 or less	M6×1	ı	0	0			0
	iviaciiiie	10015	33	Shaft dia. 40 or over	Rc1/8	_	0	0			0
			RMS		-	-				0	
Blank			RNFTL	Shaft dia. 12 or less	M3×0.5	_			0		
shaft end			I TINI I L	Shaft dia. 14 or over	M6×1	-	0	0			0
			RNFBL	Shaft dia. 12 or less	M3×0.5	-			0		
	Transfer equ	uipment		Shaft dia. 14 or over	M6×1	-	0	0			0
			RNCT		_	-				0	
			RNFCL	Shaft dia. 12 or less	M3×0.5	ı			0		
			INFCL	Shaft dia. 15 or over	M6×1	ı	0	0			0
			RNSTL		M6×1	-	0	0			0

Notes: 1) Normally, grease fitting is not provided to NSK ball screw except Compact FA Series. Ball nut has a tap hole to install a grease fitting. The user should install a grease fitting if necessary.

- 2) For M3 \times 0.5 tap hole, small fitting (screw-in type) is available. Please contact NSK.
- 3) VFA type cannot install grease fitting. Apply grease directly to inside the nut through oil hole using point nozzle.
- 4) MA, RMA, MS, RMS, and RNCT types have no tap hole, apply grease directly to the screw shaft and ball grooves using point nozzle.

Table 1.7 Applicable grease nozzles for Monocarriers

S	eries	Model no.	Tap hole for grease fitting Standard		Straight nozzle NZ1	Chuck nozzles NZ2	Drive-in fitting nozzle NZ3	Flexible nozzle NZ5	MCH exclusive fitting nozzle NZ8
		MCM02	-	-					
N	/ICM	MCM03,05,08,10	φ3	Drive-in type			0		0*
	MCM06	M6×0.75	A type	0	0		0		
Ν	ЛСН	MCH06,09,10	φ3	Drive-in type					0

^{*)} Use of NZ3 is recommended.

2.2 Oil Lubrication

Required amount of new oil is regularly supplied by:

- Manual or automatic intermittent supply system:
- Oil mist lubricating system via piping.

Equipment for oil lubrication is more costly than grease lubrication. However, oil mist lubricating system supplies air as well as oil, raising the inner pressure of the ball slide. This prevents foreign matters from entering, and the air cools the system. Use an oil of high atomizing rate such as ISO VG 32 to 68 for the oil mist lubrication system.

ISO VG 68 to 220 are recommended for common intermittent replenishment system. Approximate volume of oil Q for a ball slide of linear guide per hour can be obtained by the following formula.

> In case of ball type linear guides except the LA Series

 $Q = n/150 \text{ (cm}^3/\text{hr)}$ In case of LA Series, RA Series $Q \ge n/100 \text{ (cm}^3/\text{hr)}$

n: Linear guide code

e.g. When LH45 is used,

n = 45

Therefore.

 $Q = 45/150 = 0.3 \text{ cm}^3/\text{hr}$

Similarly, approximate oil supply volume Q to ball screw can be obtained by the following formula.

 $Q = d/15 \text{ (cm}^3/\text{hr)}$

d: Nominal shaft diameter of the ball screw

e.g. When the shaft diameter is 50,

d = 50

Therefore,

 $Q = 50/15 = 3.3 \text{ cm}^3/\text{hr}$

For oil lubrication by gravity drip, the oil supply position and installation position of the ball slide or ball nut are crucial. In case of linear guide, unless it is installed to a horizontal position, the oil flows only on the down side, and does not spread to all raceway surface. This may cause insufficient lubrication. For ball screw lubrication as well, oil does not spread if the oil orifice is installed at the bottom, causing insufficient lubrication. Please consult NSK to correct such situations prior to use. NSK has internal design which allows oil lubricant to flow throughout the system. Table 2.1 shows the criterion of intervals of oil checks and replenishments.

Table 2.1 Intervals of checks and replenishments

Method	Intervals of checks	Items to check	Replenishment or intervals of changes				
Automatic intermittent supply	Weekly	Volume of oil, dirt, etc.	. Replenish at each check. Suitable volume for tank capacity.				
Oil bath	Daily before operation	Oil surface	Make a suitable criterion based on consumption				

Notes: 1) As with grease lubrication, do not mix oil lubricant with different types.

- 2) Some components of the linear guide and ball screw are made of plastic. Avoid using an oil that adversely affects synthetic resin.
- 3) When using oil mist lubricating system, please confirm an oil supply amount at the each outlet part.

3. RoHS Compliant

1. Linear Guides

- · Linear Guides listed in the catalog except the products for special environments, are compliant with
- · Please consult NSK for RoHS of special parts and lubricant provided by customer, and customersupplied product.

2. Ball Screws

· Ball screws listed in the catalog except the products for special environments, are compliant with RoHS.

3. Monocarriers

· Monocarriers listed in the catalog are compliant with RoHS.

4. Ball Screw Support Bearings

· Ball screw support bearings listed in the catalog are compliant with RoHS.

^{*}For details of country-specific RoHS, contact NSK.

APPENDICES: TABLES

		١
		ĺ
		ı

BLOCK

Appendices: Tables

	• •
1.	Conversion from International Systems of Units (SI) E1
2.	Conversion table between N and kgf ······E3
3.	Conversion table between kg and lb E4
4.	Hardness conversion table ·· E5
5.	Variations of shaft used in common fits E7
	Variations of housing holes in

1. Conversion from international system of units (SI)

Comparisons of SI, CGS, and engineering systems of units

S	Items ystem of units	Length	Mass	Time	Temperature	Acceleration	Force	Stress	Pressure	Energy	Power	
	SI	m	kg	s	K, °C	m/s²	N	Pa	Pa	J	W	
-	CGS system	cm	g	s	°C	Gal	dyn	dyn/cm²	dyn/cm²	erg	erg/s	
Er	ngineering system	m	kgf • s²/m	s	°C	m/s²	kgf	kgf/m²	kgf/m²	kgf ∙ m	kgf • m/s	

Conversion rates from SI system of units

lt a ma	SI unit		Units other than	SI units	Conversion rate from SI unit	
Item	Name of unit	Abbreviation	Name of unit	Abbreviation	Conversion rate from SI unit	
Angle	Radian	rad	Degree	0	180/π	
			Minute	1	10 800/π	
			Second		648 000/π	
Length	Meter	m	Micron	μ	10 ⁶	
			Angstrom	Å	1010	
Area	Square meter	m²	Are	а	10-2	
			Hectare	ha	10-⁴	
Volume	Cubic meter	m³	Liter	I, L	10 ³	
			Deciliter	dl, dL	10⁴	
Time	Second	s	Minute	min	1/60	
			Hour	h	1/3 600	
			Day	d	1/86 400	
Numbers of vibration numbers of frequency	Hertz	Hz	Cycle	S ⁻¹	1	
Rotational speed	Times per second	S ⁻¹	Times per minute	rpm	60	
Velocity	Meter per second	m/s	Kilometer per hour	km/h	3 600/1 000	
			Knot	kn	3 600/1 852	
Acceleration	Meter per square second	m/s²	Gal	Gal	10 ²	
			G	G	1/9.806 65	
Mass	Kilogram	kg	Ton	t	10-3	
Force	Newton	N	Weight kilogram	kgf	1/9.806 65	
			Weight ton	tf	1/(9.806 65×10³)	
			Dyne	dyn	10⁵	
Torque and	Newton meter	N•m	Weight kilogram	kgf • m	1/9.806 65	
moment of force			meter			
Stress	Pascal	Pa	Weight kilogram per square centimeter	kgf/cm²	1/(9.806 65×10 ⁴)	
	(Newtons per square meter)	(N/m^2)	Weight kilogram per square millimeter	kgf/mm²	1/(9.806 65×10°)	

Prefixes for SI units

Powers of 10	Prefix Name Code	Powers of 10	Prefix Name Code
10 ¹⁸	exa E	10 ⁻¹	deci d
10 ¹⁵	peta P	10 ⁻²	centi c
10 ¹²	tera T	10 ⁻³	milli m
10°	giga G	10 ⁻⁶	micro μ
10°	mega M	10 ⁻⁹	nano n
10°	kilo k	10 ⁻¹²	pico p
10 ²	hecto h	10 ⁻¹⁵	femto f
10 ¹	deca da	10 ⁻¹⁸	atto a

Conversion rates from SI units (continued from previous page)

	SI unit		Units other than		
Item	Name of unit	Abbreviation	Name of unit	Abbreviation	Conversion rate from SI unit
Pressure	Pascal	Pa	Weight kilogram per square meter	kgf/m²	1/9.806 65
	(newton per square meter)	(N/m^2)	Water column meter	mH₂O	1/(9.806 65×10³)
			Mercurial column millimeter	mmHg	760/(1.013 25×10 ⁵)
			Torr	Torr	760/(1.013 25×10 ⁵)
			Bar	bar	10-⁵
			Atmosphere	atm	1/(1.013 25×10 ⁵)
Energy	Joule	J	Erg	erg	10 ⁷
	(newton meter)	(N • m)	Calorie (international)	cal _⊓	1/4.186 8
			Weight kilogram meter	kgf • m	1/9.806 65
			Kilowatt hour	kW • h	1/(3.6×10 ⁶)
			Metric horsepower/hour	PS • h	≈3.776 72×10 ⁻⁷
Electric power,	Watt	W	Weight kilogram meter per second	kgf • m/s	1/9.806 65
power	(joules per second)	(J/s)	Kilo calorie per hour	kcal/h	1/1.163
			Metric horsepower	PS	pprox1/735.498 8
Viscosity, Viscosity index	Pascal second	Pa•s	Poise	Р	10
Kinematic viscosity,	Square meter	m²/s	Stokes	St	10⁴
Kinematic viscosity index	per second		Centistokes	cSt	10 ⁶
Temperature, Difference in temperature	Kelvin, Celsius degrees	K, °C	Degree	°C	[See Note (1)]
Electrical current, magnetomotive force	Ampere	А	Ampere	Α	1
Electrical power, electromotive force	Volt	V	(Watt per ampere)	(W/A)	1
Magnetic field intensity	Ampere per meter	A/m	Oersted	Oe	4π/10³
Magnetic flux density	Tesla	Т	Gauss	Gs	104
			Gamma	γ	10 ⁹
Electrical resistance	Ohm	Ω	(Volt per ampere)	(V/A)	1

Note (1) Conversion from TK to θ °C is : θ = T - 273.15. To indicate temperature difference: Δ T = $\Delta\theta$. Δ T and $\Delta\theta$ indicate temperature differences measured by Kelvin and Celsius respectively.

Remarks: Names and abbreviations of the unit in parentheses indicate the definition of the unit shown above the parentheses or left to the parentheses.

Conversion example 1 N = 1/9.806 65 kgf

NSK

2. Conversion table between N and kgf

[How to read the table]

To convert 10 N to kgf, locate 10 in the center column in the first block. Locate a corresponding kgf figure in the right side column. You will find 10 N is 1.0197 kgf. To convert 10 kgf to N, locate a figure in N column to its left. You will find 10 kgf is 98.006 N.

3. Conversion table between kg and lb

[How to read the table]

To convert 10 kg to lb, locate 10 in the center column in the first block. Locate a corresponding lb figure in right column. You will find 10 kg is 22.046 lb. To convert 10 lb to kg, locate the figure in the kg column to the left. You will find 10 lb is 4.536 kg.

1	kg	= 2.2046226	lb
1	lh	= 0.45359237	kc

N		kgf	N		kgf	N		kgf	kg		lb	kg		lb	kg		lb
9.8066	1	0.1020	333.43	34	3.4670	657.05	67	6.8321	0.454	1	2.205	15.422	34	74.957	30.391	67	147.71
19.613	2	0.2039	343.23	35	3.5690	666.85	68	6.9341	0.907	2	4.409	15.876	35	77.162	30.844	68	149.91
29.420	3	0.3059	353.04	36	3.6710	676.66	69	7.0360	1.361	3	6.614	16.329	36	79.366	31.298	69	152.12
39.227	4	0.4079	362.85	37	3.7729	686.47	70	7.1380	1.814	4	8.818	16.783	37	81.571	31.751	70	154.32
49.033	5	0.5099	372.65	38	3.8749	696.27	71	7.2400	2.268	5	11.023	17.237	38	83.776	32.205	71	156.53
58.840	6	0.6118	382.46	39	3.9769	706.08	72	7.3420	2.722	6	13.228	17.690	39	85.980	32.659	72	158.73
68.647	7	0.7138	392.27	40	4.0789	715.89	73	7.4439	3.175	7	15.432	18.144	40	88.185	33.112	73	160.94
78.453	8	0.8158	402.07	41	4.1808	725.69	74	7.5459	3.629	8	17.637	18.597	41	90.390	33.566	74	163.14
88.260	9	0.9177	411.88	42	4.2828	735.50	75	7.6479	4.082	9	19.842	19.051	42	92.594	34.019	75	165.35
98.066	10	1.0197	421.69	43	4.3848	745.31	76	7.7498	4.536	10	22.046	19.504	43	94.799	34.473	76	167.55
107.87	11	1.1217	431.49	44	4.4868	755.11	77	7.8518	4.990	11	24.251	19.958	44	97.003	34.927	77	169.76
117.68	12	1.2237	441.30	45	4.5887	764.92	78	7.9538	5.443	12	26.455	20.412	45	99.208	35.380	78	171.96
127.49	13	1.3256	451.11	46	4.6907	774.73	79	8.0558	5.897	13	28.660	20.865	46	101.41	35.834	79	174.17
137.29	14	1.4279	460.91	47	4.7927	784.53	80	8.1577	6.350	14	30.865	21.319	47	103.62	36.287	80	176.37
147.10	15	1.5296	470.72	48	4.8946	794.34	81	8.2597	6.804	15	33.069	21.772	48	105.82	36.741	81	178.57
45004	4.0		100 50			004.45	0.0			40				400.00	07.405		400 70
156.91	16	1.6315	480.53	49	4.9966	804.15	82	8.3617	7.257	16	35.274	22.226	49	108.03	37.195	82	180.78
166.71	17	1.7335	490.33	50	5.0986	813.95	83	8.4636	7.711	17	37.479	22.680	50	110.23	37.648	83	182.98
176.52	18	1.8355	500.14	51	5.2006	823.76	84	8.5656	8.165	18	39.683	23.133	51	112.44	38.102	84	185.19
186.33	19	1.9375	509.95	52	5.3025	833.57	85	8.6676	8.618	19	41.888	23.587	52	114.64	38.555	85	187.39
196.13	20	2.0394	519.75	53	5.4045	843.37	86	8.7696	9.072	20	44.092	24.040	53	116.84	39.009	86	189.60
205.94	21	2.1414	529.56	54	5.5065	853.18	87	8.8715	9.525	21	46.297	24.494	54	119.05	39.463	87	191.80
215.75	22	2.2434	539.37	55	5.6084	862.99	88	8.9735	9.979	22	48.502	24.434	55	121.25	39.916	88	194.01
225.55	23	2.3453	549.17	56	5.7104	872.79	89	9.0755	10.433	23	50.706	25.401	56	123.46	40.370	89	196.21
235.36	24	2.4473	558.98	57	5.8124	882.60	90	9.1774	10.886	24	52.911	25.855	57	125.66	40.823	90	198.42
245.17	25	2.5493	568.79	58	5.9144	892.41	91	9.2794	11.340	25	55.116	26.308	58	127.87	41.277	91	200.62
2.0		2.0.00	000.70	•	0.0	002	0.	0.270			001110	20.000	•	127.107		0.	200.02
254.97	26	2.6513	578.59	59	6.0163	902.21	92	9.3814	11.793	26	57.320	26.762	59	130.07	41.730	92	202.83
264.78	27	2.7532	588.40	60	6.1183	912.02	93	9.4834	12.247	27	59.525	27.216	60	132.28	42.184	93	205.03
274.59	28	2.8552	598.21	61	6.2203	921.83	94	9.5853	12.701	28	61.729	27.669	61	134.48	42.638	94	207.23
284.39	29	2.9572	608.01	62	6.3222	931.63	95	9.6873	13.154	29	63.934	28.123	62	136.69	43.091	95	209.44
294.20	30	3.0591	617.82	63	6.4242	941.44	96	9.7893	13.608	30	66.139	28.576	63	138.89	43.545	96	211.64
304.01	31	3.1611	627.63	64	6.5262	951.25	97	9.8912	14.061	31	68.343	29.030	64	141.10	43.998	97	213.85
313.81	32	3.2631	637.43	65	6.6282	961.05	98	9.9932	14.515	32	70.548	29.484	65	143.30	44.452	98	216.05
323.62	33	3.3651	647.24	66	6.7301	970.86	99	10.095	14.969	33	72.753	29.937	66	145.51	44.906	99	218.26

4. Conversion table of hardness

Rockwell C Scale			Brinell h	ardness	Rockwe A Scale	ell hardness B Scale	
	hardness	Vickers hardness	Standard ball	Tungsten	Load 588.4 N	Load 980.7 N	Shore hardness
	(1 471 N)			carbide ball	brale penetrator	Diameter 1.5888 mm {1/16 in} sphere	naranooo
	68	940	_	_	85.6	_	97
	67	900	_	_	85.0	_	95
	66	865	_	_	84.5	_	92
	65	832	_	739	83.9	_	91
	64	800	_	722	83.4	_	88
	63	772	_	705	82.8	_	87
	62	746	_	688	82.3	_	85
	61	720	_	670	81.8	_	83
	60	697	_	654	81.2	_	81
	59	674	_	634	80.7	_	80
	F0	CEO.		C1F	00.1		70
	58	653	_	615	80.1	_	78
	57	633	_	595	79.6	_	76
	56	613	_	577	79.0	_	75
	55	595	_	560	78.5	_	74
	54	577	_	543	78.0	_	72
	53	560	_	525	77.4	_	71
	52	544	500	512	76.8	_	69
	51	528	487	496	76.3	_	68
	50	513	475	481	75.9	_	67
	49	498	464	469	75.2	_	66
					-		
	48	484	451	455	74.7	_	64
	47	471	442	443	74.1	_	63
	46	458	432	432	73.6	_	62
	45	446	421	421	73.1	_	60
	44	434	409	409	72.5	_	58
	43	423	400	400	72.0	_	57
	42	412	390	390	71.5	-	56
	41	402	381	381	70.9	-	55
	40	392	371	371	70.4	-	54
	39	382	362	362	69.9	_	52

Rockwell C Scale		Brinell h	ardness	Rockwe	ell hardness	
				A Scale	B Scale	
hardness	Vickers		_	Load 588.4 N	Load 980.7 N	Shore
(4. 474. NI)	hardness	Standard ball	Tungsten	LOAG 500.4 N	LOAU 300.7 N	hardness
(1 471 N)			carbide ball	brale _.	Diameter 1.5888 mm	
				penetrator	{1/16 in} sphere	
38	372	353	353	69.4	_	51
37	363	344	344	68.9	_	50
36	354	336	336	68.4	(109.0)	49
35	345	327	327	67.9	(108.5)	48
34	336	319	319	67.4	(108.0)	47
33	327	311	311	66.8	(107.5)	46
32	318	301	301	66.3	(107.0)	44
31	310	294	294	65.8	(106.0)	43
30	302	286	286	65.3	(105.5)	42
29	294	279	279	64.7	(104.5)	41
28	286	271	271	64.3	(104.0)	41
27	279	264	264	63.8	(103.0)	40
26	272	258	258	63.3	(102.5)	38
25	266	253	253	62.8	(101.5)	38
24	260	247	247	62.4	(101.0)	37
23	254	243	243	62.0	100.0	36
22	248	237	237	61.5	99.0	35
21	243	231	231	61.0	98.5	35
20	238	226	226	60.5	97.8	34
(18)	230	219	219	_	96.7	33
(16)	222	212	212	_	95.5	32
(14)	213	203	203	_	93.9	31
(12)	204	194	194	_	92.3	29
(10)	196	187	187	_	90.7	28
(8)	188	179	179	_	89.5	27
(6)	180	171	171	_	87.1	26
(4)	173	165	165	_	85.5	25
(2)	166	158	158	_	83.5	24
(0)	160	152	152	_	81.7	24
(0)	100	102	102	I	01.7	4-7

E6

NSK

5. Deviations of shafts used in common fits

diamete		. d6	e6	f6	g5	g6	h5	h6	h7	h8	h9	h10	js5	js6
Over _	or less	- 20 - 26	- 14 - 20	- 6 - 12	- 2 - 6	- 2 - 8	0 - 4	0 - 6	0 -10	0 - 14	0 - 25	0 - 40	± 2	± 3
3	6	- 30 - 38	- 20 - 28	- 10 - 18	- 4 - 9	- 4 - 12	0 - 5	- 8	0 -12	0 - 18	- <u>30</u>	0 - 48	± 2.5	± 4
6	10	- 40 - 49 - 50	- 25 - 34 - 32	- 13 - 22 - 16	- 5 -11 - 6	- 5 - 14 - 6	0 - 6 0	0 - 9 0	0 -15 0	0 - 22 0	- 36 0	- <u>58</u> 0	± 3	± 4.5
10	18	- 61 - 65	- 43 - 40	- 10 - 27 - 20	-14 -7	- 17 - 7	- 8 0	0 0	<u>-18</u>	- 27 0	- 43 0	- 70 0	± 4	± 5.5
18	30	- 78 - 80	- 53 - 50	- 33 - 25	-16 - 9	- 20 - 9	- 9 0	-13 0	<u>-21</u> 0	- 3 <u>3</u>	- <u>52</u> 0	- 84 0	± 4.5	± 6.5
30	50	- 96	- 66	- 41	-20	- 25	-11	-16	-25	- 39	- 62	-100	± 5.5	± 8
50	80	–100 –119	- 60 - 79	- 30 - 49	-10 -23	- 10 - 29	-13	0 –19	-30	0 - 46	0 - 74	0 –120	± 6.5	± 9.5
80	120	-120 -142	- 72 - 94	- 36 - 58	-12 -27	- 12 - 34	0 -15	0 -22	0 -35	0 - 54	0 - 87	0 -140	± 7.5	±11
120	180	-145 -170	- 85 -110	- 43 - 68	-14 -32	- 14 - 39	0 -18	0 -25	0 -40	0 - 63	0 -100	0 -160	± 9	±12.5
180	250	-170 -199	-100 -129	- 50 - 79	-15 -35	- 15 - 44	0 -20	0 -29	0 -46	0 - 72	0 -115	0 -185	±10	±14.5
250	315	-190 -222	-110 -142	- 56 - 88	-17 -40	- 17 - 49	0 -23	0 -32	0 -52	0 - 81	0 -130	0 -210	±11.5	±16
315	400	-210 -246	-125 -161	- 62 - 98	-18 -43	- 18 - 54	0 -25	0 -36	0 -57	0 - 89	0 -140	0 -230	±12.5	±18
400	500	-230 -270	-135 -175	- 68 -108	-20 -47	- 20 - 60	0 -27	0 -40	0 -63	0 - 97	0 -155	0 -250	±13.5	±20
500	630	-260 -304	-145 -189	- 76 -120	_	- 22 - 66	_	0 -44	0 -70	0 -110	0 -175	0 -280	_	±22
630	800	-290 -340	-160 -210	- 80 -130	_	- 24 - 74	_	0 –50	0 -80	0 -125	0 -200	0 -320	_	±25
800	1 000	-320 -376	-170 -226	- 86 -142	_	- 26 - 82	_	0 -56	0 -90	0 -140	0 -230	0 -360	_	±28
1 000	1 250	-350 -416	-195 -261	- 98 -164	_	- 28 - 94	_	0 -66	0 -105	0 -165	0 -260	0 -420	_	±33
1 250	1 600	-390 -468	-220 -298	-110 -188	_	- 30 -108	_	0 -78	0 -125	0 -195	0 –310	0 -500	_	±39
1 600	2 000	-430 -522	-240 -332	-120 -212	_	- 32 -124	_	0 -92	0 -150	0 -230	0 -370	0 -600	_	±46

Un	it:	μn	n

														- · · · · · · · · · · · · · · · · · · ·	
	j5	j6	i7	k5	k6	k7	m5	m6	n6	р6	r6	r7		cation of er (mm)	
	,-	,-	,.										Over	or less	
	± 2	+ 4 - 2	+ 6 - 4	+ 4	+ 6 0	+10 0	+ 6 + 2	+ 8 + 2	+ 10 + 4	+ 12 + 6	+ 16 + 10	+ 20 + 10	_	3	
	+ 3 - 2	+ 6 - 2	+ 8 - 4	+ 6 + 1	+ 9 + 1	+13 + 1	+ 9 + 4	+ 12 + 4	+ 16 + 8	+ 20 + 12	+ 23 + 15	+ 27 + 15	3	6	
	+ 4 - 2	+ 7 - 2	+10 - 5	+ 7 + 1	+10 + 1	+16 + 1	+12 + 6	+ 15 + 6	+ 19 + 10	+ 24 + 15	+ 28 + 19	+ 34 + 19	6	10	
	+ 5 - 3	+ 8	+12 - 6	+ 9 + 1	+12	+19 + 1	+15 + 7	+ 18 + 7	+ 23 + 12	+ 29 + 18	+ 34 + 23	+ 41 + 23	10	18	
	+ 5 - 4	+ 9 - 4	+13 - 8	+11 + 2	+15 + 2	+23 + 2	+17 + 8	+ 21 + 8	+ 28 + 15	+ 35 + 22	+ 41 + 28	+ 49 + 28	18	30	
	+ 6 - 5	+11 - 5	+15 -10	+13 + 2	+18 + 2	+27 + 2	+20 + 9	+ 25 + 9	+ 33 + 17	+ 42 + 26	+ 50 + 34	+ 59 + 34	30	50	
	+ 6	+12	+18	+15	+21	+32	+24	+ 30	+ 39	+ 51	+ 60 + 41	+ 71 + 41	50	65	
	- 7	- 7	-12	+ 2	+ 2	+ 2	+11	+ 11	+ 20	+ 32	+ 62 + 43	+ 73 + 43	65	80	
	+ 6	+13	+20	+18	+25	+38	+28	+ 35	+ 45	+ 59	+ 73 + 51	+ 86 + 51	80	100	
	- 9	- 9	-15	+ 3	+ 3	+ 3	+13	+ 13	+ 23	+ 37	+ 76 + 54	+ 89 + 54	100	120	
											+ 88 + 63	+103 + 63	120	140	
	+ 7 –11	+14 -11	+22 -18	+21 + 3	+28 + 3	+43 + 3	+33 +15	+ 40 + 15	+ 52 + 27	+ 68 + 43	+ 90 + 65	+105 + 65	140	160	
											+ 93 + 68	+108 + 68	160	180	
											+106 + 77	+123 + 77	180	200	
		+16 -13		+25 -21	+24 + 4	+33 + 4	+50 + 4	+37 +17	+ 46 + 17	+ 60 + 31		+109 + 80	+126 + 80	200	225
											+113 + 84	+130 + 84	225	250	
	+7	±16	±26	+27	+36	+56	+43	+ 52	+ 66	+ 88	+126 + 94	+146 + 94	250	280	
	-16	-10	120	+ 4	+ 4	+ 4	+20	+ 20	+ 34	+ 56	+130 + 98	+150 + 98	280	315	
	+7	±18	+29	+29	+40	+61	+46	+ 57	+ 73	+ 98	+144 +108	+165 +108	315	355	
_	-18		-28	+ 4	+ 4	+ 4	+21	+ 21	+ 37	+ 62	+150 +114	+171 +114	355	400	
	+7	±20	+31	+32	+45	+68	+50	+ 63	+ 80		+108	+166 +126	+189 +126	400	450
_	-20		-32	+ 5	+ 5	+ 5	+23	+ 23	+ 40	+ 68	+172 +132	+195 +132	450	500	
	_	_	_	_	+44	+70	_	+ 70	+ 88	+122	+194 +150	+220 +150	500	560	
_					0	0		+ 26	+ 44	+ 78	+199 +155	+225 +155	560	630	
	_	_	_	_	+50	+80	_	+ 80	+100	+138	+225 +175	+255 +175	630	710	
					0	0		+ 30	+ 50	+ 88	+235 +185	+265 +185	710	800	
	_	_	_	_	+56	+90	_	+ 90	+112	+156	+266 +210	+300 +210	800	900	
_					0	0		+ 34	+ 56	+100	+276 +220	+310 +220	900	1 000	
	_	_	_	_	+66	+105	_	+106	+132	+186	+316 +250	+355 +250	1 000	1 120	
					0	0		+ 40	+ 66	+120	+326 +260	+365 +260	1 120	1 250	
	_	_	_	_	+78	+125 0	_	+126	+156	+218 +140	+378	+425 +300	1 250	1 400	
_					0	U		+ 48	+ 78	+140	+408 +330	+455 +330	1 400	1 600	
	_	_	_	_	+92	+150	_	+150	+184	+262	+462 +370 +492	+520 +370	1 600	1 800	
_					0	0		+ 58	+ 92	+170	+492	+550 +400	1 800	2 000	

NSK

6. Deviations of holes used in common fits

Classifi diamete Over	cation of er (mm) or less	E6	F6	F7	G6	G 7	H6	H7	H8	J6	J7	JS6	JS7
_	3	+ 20 + 14	+ 12 + 6	+ 16 + 6	+ 8 + 2	+ 12 + 2	+ 6 0	+ 10 0	+ 14 0	+ 2 - 4	+ 4 - 6	± 3	± 5
3	6	+ 28 + 20	+ 18 + 10	+ 22 + 10	+ 12 + 4	+ 16 + 4	+ 8	+ 12	+ 18	+ 5 - 3	± 6	± 4	± 6
6	10	+ 34 + 25	+ 22 + 13	+ 28 + 13	+ 14 + 5	+ 20 + 5	+ 9	+ 15 0	+ 22 0	+ 5 - 4	+ 8 - 7	± 4.5	± 7.5
10	18	+ 43 + 32	+ 27 + 16	+ 34 + 16	+ 17 + 6	+ 24 + 6	+ 11	+ 18	+ 27	+ 6 - 5	+10 - 8	± 5.5	± 9
18	30	+ 53 + 40	+ 33 + 20	+ 41 + 20	+ 20 + 7	+ 28 + 7	+ 13 0	+ 21 0	+ 33	+ 8 - 5	+12 - 9	± 6.5	±10.5
30	50	+ 66 + 50	+ 41 + 25	+ 50 + 25	+ 25 + 9	+ 34 + 9	+ 16 0	+ 25 0	+ 39	+10 - 6	+14 -11	± 8	±12.5
50	80	+ 79 + 60	+ 49 + 30	+ 60 + 30	+ 29 + 10	+ 40 + 10	+ 19 0	+ 30	+ 46	+13 - 6	+18 -12	± 9.5	±15
80	120	+ 94 + 72	+ 58 + 36	+ 71 + 36	+ 34 + 12	+ 47 + 12	+ 22	+ 35 0	+ 54	+16 - 6	+22 -13	±11	±17.5
120	180	+110 + 85	+ 68 + 43	+ 83 + 43	+ 39 + 14	+ 54 + 14	+ 25	+ 40	+ 63	+18 - 7	+26 -14	±12.5	±20
180	250	+129 +100	+ 79 + 50	+ 96 + 50	+ 44 + 15	+ 61 + 15	+ 29	+ 46	+ 72	+22 - 7	+30 –16	±14.5	±23
250	315	+142 +110	+ 88 + 56	+108 + 56	+ 49 + 17	+ 69 + 17	+ 32	+ 52 0	+ 81	+25 - 7	+36 -16	±16	±26
315	400	+161 +125	+ 98 + 62	+119 + 62	+ 54 + 18	+ 75 + 18	+ 36	+ 57 0	+ 89	+29 - 7	+39 –18	±18	±28.5
400	500	+175 +135	+108 + 68	+131 + 68	+ 60 + 20	+ 83 + 20	+ 40	+ 63 0	+ 97	+33 - 7	+43 -20	±20	±31.5
500	630	+189 +145	+120 + 76	+146 + 76	+ 66 + 22	+ 92 + 22	+ 44	+ 70 0	+110	_	_	±22	±35
630	800	+210 +160	+130 + 80	+160 + 80	+ 74 + 24	+104 + 24	+ 50	+ 80	+125 0	_	_	±25	±40
800	1 000	+226 +170	+142 + 86	+176 + 86	+ 82 + 26	+116 + 26	+ 56	+ 90	+140	_	_	±28	±45
1 000	1 250	+261 +195	+164 + 98	+203 + 98	+ 94 + 28	+133 + 28	+ 66	+105 0	+165	_	_	±33	±52.5
1 250	1 600	+298 +220	+188 +110	+235 +110	+108 + 30	+155 + 30	+ 78 0	+125 0	+195	_	_	±39	±62.5
1 600	2 000	+332 +240	+212 +120	+270 +120	+124 + 32	+182 + 32	+ 92 0	+150 0	+230 0	_	_	±46	±75

K5	K6	K7	M5	M6	M7	N5	N6	N7	P6	P7	Classific diamete Over	eation of er (mm) or less
0 - 4	0 - 6	0 - 10	- 2 - 6	- 2 - 8	- 2 - 12	- 4 - 8	- 4 - 10	- 4 - 14	- 6 - 12	- 6 - 16	_	3
0 - 5	+ 2 - 6	+ 3 - 9	- 3 - 8	- 1 - 9	0 - 12	- 7 -12	- 5 - 13	- 4 - 16	- 9 - 17	- 8 - 20	3	6
+ 1 - 5	+ 2 - 7	+ 5 - 10	- 4 -10	- 3 - 12	0 - 15	- 8 -14	- 7 - 16	- 4 - 19	- 12 - 21	- 9 - 24	6	10
+ 2 - 6	+ 2 - 9	+ 6 - 12	- 4 -12	- 4 - 15	0 - 18	- 9 -17	- 9 - 20	- 5 - 23	- 15 - 26	- 11 - 29	10	18
+ 1 - 8	+ 2 -11	+ 6 - 15	- 5 -14	- 4 - 17	0 - 21	-12 -21	- 11 - 24	- 7 - 28	- 18 - 31	- 14 - 35	18	30
+ 2 - 9	+ 3 -13	+ 7 - 18	- 5 -16	- 4 - 20	0 - 25	-13 -24	- 12 - 28	- 8 - 33	- 21 - 37	- 17 - 42	30	50
+ 3 -10	+ 4 -15	+ 9 - 21	- 6 -19	- 5 - 24	- 30	-15 -28	- 14 - 33	- 9 - 39	- 26 - 45	- 21 - 51	50	80
+ 2 -13	+ 4 -18	+ 10 - 25	- 8 -23	- 6 - 28	0 - 35	-18 -33	- 16 - 38	- 10 - 45	- 30 - 52	- 24 - 59	80	120
+ 3 -15	+ 4 -21	+ 12 - 28	- 9 -27	- 8 - 33	0 - 40	-21 -39	- 20 - 45	- 12 - 52	- 36 - 61	- 28 - 68	120	180
+ 2 -18	+ 5 -24	+ 13 - 33	-11 -31	- 8 - 37	0 - 46	-25 -45	- 22 - 51	- 14 - 60	- 41 - 70	- 33 - 79	180	250
+ 3 -20	+ 5 -27	+ 16 - 36	-13 -36	- 9 - 41	0 - 52	-27 -50	- 25 - 57	- 14 - 66	- 47 - 79	- 36 - 88	250	315
+ 3 -22	+ 7 -29	+ 17 - 40	-14 -39	- 10 - 46	0 - 57	-30 -55	- 26 - 62	- 16 - 73	- 51 - 87	- 41 - 98	315	400
+ 2 -25	+ 8 -32	+ 18 - 45	-16 -43	- 10 - 50	0 - 63	-33 -60	- 27 - 67	- 17 - 80	- 55 - 95	- 45 -108	400	500
_	0 -44	0 - 70	_	- 26 - 70	- 26 - 96	_	- 44 - 88	- 44 -114	- 78 -122	- 78 -148	500	630
_	0 -50	0 - 80	_	- 30 - 80	- 30 -110	_	- 50 -100	- 50 -130	- 88 -138	- 88 -168	630	800
_	0 -56	0 - 90	_	- 34 - 90	- 34 -124	_	- 56 -112	- 56 -146	-100 -156	-100 -190	800	1 000
_	0 -66	0 -105	_	- 40 -106	- 40 -145	_	- 66 -132	- 66 -171	-120 -186	-120 -225	1 000	1 250
_	0 -78	0 -125	_	- 48 -126	- 48 -173	_	- 78 -156	- 78 -203	-140 -218	-140 -265	1 250	1 600
_	0 -92	0 -150	_	- 58 -150	- 58 -208	_	- 92 -184	- 92 -242	-170 -262	-170 -320	1 600	2 000

Worldwide Sales Offices and Manufacturing Plants

Worldwi	de Sales Offices and Manufac	turing Plants	P: Pho
NSK LTD.	-HEADQUARTERS, TOKYO, JAPAN Nissei Bldg., 1-6-3 Ohsaki, Shinagawa-ku, Tokyo 141-8560, Japan	CHONGQING	Room 2306, Unit B, No China (400039)
	IINERY BUSINESS DIVISION-HEADQUARTERS P: 03-3779-7227 F: 03-3779-7644 C: 81	CHENGDU	P:023-6806-5310 Room1117, Lippo Tower, P: 028-8528-3680
	RKET DEPARTMENT P: 03-3779-7253 F: 03-3779-7644 C: 81 NERY DEPARTMENT	NSK CHINA SA HEAD OFFICE	LES CO., LTD. No.8 NSK Rd., Huaqiao Ei
	NEHY DEPARTMENT P: 03-3779-7163 F: 03-3779-7644 C: 81 USINESS DEPARTMENT	NSK-WARNER	P: 0512-5796-3000 (SHANGHAI) CO., L
	P: 0466-21-3027 F: 0466-21-3206 C: 81 INESS DIVISION-HEADQUARTERS	OFFICE/PLANT	No. 2518 Huancheng Ro P: 021-3365-5757 N BALL (HANGZHO
• Africa South Africa:	P: 03-3779-7189 F: 03-3779-7917 C: 81	PLANT	No. 189 Hongda Road, Xia Hangzhou, Zhejiang, Chin
NSK SOUTH AF	FRICA (PTY) LTD. 125 Galaxy Avenue, Linbro Business Park, Sandton, Gauteng, P.O. Box 11 Kelvin, 2054, South Africa P: 011-458-3600 F: 011-458-3608 C: 27	57, NSK-YAGI PRE PLANT	P: 0571-2280-1288 CISION FORGING (X No. 34 Zhenxing Road, Zh Jiangsu, China (215600)
• Asia and	l Oceania	NSK-WANDA E OFFICE/PLANT	P:0512-5867-6496 LECTRIC POWER A 1833 Vatai Road, Wanni
NSK AUSTRALI. MELBOURNE	11 Dalmore Drive, Scoresby, Victoria 3179, Australia		1833 Yatai Road, Wenya P:0571-8231-4818 K PRECISION CO.,
SYDNEY	P: 03-9765-4400 F: 03-9764-8304 C: 61 24-28 River Road West, Parramatta, New South Wales 2150, Australia P: 02-8843-8100 F: 02-9893-8406 C: 61	OFFICE/PLANT	No. 7, 15 Street, Shenya Shenyang, Liaoning, Ch
BRISBANE	1/69 Selhurst Street, Coopers Plains, Queensland 4108, Australia P: 07-3347-2600 F: 07-3345-5376 C: 61	SHENYANG NS	P: 024-2550-5017 K CO., LTD. No. 5, 15 Street, Shenya
PERTH China:	Unit 1, 71 Tacoma Circuit, Canning Vale, Western Australia 6155, Australia P: 08-9256-5000 F: 08-9256-1044 C: 61	a OFFICE/FLANT	Shenyang, Liaoning, Ch P: 024-2532-6080
NSK HONG KO HONG KONG	Suite 705, 7th Floor, South Tower, World Finance Centre, Harbour City, T. Kowloon, Hong Kong, China	India: RANE NSK STE CHENNAI	ERING SYSTEMS L 14, Rajagopalan Salai, V P:044-474-06017
SHENZHEN	P: 02739-9933 F: 02739-9323 C: 852 Room 624-626, 6/F, Kerry Center, Renminnan Road, Shenzhen, Guangdon P: 0755-25904886 F: 0755-25904883 C: 86	g, China BAWAL	Plot No.28A, Sector 6, F -123 501, India
KUNSHAN NSK OFFICE/PLANT	CO., LTD. 258 South Huang Pu Jiang Rd., Kunshan Economic & Technical Developr Zone, Jiangsu, China (215335)	ment NSK INDIA SAL CHENNAI	P:01284-264281 ES CO.PVT.LTD. 6th Floor, Bannari Amm. Chennai-600 004 Tamil
CHANGSHU NS OFFICE/PLANT	P: 0512-5771-5654 F: 0512-5771-5689 C: 86 K NEDLE BEARING CO., LTD. No. 66 Dongnan Road, Changshu Southeast Economic Development Zon Changshu City, Jiangsu, China (21550))	ne, GURGAON	P:044-2847-9600 Unit No-202, 2nd Floor, Haryana-122008, India
NSK STEERING	No. 66 Dongnan Hoad, Changshu Southeast Economic Development Zon Changshu City, Jiangsu, China (215500) P: 0512-5230-1111 F: 0512-5230-6011 C: 86 is SYSTEMS DONGGUAN CO., LTD.	KOLKATA	P:0124-4104-530 502, Trinity Towers, 83,
ZHANGJIAGAN	High-teen Hark, Shilong Hoad, Guaniong Section, Dongguan, Guangdong, China P: 0769-2262-0960 F: 0769-2316-2867 C: 86 G NSK PRECISION MACHINERY CO., LTD.	MOME/4	P:033-4001-2062 321, 'A' Wing, Ahura Ce -400 093, India P:022-2838-7787
SUZHOU NSK I	No. 34 Zhenxing Road, Zhangjiagang Economic Development Zone, Zhangjiagu Jiangsu, China (215600) P: 0512-5807-6496 F: 0512-5818-0970 C: 86 BEARINGS CO., LTD.	NSK-ABC BEAF OFFICE/PLANT	RINGS LTD. Plot No.A2, SIPCOT Grov Kancheepuram District, T
OFFICE/PLANT	No. 22 Taishan Road, Suzhou New District, Jiangsu, China (215129) P: 0512-6665-5666 F: 0512-6665-9138 C: 86	Indonesia:	P:044-2714-3000
JIANGSU	ESEARCH & DEVELOPMENT CO., LTD. No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China P: 0512-5796-3000 F: 0512-5796-3300 C: 86	JAKARTA PLANT	NGS MANUFACTUI Blok M4, Kawasan Berik 17520, Indonesia P: 021-898-0155
HEAD OFFICE	Al) TRADING CO., LTD. No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China P: 0512-5796-3000 F: 0512-5796-3300 C: 86	PT. NSK INDON JAKARTA	IESIA Summitmas II, 6th Floor P: 021-252-3458
	IVESTMENT CO., LTD. No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China P: 0512-5796-3000 F: 0512-5796-3300 C: 86	BLIVASI	IER INDONESIA MM2100 Industrial Town P: 021-8998-3216
BEIJING	Room 2116, Beijing Fortune Bldg., 5 Dong San Huan Bei Lu, Chao Yang I Beijing, China (100004) P: 010-6590-8161 F: 010-6590-8166 C: 86	District, Korea: NSK KOREA CO	D., LTD. Posco Center (West Wing
T I AN J I N	Room 06, 09F The Exchange Tower 2, No. 189 NanJing Road, Heping Dis Tianjin, China (300050)	strict, SEOUL CHANGWON	Posco Center (West Wing P: 02-3287-0300 60, Seongsan-Dong, Ch
CHANGCHUN	P: 022-8319-5030 F: 022-8319-5033 C: 86 Room 1001, Building A, Zhongyin Building, 727 XI'an Road, Changchun, China (130061)	PLANT Majaysia:	P: 055-287-6001
SHENYANG	P: 0431-8898-8682 F: 0431-8898-8670 C: 86 Room 1101, China Resources Building, No. 286 Qingnian Street, Heping District, Shenyang Liaoning, China (110004)	NSK BEARINGS HEAD OFFICE	6 (MALAYSIA) SDN. No. 2, Jalan Pemaju, U1 40150 Shah Alam, Selar P: 03-7803-8859
DALIAN	P: 024-2334-2868 F: 024-2334-2058 C: 86 Room 1805 Xiwang Tower, No.136 Zhongshan Road,	PRAI	No.36, Jalan kikik, Tama P: 04-3902275
NANJ I NG	Zhongshan District, Dalian, Liaoning, China (116001) P: 0411-8800-8168 F: 0411-8800-8160 C: 86 Room A1 22F, Golden Eagle International Plaza, No.89 Hanzhong Road, No.89 Jiangsu, China (210029)	JOHOR BAHRU Nanjing, IPOH	88 Jalan Ros Merah 2/1 P: 07-3546290 Gr. Floor, 89 Jalan Bend P: 05-2555000
FUZHOU	F:025-8472-6671 F:025-8472-6687 C:86 Room 1801-1811, B1#1A Class Office Building, Wanda Plaza, No.8 Aojian Fuzhou, China (350009)	g Road, NSK MICRO PF MALAYSIA PLANT	RECISION (M) SDN. No.43 Jalan Taming Dua,
WUHAN	P: 0591-8380-1030 F: 0591-8380-1225 C: 86 Room 2108, New World International Trade Tower I, No.568 Jianshe Road, Hubei, China (430000)	Wuhan, New Zealand:	Malaysia P: 03-8961-3960
QINGDAO	P: 027-8556-9630 F: 027-8556-9615 C: 86 Room 802, Farglory International Plaza, No.26 Xianggang Zhong Road, Shinan Qingdao, Shandong, China (266071)	AUCKLAND District,	P: 09-276-4992
GUANGZHOU	P: 0532-5568-3877 F: 0532-5568-3876 C: 86 Room 2302, TalKoo Hui Tower 1, No.385 Tianhe Road, Tianhe District, Guangzhou, China (510620)	NSK REPRESEI MANILA	NTATIVE OFFICE 8th Floor The Salcedo T Salcedo Village Makati (
CHANGSHA	P: 020-3817-7800 F: 020-3786-4501 C: 86 Room 1048, 10/F, Zhongtian Plaza, No.766 WuylRoad, Changsha, Hunan, China P: 0731-8571-3100 F: 0731-8571-3255 C: 86		P: 02-893-9543
LUOYANG	P: 0/31-85/1-3100 P: 0/31-85/1-3255 C: 86 Room 1108, Fangda Hotel, 6 XiYuan Road, LuoYang HeNan, China (4710 P: 0379-6069-6188 F: 0379-6069-6180 C: 86	NSK INTERNAT (03) SINGAPORE	IONAL (SINGAPOR 238A, Thomson Road, # P: 6496-8000
XI'AN	Room 1007, B Changan Metropolls Center88 Nanguanzheng Steet, Xl'an, China (710068) P: 029-8765-1896 F: 029-8765-1895 C: 86	, Shanxi, NSK SINGAPOR SINGAPORE	RE (PRIVATE) LTD. 238A, Thomson Road, # P: 6496-8000

Plants		P: Phone	F: Fax	C: Count	ry Code	Printed in Japan
CHONGQING	Room 2306, Uni China (400039)					trict, Chonqing,
CHENGDU	P: 028-8528-368	Tower, No.6	28-8528-3	hua Road, 0 690	C: 86	nuan, China (610041)
NSK CHINA SAI HEAD OFFICE	LES CO., LTD No.8 NSK Rd., Hu P: 0512-5796-30	aqiao Econo 00 F: 0	mic Develor 0512-5796	ment Zone, 3300	Kunshan, Jiar C: 86	ngsu, China (215332)
NSK-WARNER OFFICE/PLANT	(SHANGHAI) (No. 2518 Huancl P: 021-3365-575	CO., LTD. neng Road (7 F: 0	West) Feng 021-3365-5	xian Distric	t, Shanghai,	China (201401)
AKS PRECISION PLANT	N BALL (HANG No. 189 Hongda F Hangzhou, Zhejiar P: 0571-2280-12	road, xiaosna ng, China (31	CO., LTD an Area of E 1231) 0571-2280	conomic & I	ecnnological	Development Zone,
NSK-YAGI PRE	CISION FORG No. 34 Zhenxing F Jiangsu, China (2	ING (ZHA Road, Zhangji 15600)	NGJIAG agang Ecor	ANG) CO omic Develo	C: 86 D., LTD. opment Zone,	Zhangjiagang City,
NSK-WANDA E	P:0512-5867-649 LECTRIC POV 1833 Yatai Road P:0571-8231-48	VER ASSI , Wenyan To	512-5818- ISTED S own, Xiaosi 571-8248-	TEERING nan, Hangz 8656	C:86 SYSTEM: hou, Zhejiang C:86	S CO.,LTD. g, China (311258)
SHENYANG NS OFFICE/PLANT	No. 7, 15 Street,	Shenyang E	conomic 8	Technolog	ical Develop	ment Area,
	Shenyang, Liaon P: 024-2550-501	ing, China (7 F: 0	110141))24-2532-6	081	C: 86	
SHENYANG NS OFFICE/PLANT	K CO , LTD. No. 5, 15 Street,	Shenyang E	conomic &	Technolog	ical Develop	ment Area,
	Shenyang, Liaon P: 024-2532-608	0 F: 0	24-2532-6	081	C: 86	
India: RANE NSK STE	ERING SYSTE	MS LTD.				
India: RANE NSK STE CHENNAI	14, Rajagopalan P:044-474-0601	Salai, Vallar 7 F:0	cherry, Gu 44-274-66	duvanchen	y, Tamil Nad C:91	lu-603 202, India
BAWAL		tor 6, HSIID	C Growth	Centre Baw	al, District R	ewari, Haryana
NOV INDIA CAL	-123 501, India P:01284-264281	F:0	1284-2642	80	C:91	
NSK INDIA SAL CHENNAI	6th Floor, Banna Chennai-600 004 P:044-2847-960	Tamil Nadu	owers, No. u, India 44-2847-9		nakrishnan Sa	alai, Mylapore,
GURGAON	Unit No-202, 2nd Haryana-122008 P:0124-4104-53	f Floor, Bloc , India ∩ F⋅0	k-A, Iris Te	ch Park, Se	ctor-48, Gur	rgaon,
KOLKATA	502, Trinity Towe P:033-4001-206	ers, 83, Tops	sia Road, K	olkata-700	046, India	
MUMBA	321, 'A' Wing, Al -400 093, India	nura Centre,	82, Mahal	ali Caves F	Road, Andher	
NSK-ABC BEAF	RINGS LTD.	OT 0				
NSK-ABC BEAF OFFICE/PLANT	Kancheepuram Di P:044-2714-300	istrict, Tamil F:0	entre, Orag Nadu-602 1 44-2714-3	adam, Math 05, India 099	ur village, Srij C:91	perumbudur raiuk,
Indonesia: PT. NSK BEARI JAKARTA PLANT	NGS MANUFA	CTURIN	G INDON	IESIA		
JAKARTA PLANT	17520, Indonesia	1				Barat, Bekasi
PT. NSK INDON JAKARTA	P: 021-898-0155 IESIA		021-898-01		C: 62	
JAKARTA PT. NSK-WARN BEKASI	P: 021-252-3458 IER INDONES	IA				a 12190, Indonesia
	D- 021_8008_321	6 E-0	121_8008_1	218	C- 62	
Korea: NSK KOREA CO SEOUL CHANGWON	D., LTD. Posco Center (We P: 02-3287-0300	st Wing) 9F,	892, Daech 02-3287-03	i-4Dong, Ka 145	ngnam-Ku, Se C: 82	eoul, 135-777, Korea
PLANT Malaysia:	P: 055-287-6001	F: 0)55-285-99	82	C: 82	
NSK BEARINGS HEAD OFFICE	MALAYSIA)	SDN. BH	D. Sakeyan II	1 Hicom G	llanmaria Ind	netrial Dark
TIEAD OT TIOE	40150 Shah Alar P: 03-7803-8859	n, selangur,	Malaysia 03-7806-59		C: 60	donari ark,
PRAI	No.36, Jalan kiki P: 04-3902275	k, Taman In	derawasih,	13600 Prai		alaysia
JOHOR BAHRU	P: 04-3902275 88 Jalan Ros Me	F: 0 rah 2/17, Ta)4-399183 ıman Johoi) · Jaya, 811(C: 60 00 Johor Bah	ıru, Johor, Malaysia
I POH	Gr. Floor, 89 Jala	an Bendahar	a, 31650 li	oh, Perak,	Malaysia	
NSK MICRO PR	P: 05-2555000 RECISION (M)	F: 0 SDN. BHI)5-255337;) .	3	C: 60	
NSK MICRO PR MALAYSIA PLANT	Malaysia					langor Darul Ehsan,
New Zealand: NSK NEW ZEAL AUCKLAND Philippines: NSK REPRESE	AND LTD. 3 Te Apunga Pla P: 09-276-4992	ce, Mt. Well F: 0	ington, Au	kland, Nev	/ Zealand C: 64	
Philippines: NSK REPRESE! MANILA	NTATIVE OFFI 8th Floor The Sa Salcedo Village N P: 02-893-9543	ICE Icedo Tower Makati City,	s 169 H.V. Philippines	dela Costa 1227	St., C: 63	
Singapore: NSK INTERNAT SINGAPORE						ngapore 307684
NSK SINGAPOF SINGAPORE	238A, Thomson	Road, #24-0	1/05, Nove	ena Square	Tower A, Sir	ngapore 307684
	P: 6496-8000	F: 6	3250-5845		C: 65	

Worldwide Sales Offices and Manufacturing Plants

Taiwan:				United Kingdor	
TAIWAN NSK I	PRECISION CO., LTI	J. Dd. Ibangaban Diatriot	Taipei City 104, Taiwan R.O.C.	PETERLEE	S EUROPE LTD. 3 Brindley Road, South West Industrial Estate, Peterlee, Co. Durham SR8 2JD, U.K.
i Ali Li	P: 02-2509-3305	F: 02-2509-1393	C: 886	PLANT	P: 0191-586-6111 F: 0191-586-3482 C: 44
TAICHUNG	107-7. Sec. 3. Wen Xino	Rd., Taichung City 407,	Taiwan B.O.C.	NEWARK	Northern Road, Newark, Nottinghamshire NG24 2JF, U.K.
	P: 04-2311-7978	F: 04-2311-2627	C: 886	PLANT	P: 01636-605-123 F: 01636-605-000 C: 44
TAINAN		Southern Taiwan Science	Park, Tainan City 741,	NSK EUROPEA	IN TECHNOLOGY CENTRE
	Taiwan R.O.C.			NEWARK	Northern Road, Newark, Nottinghamshire NG24 2JF, U.K.
	P: 06-505-5861	F: 06-505-5061	C: 886	NSK UK LTD.	P: 01636-605-123 F: 01636-643-241 C: 44
TAIWAN NSK	TECHNOLOGY CO.,	LTD.	Toloni Oltri 404 Tolono D O O	NEWARK	Northern Road, Newark, Nottinghamshire NG24 2JF, U.K.
TAIPEI	P: 02-2509-3305	F: 02-2509-1393	Taipei City 104, Taiwan R.O.C. C: 886	INCAMALIA	P: 01636-605-123 F: 01636-605-000 C: 44
TAICHUNG		unggang Rd., Taichung 40		a Maratha an	
	P: 04-2358-2945	F: 04-2358-7682	C: 886		nd South America
TAINAN		Southern Taiwan Science	Park, Tainan City 741,	NSK AMERICA	S, INC. (AMERICAN HEADQUARTERS)
	Taiwan R.O.C.			ANN ARBOR	4200 Goss Road, Ann Arbor, Michigan 48105, Ü.S.A. P: 734-913-7500 F: 734-913-7511 C: 1
	P: 06-505-5861	F: 06-505-5061	C: 886	A	P: 734-913-7500 F: 734-913-7511 C: 1
Thailand:	O (TILALI AND) OO I	TD		Argentina: NSK ARGENTII	NA SRI
BANGKOK	S (THAILAND) CO.,L		strict, Bangkok 10250, Thailand	BUENOS AIRES	Garcia del Rio 2477 Piso 7 Oficina "A" (1429) Buenos Aires-Argentina
Drivation	P: 02320-2555	F: 02320-2826	C: 66		P: 11-4704-5100 F: 11-4704-0033 C: 54
NSK BEARING	S MANUFACTURING	G (THAILAND) CO., L	_TD.	Brazil:	
OFFICE/PLANT	700/430 Moo 7, Amata	Nakorn Industrial Estate, 7	F.Donhualor, A.Muangchonburi,	NSK BRASIL L	TDA.
	Chonburi 20000, Thailai			HEAD OFFICE	Rua 13 de Maio, 1633-14th Andar-Bela Vista-CEP 01327-905 São Paulo, SP, Brazil P: 011-3269-4786 F: 011-3269-4720 C: 55
	P: 038-454-010	F: 038-454-017	C: 66	SUZANO PLANT	Av. Vereador Joao Batista Fitipaldi, 66, CEP 08685-000, Vila Maluf, Suzano, SP, Brazil
	ERING SYSTEMS C		T 101 0	OOZANO I ZANI	P: 011-4744-2527 F: 011-4744-2529 C: 55
OFFICE/PLANT	90 Moo 9, Wellgrow Ind Bangpakong, Chachoer	lustrial Estate, Km.36 Ban	gna-rrau Ho., Bangwao,	BELO HORIZONTE	Rua Ceara 1431-4th andar-sala 405-Funcionarios Belo Horizonte-MG, Brazil
	P: 038-522-343	F: 038-522-351	C: 66		30150-311
NSK ASIA PAC	IFIC TECHNOLOGY				P: 031-3274-2591 F: 031-3273-4408 C: 55
CHONBURI			F. Donhualor, A. Muangchonburi,	JOINVILLE	Rua Blumenau, 178-sala 910-Centro Joinville-SC, Brazil 89204-250
	Chonburi 20000, Thailai			PORTO ALEGRE	P: 047-3422-5445 F: 047-3422-2817 C: 55 Av. Cristovão Colombo, 1694-sala 202-Floresta Porto Alegre-RS, Brazil 90560 001
	P: 038-454-631	F: 038-454-634	C: 66	PONTO ALEGNE	P: 051-3222-1324 F: 051-3222-2599 C: 55
Vietnam:				RECIFE	Av. Conselheiro Aguiar, 2738-6th andar-conj. 604-Boa Viagem Recife-PE, Brazil 51020-020
NSK VIETNAM	CO., LTD.	10.1.005 Theres I are last.	-tol-I Dordo Doron Anh District		P: 081-3326-3781 F: 081-3326-5047 C: 55
HEAD OFFICE	Hanoi, Vietnam	104-205, Thang Long Indu	strial Park, Dong Anh District,	Peru:	
	P: 04-3955-0159	F: 04-3955-0158	C: 84	NSK PERU S.A	.C.
NSK REPRESE	NTATIVE OFFICE			L I MA	Av. Caminos del Inca 670, Ofic : # 402, Santiago del Surco, Lima, Perú
HO CHI MINH CITY	Suite 307, Metropolitan	Building, 235 Dong Khoi S	Street, District 1,HCMC, Vietnam	0	P: 01-652-3372 F: 01-638-0555 C: 51
	P: 08-3822-7907	F: 08-3822-7910	C: 84	Canada: NSK CANADA	INC
●Europe				HEAD OFFICE	5585 McAdam Road, Mississauga, Ontario, Canada L4Z 1N4
	. TD /EUDADEANU	EADOUADTEDO)			P: 905-890-0740 F: 800-800-2788 C: 1
MAIDENHEAD	LTD. (EUROPEAN H	t Road, Maidenhead, Berk	rabira SI 6 6TD IIIV	TORONTO	5585 McAdam Road, Mississauga, Ontario, Canada L4Z 1N4
WAIDENHEAD	P: 01628-509-800	F: 01628-509-808	C: 44		P: 877-994-6675 F: 800-800-2788 C: 1
France:				MONTREAL	2150-32E Avenue Lachine, Quebec, Canada H8T 3H7 P: 514-633-1220 F: 800-800-2788 C: 1
NSK FRANCE	S.A.S.			VANCOUVER	P: 514-633-1220 F: 800-800-2788 C: 1 3353 Wayburne Drive, Burnaby, British Columbia, Canada V5G 4L4
PAR I S	Quartier de l'Europe, 2		78283 Guyancourt, France	VANCOUVER	P: 877-994-6675 F: 800-800-2788 C: 1
_	P: 01-30-57-39-39	F: 01-30-57-00-01	C: 33	Mexico:	
Germany: NSK DEUTSCH	II AND OMBII			NSK RODAMIE	NTOS MEXICANA, S.A. DE C.V.
HEAD OFFICE	Harkortstrasse 15, D-40	1880 Ratingen Germany		MEXICO CITY	Av. Presidente Juarez No.2007 Lote 5, Col. San Jeronimo Tepetlacalco,
	P: 02102-4810	F: 02102-4812-290	C: 49		Tlalnepantla, Estado de Mexico, Mexico, C.P.54090
STUTTGART	Liebknechtstrasse 33, E	-70565 Stuttgart-Vaihinge	en, Germany	MONTERREY	P: 55-3682-2900 F: 55-3682-2937 C: 52 Av. Ricardo Margain 575, IOS Torre C, Suite 516, Parque Corporativo Santa
	P: 0711-79082-0	F: 0711-79082-289	C: 49	WONTERNET	Engracia, San Pedro Garza Garcia, N.L. Mexico, C.P.66267
WOLFSBURG	Heinrich-Nordhoff-Stras	sse 101, D-38440 Wolfsbu	rg, Germany		P; 81-8000-7300 F; 81-8000-7095 C; 52
NEUWEO CES	P: 05361-27647-10	F: 05361-27647-70	C: 49	United States of	of America:
OFFICE/PLANT	TIGUNG GMBH Ehinger Strasse 5, D-89	597 Munderkingen, Germ	any	NSK CORPORA	ATION
S. FIOD I DANI	P: 07393-540	F: 07393-5414	C: 49	HEAD OFFICE	4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.
Italy:				NSK AMERICAN	P: 734-913-7500 F: 734-913-7511 C: 1 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.
NSK ITALIA S.	P.A.			TECHNOLOGY CENTER	
MILANO	Via Garibaldi 215, Garbi	agnate Milanese (Milano) 2			
Manthaudau 2	P: 0299-5191	F: 0299-025778	C: 39		P: 712-542-5121 F: 712-542-4905 C: 1
Netherlands:	AN DISTRIBUTION C	ENTRE D.V		FRANKL I N PLANT	3400 Bearing Drive, Franklin, Indiana 46131, U.S.A.
NSK EURUPE	De Kroonstraat 38, 504	3 AP Tilburg, Netherlands			P: 317-738-5000 F: 317-738-5064 C: 1
	P: 013-4647647	F: 013-4647648	C: 31	LIBERTY PLANT	1112 East Kitchel Road, Liberty, Indiana 47353, U.S.A. P: 765-458-5000 F: 765-458-7832 C: 1
Poland:				NEK DDECISIO	
NSK EUROPE	LTD. REPRESENTA	TIVE OFFICE		OFFICE/PLANT	N AMERICA, INC. 3450 Bearing Drive, Franklin, Indiana 46131, U.S.A.
WARSAW	Ul. Migdalowa 4/73, 02-		C: 48		P: 317-738-5000 F: 317-738-5050 C: 1
NOW DEADING	P: 022-645-1525	F: 022-645-1529	C: 48	SAN JOSE	780 Montague Expressway, Suite 508, San Jose, California 95131, U.S.A.
OFFICE/PLANT	S POLSKA S.A. Ul. Jagiellonska 109, 25	-734 Kielce Poland			P: 408-944-9400 F: 408-944-9405 C: 1
S. HODI LANI	P: 041-366-5001	F: 041-367-0500	C: 48		S SYSTEMS AMERICA, INC.
	G SYSTEMS EUROP	E (POLSKA) SP.Z O.	.o.	OFFICE/PLANT	110 Shields Drive, Bennington, Vermont 05201, U.S.A. P: 802-442-5448 F: 802-442-2253 C: 1
CORPORATE	Ul. Mariana Jachimowic	za 17, 58-306 Walbrzych,	Poland	DYFRSRURG PLANT	2962 Fort Hudson Road, Dyersburg, TN 38024, U.S.A.
OFFICE/PLANT	P: 074-664-4101	F: 074-664-4104	C: 48	5.Enobona i Davi	P: 731-288-3000 F: 731-288-3001 C: 1
	BEARING POLAND S			ANN ARBOR	4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.
OFFICE/PLANT	UL. Jagiellonska 109, 2: P: 041-345-2469	5-734 Kielce, Poland F: 041-345-0361	C: 48		P: 734-913-7500 F: 734-913-7102 C: 1
NSK POLSKA			5. 10	NSK-WARNER	
KIELCE	UI. Karczowkowska 41,			TROY	3001 West Big Beaver Road, Suite 701, Troy, Michigan 48084, U.S.A. P: 248-822-8888 F: 248-822-1111 C: 1
	P: 041-347-5110	F: 041-347-5101	C: 48	NSK LATIN AM	
Snain:				HOK LATIN AIN	LINOA, INO.

<As of June 2012>

For the latest information, please refer to the NSK website.

NSK LATIN AMERICA, INC.
MIAMI

2500 NW 107th Avenue, Suite 300, Miami, Florida 33172, U.S.A.
P: 305-477-0805 F: 305-477-0377 C: 1

P: Phone F: Fax C: Country Code Printed in Japan

www.nsk.co

NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer, Every care has been taken to ensure the accuracy of the data contained in this brochure, but no fability can be accepted for any loss or damage suffered through errors or omissions. We will graftefully acknowledge any additions or corrections.

 Spain:
 NSK SPAIN S.A.

 BARCELONA
 C/Tarragona 161, 2a Planta, 08014, Barcelona, Spain P: 093-433-5776

 P: 093-433-5775
 F: 093-433-5776
 C: 3

Turkey:
NSK RULMANLARI ORTA DOGU TIC. LTD. STI.
ISTANBUL

19 Mayis Mah. Ataturk Cad. Ulya Engin Is Merkezi No. 68 Kat. 6, Kozyatagi
34734, Istanbul, Turkey
P: 0216-355-0398 F: 0216-355-0399 C: 90

